
Modelling trajectories in statistical speech
synthesis

Cambridge statistical speech synthesis (SSS) seminar series

Matt Shannon1 Heiga Zen2

1University of Cambridge

2Toshiba Research Europe Ltd

26 January 2011



Outline

Warm-up – guess the fake

Introduction
Overview
Standard HMM
Normalized models
Sampling trajectories

Autoregressive HMM
Model
Training and synthesis
Comparison (if time)

Trajectory HMM



Warm-up – guess the fake

0.0 0.2 0.4 0.6 0.8 1.0
time / s

1.0

0.5

0.0

0.5
m

ce
p6

pau hh z l d r hh
pau ih b ah g uw aa

natural

0.0 0.2 0.4 0.6 0.8 1.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

pau hh z l d r hh
pau ih b ah g uw aa

std HMM with GV

0.0 0.2 0.4 0.6 0.8 1.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

pau hh z l d r hh
pau ih b ah g uw aa

std HMM mean



Warm-up – guess the fake

0.0 0.2 0.4 0.6 0.8 1.0
time / s

1.0

0.5

0.0

0.5
m

ce
p6

pau hh z l d r hh
pau ih b ah g uw aa

natural

0.0 0.2 0.4 0.6 0.8 1.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

pau hh z l d r hh
pau ih b ah g uw aa

std HMM with GV

0.0 0.2 0.4 0.6 0.8 1.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

pau hh z l d r hh
pau ih b ah g uw aa

std HMM mean



Warm-up – guess the fake

0.0 0.2 0.4 0.6 0.8 1.0
time / s

1.0

0.5

0.0

0.5
m

ce
p6

pau ah jh hh n s
b t ow ae ax k

traj HMM mean

0.0 0.2 0.4 0.6 0.8 1.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

pau ah jh hh n s
b t ow ae ax k

natural

0.0 0.2 0.4 0.6 0.8 1.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

pau ah jh hh n s
b t ow ae ax k

traj HMM with GV



Warm-up – guess the fake

0.0 0.2 0.4 0.6 0.8 1.0
time / s

1.0

0.5

0.0

0.5
m

ce
p6

pau ah jh hh n s
b t ow ae ax k

traj HMM mean

0.0 0.2 0.4 0.6 0.8 1.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

pau ah jh hh n s
b t ow ae ax k

natural

0.0 0.2 0.4 0.6 0.8 1.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

pau ah jh hh n s
b t ow ae ax k

traj HMM with GV



Warm-up – guess the fake

1.0 1.2 1.4 1.6 1.8 2.0
time / s

1.0

0.5

0.0

0.5
m

ce
p6

t ih r jh t ax ao
w dh ey ae dh th

traj HMM sampled

1.0 1.2 1.4 1.6 1.8 2.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

t ih r jh t ax ao
w dh ey ae dh th

natural

1.0 1.2 1.4 1.6 1.8 2.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

t ih r jh t ax ao
w dh ey ae dh th

std HMM sampled



Warm-up – guess the fake

1.0 1.2 1.4 1.6 1.8 2.0
time / s

1.0

0.5

0.0

0.5
m

ce
p6

t ih r jh t ax ao
w dh ey ae dh th

traj HMM sampled

1.0 1.2 1.4 1.6 1.8 2.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

t ih r jh t ax ao
w dh ey ae dh th

natural

1.0 1.2 1.4 1.6 1.8 2.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

t ih r jh t ax ao
w dh ey ae dh th

std HMM sampled



Warm-up – guess the fake

1.0 1.2 1.4 1.6 1.8 2.0
time / s

1.0

0.5

0.0

0.5
m

ce
p6

uh pau n d d
d ae d ih

traj HMM sampled

1.0 1.2 1.4 1.6 1.8 2.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

uh pau n d d
d ae d ih

natural

1.0 1.2 1.4 1.6 1.8 2.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

uh pau n d d
d ae d ih

AR HMM sampled



Warm-up – guess the fake

1.0 1.2 1.4 1.6 1.8 2.0
time / s

1.0

0.5

0.0

0.5
m

ce
p6

uh pau n d d
d ae d ih

traj HMM sampled

1.0 1.2 1.4 1.6 1.8 2.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

uh pau n d d
d ae d ih

natural

1.0 1.2 1.4 1.6 1.8 2.0
time / s

1.0

0.5

0.0

0.5

m
ce

p6

uh pau n d d
d ae d ih

AR HMM sampled



Outline

Warm-up – guess the fake

Introduction
Overview
Standard HMM
Normalized models
Sampling trajectories

Autoregressive HMM
Model
Training and synthesis
Comparison (if time)

