Deep learning for automatic pronunciation assessment of spontaneous non-native speech based on phone distances

K. Kyriakopoulos, K.M. Knill, M.J.F. Gales {kk492,kate.knill,mjfg}@eng.cam.ac.uk

ALTA Institute / Department of Engineering, University of Cambridge

1. Introduction

Automatic assessment: How bad is speaker's pronunciation? Feedback: How is speaker's pronunciation bad?

- Individual mispronunciations
- Overall problem phones

Motivation:

- Computer assisted language learning (CALL)
- Auto-marking of spoken examinations
- Features should be predictive of grade and interpretable
- Features projected to grade through feed-forward neural network
- Extraction and grading can be separate or combined

4. Siamese network distance metric

• Project instances *i* and *j* (of phones ϕ and ψ) from same speaker to vectors $\mathbf{h}^{(i)}$ and $\mathbf{h}^{(j)}$, then obtain distance $d_{i,j} = ||\mathbf{h}^{(i)} - \mathbf{h}^{(j)}||_2$

First steps:

- 1. Pass audio through ASR
- 2. Viterbi align to get label and boundaries for each phone instance *i*
- 3. Extract PLP feature vector $\mathbf{x}_{t}^{(i)}$ for each frame t of audio within each i

Constraints on features:

- Unstructured, spontaneous speech
 - ► High ASR work (and phone) error rate (c. 40%)
 - No native models with identical text
- Broad not narrow transcription
- Variability in speaker attributes

2. Model-based phone distance features (baseline)

Phone j Phone i

K-L training (left): Distance $d_{i,i}$ directly predicts model-based K-L distance $D(\phi, \psi)$ for that speaker Binary training (right): Distance $d_{i,i}$ passed through sigmoid to predict:

 $c_{ij} = \left\{ egin{array}{c} 1, \ \phi = \psi \ 0 \ \phi
eq \psi \end{array}
ight.$ (i.e. whether the two instances are of the same phone)

► For both, train with random sample of instance pairs from each speaker

5. Predicting grade

▶ Bi-LSTM (trained as above) projects each instance to vector $h^{(i)}$

- Each phone characterised relative to others
- Phone-to-phone distances act as features

Frain Gaussian model $\mathcal{N}(\mathbf{x}_t^{(i)}; \boldsymbol{\mu}_{\phi}, \boldsymbol{\Sigma}_{\phi})$ for all instances *i* of each phone ϕ ► Features are symmetric K-L divergences between pairs of models:

 $D_{\phi,\psi} = rac{1}{2} \langle \mathcal{KL} \left(\mathcal{N}(oldsymbol{\mu}_{\phi}, oldsymbol{\Sigma}_{\phi}) || \mathcal{N}(oldsymbol{\mu}_{\psi}, oldsymbol{\Sigma}_{\psi})
ight) + \mathcal{KL} \left(\mathcal{N}(oldsymbol{\mu}_{\psi}, oldsymbol{\Sigma}_{\psi}) || \mathcal{N}(oldsymbol{\mu}_{\phi}, oldsymbol{\Sigma}_{\phi}))
angle$

3. Deep representation of phone instances

▶ Bidirectional LSTM projects sequence of frame vectors $\mathbf{x}_t^{(i)}$: $h_{t}^{(f,i)} = f(x_{t}^{(i)}, h_{t-1}^{(f,i)}, \lambda^{(f,i)})$

$$h_t^{(b,i)} = f(x_t^{(i)}, h_{t+1}^{(b,i)}, \lambda^{(b,i)})$$

Averaging (left): Obtain mean of vectors of all instances of each phones. Attention (right): Use attention mechanism to obtain weighted sum of vectors

- ▶ In both cases, set of 1081 Euclidean distances between all pairs of phones projected to predict grade.
- Attention method allows feature extractors to be fine-tuned for task.
- Attention weights interpretable as importance to grade of phone instances:

6. Experimental Results

• Three different ways of getting instance vector $h^{(i)}$ from $h_t^{(f,i)}$ and $h_t^{(b,i)}$:

Standard LSTM (left): Projects vector from last frame of each pass. Problematic as boundary frames not representative of phone. Centre frame method (mid): Uses middle frame of each pass Attention (right): Attention mechanism determines salience of each frame.

Projection	Criterion (Combination	PCC
Standard	Binary	Average	0.698
Centre	Binary	Average	0.742
Attention	Binary	Average	0.762
Attention	K-L	Average	0.775
Attention	K-L	Attention	0.790
	Baseline		0.785

Attention LSTM performance > centre frame LSTM > standard LSTM Initialising Siamese distance using model K-L divergences improves performance over binary classification training ► With attention mechanism and end-to-end training, deep method

outperforms baseline