# Automatic assessment and error detection of non-native English speech using phone distance features



# Konstantinos Kyriakopoulos, Kate Knill, Mark Gales

{kk492,kmk1001,mjfg}@eng.cam.ac.uk

ALTA Institute / Department of Engineering, University of Cambridge

# Introduction

Millions are learning English worldwide and millions yearly take tests
Automatic assessment assigns grades to candidates

- > Error detection identifies and interprets localised mistakes
- Feedback results to user to improve their pronunciation
- ALTA system works with unstructured, spontaneous speech



**Assessment Performance** 

- > Train and test on recorded answers to BULATS speaking test
- > Unstructured, spontaneous, unlabelled speech

Pearson correlations of grader output with expert grades:

| Data sources           | <b>Baseline features</b> | Baseline + pronunciation<br>features |
|------------------------|--------------------------|--------------------------------------|
| Only Gujarati speakers | 0.816                    | 0.872                                |

Speech Recogniser Word Error Rate: 37.6 % Gaussian Process (GP) based grader:



#### **Phone Distance Features**

Idea: Distances characterise accent but independent of voice quality

# GPs to relate score to distance of each phone to all other phones.



## Phones that best predict score for different L1s:



- > Builds on principle behind vowel formant approach
- > All phone pairs not just vowels
- Full HMM acoustic representation not just formants
- > 1081 distance features for 47 English language phones

Select features for bad speaker (left) and good speaker (right):



| Spanish  | ı (0.638), <b>ņ</b> (0.604), u (0.589), <b>h</b> (0.587), ә (0.580), ӕ (0.558),<br><mark>j</mark> (0.547), зː (0.532), <b>tʃ</b> (0.505), <b>b</b> (0.502) |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gujarati | θ (0.419), aɪ (0.417), k (0.409), p (0.402), eə (0.395), t∫ (0.379),<br>w (0.377), eɪ (0.366), f (0.363), ɪ (0.350)                                        |
| French   | <mark>1ə</mark> (0.585), l (0.500), <b>ņ</b> (0.442), a (0.442), ∧ (0.442), i (0.442),<br><mark>r</mark> (0.442), 3ː (0.442), s (0.442), ∫ (0.442)         |
| Thai     | d (0.724), ат (0.711), dʒ (0.701), b (0.685), k (0.674), тә (0.651),<br>g (0.643), зː (0.632), ӕ (0.607), т (0.605)                                        |

- > Can now score speakers on pronunciation of each phone
- > Use to characterise accent relative to L1 and proficiency
- Identify problem phones for feedback to the speaker
- > Use to distinguish accent errors from lexical errors
- e.g. for a Spanish speaker



Strongest correlations between distance and score are negative i.e. better speakers pronounce phones more similarly

Method:

> Train an HMM on all instances of each phone for each speaker
> When insufficient data for direct training use CMLLR model adaption
> Distance is relative entropy (K-L divergence) between pair of models
> For HMMs with multiple emitting states use variational upper bound



> Detect lexical errors with phone substitution and insertion models

### Conclusion

> phone distance features significantly increase grader performance over baseline audio and fluency features
> Performance is stronger for known L1
> Discriminating power is greater for lower scores
> Promising potential for use in error detection