Trajectory HMM



Overview

Extremely quick overview of statistical speech synthesis

I overall goal is to turn text into speech

I we break this down as

word seq→ label seq→ state seq→ feature vector seq↔ waveform

I label sequence l = l1:J

I e.g. each lj is a full-context label (quinphone, POS, etc)

I state sequence q = q1:T

I e.g. each qt is a full-context label together with an integer state index

I feature vector sequence c = c1:T

I e.g. each ct is a 40-dim static Mel-cepstrum together with a 0/1-dim
log F0 value

I in statistical speech synthesis we build probabilistic models P(q|l)
(duration model) and P(c |q) (acoustic model)
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Overview

To build the models

I use a training corpus ((l r , c r )) of examples from a single speaker

I we assume (generative model) speaker generates c r for each l r by
I sampling qr randomly from Ptrue(q|l = l r )
I sampling c r randomly from Ptrue(c|q = qr ) given this qr

I want to estimate the Ptrue for the speaker as closely as possible, so
that we can synthesize c for new unseen label sequences l

Typically

I assume Ptrue(c |q) lies in some parametrized family of distributions
{P(c |q, λ) : λ} and similarly for Ptrue(q|l)

I use training corpus to estimate parameters λ

One possible goal

I to imitate the given speaker
I i.e. the perfect synthesis system is one where you can’t tell utterances

from the training corpus and new synthesized utterances apart
I note that the original speaker certainly satisfies this criterion
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Overview

The duration model P(q|l , λ)

I usually assumed to have Markov transition structure
P(q|l , λ) =

∏
t P(qt |qt−1, l , λ)

Today we’ll be focusing on the acoustic model P(c |q, λ)

I the sequence over time of a single component i of the feature vector
(e.g. mcep6) forms a trajectory c i

I usually assume the trajectories (c i ) for the various feature vector
components i are independent given the state sequence

⇒ focus on modelling c i |q
I for clarity of notation

I drop i index and write c instead of c i from now on
I ct ∈ R
I c is a sequence of real numbers over time (a trajectory)
I P(c|q, λ) is a distribution over trajectories

I slightly tricky concept



Distributions over trajectories
To help explain the concept of a distribution over trajectories, consider a
3-dimensional Gaussian distribution c ∼ N (µ,Σ)

µ =
(
−0.352 −0.376 −0.405

)
Σ =

0.024 0.016 0.009
0.016 0.022 0.013
0.009 0.013 0.019


I P(c) assigns a real number to each 3-dimensional vector c

I sampling from P(c) gives a random 3-dimensional vector
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Distributions over trajectories
Now consider a 200-dimensional Gaussian distribution c ∼ N (µ,Σ)

µ =
(
−0.103 −0.119 −0.143 −0.164 −0.179 . . .

)

Σ =


0.011 0.009 0.008 0.006 0.005 . . .
0.009 0.011 0.009 0.007 0.006 . . .
0.008 0.009 0.012 0.009 0.008 . . .
0.006 0.007 0.009 0.013 0.011 . . .
0.005 0.006 0.008 0.011 0.015 . . .
. . . . . . . . . . . . . . . . . .


