

Automatic Characterisation of the Pronunciation of Non-native English Speakers using Phone Distance Features

K. Kyriakopoulos, M.J.F. Gales, K.M. Knill SLaTE 2017

Automatic Pronunciation Assessment and Feedback

- Motivation is CALL/CAPT
- Features:
 - Matched to specific aspects of proficiency
 - Used for both grading and feedback
 - Indicative of how wrong you are AND how you are wrong

Cambridge ALTA

Two Concepts of Bad Pronunciation

- Pronunciation: Rendering of a word as a series of phones
- 1. Bad pronunciation as individual lexical errors:

e.g. subtle:

/s/ /ʌ/ /t/ /ə/ /l/ => /s/ /ʌ/ /b/ /t/ /ə/ /l/

(insertion error)

VS.

2. Bad pronunciation as general property of how one speaks
e.g. Spanish speaker confusing /b/ and /v/
French speaker rendering all /r/ as [χ]

Two Concepts of Bad Pronunciation

- Pronunciation: Rendering of a word as a series of phones
- 1. Bad pronunciation as individual lexical errors:

e.g. subtle:

/s/ /ʌ/ /t/ /ə/ /l/ => /s/ /ʌ/ /b/ /ə/ /l/

(insertion error)

VS.

2. Bad pronunciation as general property of how one speaks
e.g. Spanish speaker confusing /b/ and /v/
French speaker rendering all /r/ as [χ]

Hypothesis: Pronunciation Learning Path

Features should be able to predict:

Cambridge ALTA

- 1. English speaking proficiency (automarking)
- 2. Speaker's L1
- L1 prediction accuracy should decrease with increased proficiency

Key Constraints

- Spontaneous speech
 - No native models with identical text
 - ASR word (and phone) error rate
- Only have native speaker lexicon (broad not narrow transcription)
- e.g. *riot* : /_/ /a/ /_/ /ə/ /t/ and /_r/ /a/ /_/ /ə/ /?/ => /r/ /a/ /_/ /ə/ /t/
- Variability in speaker attributes

Phone Distance Features

- Each phone characterised relative to others
- Independence to speaker attributes
- Train model for speaker's pronunciation of each phone
- Calculate distance between each pair of models

Cambridge ALTA

Phone Distance Features

- 447 Eegijashphones
- 1988 distances
- Gaussian model for phone predicts • Gaussian model $p_i(\boldsymbol{\sigma}|\phi_i)$ for phone ϕ_i PLP features $\boldsymbol{\rho}$: predicts PLP features \boldsymbol{o} :

 $p_i(\boldsymbol{o}|\boldsymbol{\phi}_i) = \mathcal{N}(\boldsymbol{o};\boldsymbol{\mu}_i,\boldsymbol{\Sigma}_i)$

 Distance metric is symmetric K-L
 Distance metric is symmetric K-L divergence divergence:

 $+D_{JS}(p_i, p_j) = \frac{1}{2} [D_{KL}(p_i||p_j) + D_{KL}(p_i||p_j)]$

Data: BULATS Speaking Test

- BUsiness Language Testing Service (BULATS) Spoken English Test
 - A. Introductory Questions: where you are from
 - B. Read Aloud: read specific sentences

Cambridge ALTA

C. Topic Discussion: discuss a company that you admire

- D. Interpret and Discuss Chart/Slide: example above
- E. Answer Topic Questions: 5 questions about organising a meeting

Data: Training and Testing Sets

Cambridge ALTA

• 21 L1s	1 L1s L1		Set		
	21	TRN	EVL1	EVL2	
 Balanced gender and proficiency levels 	Spanish	4502	2156		
 Varying numbers of speaker per L1 	Tamil	1468	790	-	
	Gujarati	1015	230	94	
 EVL1 with more L1s to test L1 	French	291	115	36	
classification	Polish	258	69	39	
	Vietnamese	245	67	37	
 EVL2 with expert assigned grades to 	Dutch	173	47	32	
test score prediction	Thai	144	43	36	
	Oriya	65	26	-	
	Table: Nos. L1s	of spea	akers for	select	

Data: Training and Testing Sets

- 21 L1s
- Balanced gender and proficiency levels

Cambridge ALTA

- Varying numbers of speaker per L1
- Spanish speakers from 3 countries

 L1		Set
21	TRN	EVL1
Spanish	4502	2156
Tomil	1160	700

Country	S	et
	TRN_S	EVL1_S
Colombia	798	296
Mexico	3208	1578
Spain	359	220

Table: Nos. of speakers forSpanish speaking countries

Experimental Setup: ASR

- Acoustic model: Hybrid-Si DNN-HMM
- Language model: N-gram
- Trained on separate set of BULATS Gujarati L1 speakers
- Evaluated using word error rate (WER) and phone error rate (PER)