I P(c) assigns a real number to each 200-dimensional trajectory c
I sampling from P(c) gives a random 200-dimensional trajectory
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Distributions over trajectories

For any Gaussian distribution c ∼ N (µ,Σ)

I µt = Ect

I Σst = Cov(cs , ct)

I in particular Σtt = Var(ct)

Can therefore think of

I µ as the mean trajectory

I Σ as expressing correlations over time

I in particular Σtt gives the marginal or pointwise variance of ct

I can vary with time

And each sample from the distribution P(c) is a trajectory



Standard HMM

In the standard HMM synthesis framework

I we augment the trajectory c with delta parameters
c∆

t , 1
2ct+1 − 1

2ct−1 and delta-delta parameters c∆∆
t to get an

observation sequence o = (c , c∆, c∆∆)

I we then model o|q instead of c |q, with some distribution P̃(o|q, λ)

I o is a deterministic linear transform o = w(c) of c

I the problem is, since o ∈ R3T and c ∈ RT , most random o are
incoherent – there is no c such that o = w(c)

I therefore a model of o|q doesn’t define a model of c |q
Why not just restrict to the set of coherent sequences?

I want to set P(c |q, λ) ∝ P̃(w(c)|q, λ)

I however we need a normalization constant if we want this to define
a valid probability distribution over c

P(c |q, λ) , 1
Z(q,λ) P̃(w(c)|q, λ)



Standard HMM

I during synthesis we do this already – we restrict to the subspace of
coherent sequences and effectively use

P(c |q, λ) , 1
Z(q,λ) P̃(w(c)|q, λ)

I however during training we effectively use the unnormalized
distribution

“P”(c |q, λ) , P̃(w(c)|q, λ)

⇒ inconsistent

⇒ no guarantee training is doing anything sensible from the point of
view of using the trained model for synthesis

I hope to convince you that the standard training really is getting
something a bit wrong, and that using the same normalized model
for training and synthesis does make a difference



Normalized models

We have seen

I standard model used during training is either unnormalized or
defined over the wrong quantity, depending on how you look at it

I standard model effectively used during synthesis is a valid
normalized model

So why not use the same normalized model we effectively use during
synthesis during training as well?

I this is precisely the trajectory HMM



Normalized models

In fact there are several ways to obtain a normalized model – we could

1. use a model P(c |q, λ) which is explicitly built up of local conditional
distributions, all of which are individually normalized

I e.g. autoregressive HMM P(c|q, λ) =
∏

t P(ct |qt , ct−K :t−1, λ)
I locally normalized

2. choose any positive cost function U(c ; q, λ) and then normalize the
conditional distribution P(c |q, λ) = 1

Z(q,λ)U(c ; q, λ)

I e.g. trajectory HMM U(c; q, λ) = P̃(w(c)|q, λ)
I globally normalized at the level of c

3. choose any positive cost function U(c , q;λ) and then normalize the
joint distribution P(c , q|λ) = 1

Z(λ)U(c , q;λ)

I e.g. U(c, q;λ) = P̃(w(c), q|λ)
I as far as I know no-one has tried this
I globally normalized at the level of (c, q)

Will explore the exact parametrizations of both the autoregressive HMM
and trajectory HMM later in the talk.
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Normalized models (aside)

For those interested all the normalized models we’ve discussed are
examples of probability distributions defined using graphical models

I autoregressive HMM is an example of a directed graphical model
(locally normalized)
c1 c2 c3 c4 c5 c6

I trajectory HMM P(c |q, λ) distribution is an example of an
undirected graphical model, also known as a Markov random field
(globally normalized)
c1 c2 c3 c4 c5 c6

Provide a very clean conceptual framework for reasoning about
probabilistic models, but we won’t discuss further today.



Normalized models

Summary of the different models of c |q, λ
training synthesis

std “P”(c |q, λ) = P̃(w(c)|q, λ) P(c |q, λ) = 1
Z(q,λ) P̃(w(c)|q, λ)

traj P(c |q, λ) = 1
Z(q,λ) P̃(w(c)|q, λ)

AR P(c |q, λ) =
∏

t P(ct |qt , ct−K :t−1, λ)

Also helpful to know that

I for all of these models P(c |q, λ) is Gaussian

I i.e. c |q, λ ∼ N (µq,Σq) for some mean trajectory µq and covariance

Σq (which also depend on the parameters λ)

I so we can think of the distribution over trajectories P(c |q, λ) in the
same way as we did above



Effect of normalization

How does normalization affect the trained models?

I plot the distribution over trajectories P(c |q, λ) for some real
utterances

I compare to natural trajectory

Technical details

I mcep6 (7th Mel-cepstral component)

I 1 second of speech

I synthesis given standard CMU ARCTIC phone-level transcription

I plot mean trajectory ±1.5 standard deviation, and natural trajectory

I (N.B. correlations over time not represented in this picture)



Effect of normalization

Unnormalized (standard HTS training)
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Effect of normalization

Normalized (trajectory HMM)
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Effect of normalization

Normalized (autoregressive HMM)
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Effect of normalization

We can see

I the variance of the distribution over trajectories for the unnormalized
model is too small (over-confident)

I the variance for the normalized models is larger, and looks more
reasonable

I this is reflected in probabilities – log prob per frame of the natural
trajectory is

I 0.3 (unnormalized HMM)
I 0.9 (trajectory HMM)
I 0.9 (autoregressive HMM)

I normalization also changes the mean trajectory
I at least for the trajectory HMM, improves naturalness of synthesized

mean trajectories1

1H. Zen, K. Tokuda, and T. Kitamura. An Introduction of Trajectory Model into HMM-Based
Speech Synthesis. In Proc. Fifth ISCA Workshop on Speech Synthesis, 2004



Sampling trajectories

I so far we have good reasons (subjective and objective) to believe
normalized models are better models of speech

I but mean trajectories still look very unrealistic – much too smooth
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Sampling trajectories

The smoothness is caused in part by taking the mean trajectory

I our stated goal was to imitate the original speaker exactly (to extend
the training corpus without anyone realizing)

I our assumption during training is that the training corpus was
generated by the speaker sampling (independently) from P(c |q, λ)
for each utterance

⇒ should really do synthesis by sampling trajectory

In this view

I the fact the mean trajectory sounds over-smoothed is not a sign of
anything going wrong – we would probably expect the mean
trajectory to be smoother than any given random trajectory

I the random part of the probability distribution over trajectories is
aiming to capture the speaker’s natural variability – the speaker says
the same label sequence slightly differently each time they say it



Sampling trajectories

Sampled trajectories certainly capture the characteristic roughness of
natural trajectories
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Sampling trajectories

Sampled trajectories from the normalized models we have currently

I look more like natural speech than mean trajectories

I have some nice properties
I e.g. sampled trajectories from these normalized models have almost

completely natural global variance distributions, without using any
additional global variance modelling

I sound terrible (!)
I traj HMM with GV
I traj HMM mean
I traj HMM sampled

⇒ existing models are not modelling something they should be
modelling

I (this conclusion still holds even if you prefer doing the synthesis itself
using the mean trajectory)

I and it seems to be something low-level – instantly noticeable and
uniform over the utterance, not some complicated contextual effect


2.3771434

cmu_us_arctic_slt_a0091-traj-withGv.mp3
Media File (audio/x-mp3)


2.3771434

cmu_us_arctic_slt_a0091-traj-mean.mp3
Media File (audio/x-mp3)


2.3771434

cmu_us_arctic_slt_a0091-traj-rndP_all.mp3
Media File (audio/x-mp3)
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A unified view of current normalized models (optional)

Can distinguish two inter-related aspects to modelling c |q well

1. model the random variation present for fixed q
I imagine we fix the state sequence q once and for all
I just try to model the variability in the way speaker says the utterance
I not necessarily easy!

2. model the way the overall distribution P(c |q, λ) over c depends on
the individual states qt at each time t

I expect state at time t to have a local effect on trajectory – i.e. affect
mainly ct−L:t+L for some L

I the overlapping local effects of states near each other in the state
sequence should interact in such a way that even unseen state
sequences result in a sensible overall distribution P(c|q, λ)

How do current normalized models approach these two aspects?