Correct: Today I ran so far /t/ /ə/ /d/ /e/ /ɪ/ /aɪ/ /r/ /æ/ /n/ /s/ /əʊ/ /f/ /a/ Recognised: Today Iran sofa /t/ /ə/ /d/ /e/ /ɪ/ /aɪ/ /r/ /æ/ /n/ /s/ /əʊ/ /f/ /ə/

Experimental Setup: ASR

- Acoustic model: Hybrid-Si DNN-HMM
- Language model: N-gram
- Trained on separate set of BULATS Gujarati L1 speakers
- Evaluated using word error rate (WER) and phone error rate (PER)

 Correct:
 Today I ran so far
 /t/ /ə/ /d/ /e/ /ɪ/
 /a/ /ɪ/
 /r/ /æ/ /n/
 /s/ /ə/ /ʊ/

 /f/ /a/
 Recognised:
 Today Iran sofa
 /t/ /ə/ /d/ /e/ /ɪ/
 /a/ /ɪ/
 /r/ /æ/ /n/
 /s/ /ə/ /ʊ/ /f/ /ə/

 WER: 80%
 PER: 6.67%

Experimental Setup: ASR

- Overall WER 47.5%, PER 33.9%
- WER drops with increasing proficiency
- Pronunciation L1 classification accuracy thus trade-off – expect best accuracy in middle, lower at extremes

Cambridge ALTA

	Spanish	Arabic	Dutch
A1	69.8	69.7	78.7
A2	58.7	67.4	45.7
B 1	48.6	47.2	41.3
B2	47.1	47.3	40.3
С	48.8	48.6	43.1
All	50.9	52.0	42.5

Table: ASR WER(%) by CEFR levelfor select L1s

Experimental Setup: Automarking

- State of the art DNN
- Trained to minimise MSE for score prediction
- Evaluated using MSE and PCC
- Baseline fluency, vocabulary and simple prosody feature set

Results: Score Prediction

PCC	MSE
0.737	26.4
0.751	23.6
0.832	15.8
	PCC 0.737 0.751 0.832

Table: PCC and MSE between expert assigned and predicted grades (EVL2)

- Pronunciation features performs better than baseline
- Pronunciation features different and complementary to fluency

Experimental Setup: L1 classification

- Same DNN configuration
- Replace output layer with softmax closed-task classification layer
- Trained for minimum cross entropy
- Evaluated using % Accuracy
- Same baseline fluency, vocabulary and simple prosody feature set

Results: L1 classification

	Accura	cy (%)
	EVL1	EVL2
Base	53.1	31.9
PDF	69.0	61.2
Base+PDF	66.5	60.0

Table: Accuracy of 21-way L1 classifier

- Phone Distance Features better than baseline
- Baseline not complementary to Phone Distance Features

Results: L1 classification

	% Correct L1	% # Speakers in TRN	Most confused
Overall	66.5	-	-
Spanish	97.7	4502	Portuguese
Tamil	76.7	1468	Telugu
Gujarati	74.5	1015	Hindi
Hindi	62.3	563	Telugu
Marathi	0.0	106	Hindi
Italian	2.4	107	Spanish

 Table:
 L1 classifier accuracy for select L1s

Classifier seems biased to common training data speakers

Cambridge ALTA

UNIVERSITY OF CAMBRIDGE

Results: L1 classification Error Analysis

- L1s most commonly confused with L1s of similar language group
- Identifiable groups: Romance, North Indian & South Indian

Cambridge ALTA

%

Results: Country of origin classification

	Accuracy (%)
Base	77.3
PDF	85.5
Base+PDF	87.0

Table: Country of origin classifier accuracy

 Spanish speakers accurately classified between Spaniards, Mexicans and Columbians

Results: Classification Accuracy by Grade

PDF accuracy increases then decreases as expected

Cambridge ALTA

UNIVERSITY OF

Figure: Country Accuracies

Conclusions

- Phone distance features indicative of:
 - Proficiency
 - Source accent (defined by L1 and country of origin)
- Proficient speakers' source accents are harder to distinguish using PDFs than intermediate speakers
- Features are sensitive to ASR performance

Any questions?

Variational Autoencoder Projections of Features