A unified view of current normalized models (optional)

1. model the random variation present for fixed q

I assume c|q is a Gaussian, i.e. c|q ∼ N (µq,Σq)
I Gaussian is over time (c is a T -dimensional vector)
I µq is mean trajectory

2. model the way the overall distribution over c depends on the
individual states qt at each time t

I define Pq = Σq
−1

(precision matrix) and bq = Pqµq (b-value)
I assume the effect of the state qt at time t is local in terms of the

precision matrix and b-value
I qt affects (bq)t−KL:t+KR

I qt affects (Pq)(t−KL:t+KR)(t−KL:t+KR)

I N.B. effect of qt on Σq and µq typically lasts much longer than K
frames

I Pq and bq are the natural parameters of the Gaussian



A unified view of current normalized models (optional)

1. model the random variation present for fixed q
I assume c|q is a Gaussian, i.e. c|q ∼ N (µq,Σq)

I Gaussian is over time (c is a T -dimensional vector)
I µq is mean trajectory

2. model the way the overall distribution over c depends on the
individual states qt at each time t

I define Pq = Σq
−1

(precision matrix) and bq = Pqµq (b-value)
I assume the effect of the state qt at time t is local in terms of the

precision matrix and b-value
I qt affects (bq)t−KL:t+KR

I qt affects (Pq)(t−KL:t+KR)(t−KL:t+KR)

I N.B. effect of qt on Σq and µq typically lasts much longer than K
frames

I Pq and bq are the natural parameters of the Gaussian



A unified view of current normalized models (optional)

1. model the random variation present for fixed q
I assume c|q is a Gaussian, i.e. c|q ∼ N (µq,Σq)

I Gaussian is over time (c is a T -dimensional vector)
I µq is mean trajectory

2. model the way the overall distribution over c depends on the
individual states qt at each time t

I define Pq = Σq
−1

(precision matrix) and bq = Pqµq (b-value)
I assume the effect of the state qt at time t is local in terms of the

precision matrix and b-value
I qt affects (bq)t−KL:t+KR

I qt affects (Pq)(t−KL:t+KR)(t−KL:t+KR)

I N.B. effect of qt on Σq and µq typically lasts much longer than K
frames

I Pq and bq are the natural parameters of the Gaussian



A unified view of current normalized models (optional)

In other words, Pq and bq are built up from overlapping local
contributions

Pq =




bq =




I the difference between the autoregressive HMM and trajectory

HMM is in the form of the local contributions2

2M. Shannon and W. Byrne. A formulation of the autoregressive HMM for speech synthesis.
Technical Report CUED/F-INFENG/TR.629, Department of Engineering, University of Cambridge,
UK, 2009b. http://mi.eng.cam.ac.uk/~sms46/papers/shannon2009fah.pdf

http://mi.eng.cam.ac.uk/~sms46/papers/shannon2009fah.pdf


Summary

To summarize so far

I standard model used during training is unnormalized

I normalization (trajectory HMM, autoregressive HMM) results in a
better distribution over trajectories

I theoretically more consistent
I uses the same normalized model for training and synthesis

I subjectively better
I sampled trajectories from normalized models have many large rises

and falls, just like natural trajectories, whereas sampled trajectories
from the standard model are slightly too tame

I the natural trajectory is massively outside the expected range less
often with normalized models

I objectively better
I greatly increases test set log probability



Summary

I need to sample trajectories to take full advantage of the better
covariance present in normalized models

I theoretically the right thing to do
I generates much more natural looking trajectories
I sounds terrible (!)
I existing models (standard HMM, trajectory HMM, autoregressive

HMM) are all failing to capture some important low-level aspect of
speech

I (optionally) have also seen that the standard HMM used during
synthesis, trajectory HMM and autoregressive HMM have
substantial similarities

I P(c|q, λ) is a Gaussian
I with precision matrix and b-value built up from local contributions
I difference between the different models is in the form of these local

contributions
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Model

The autoregressive HMM uses

I the standard duration model P(q|l , λ) =
∏

t P(qt |qt−1, l , λ)

I an autoregressive acoustic model of depth K

P(c |q, λ) =
∏

t

P(ct |ct−K :t−1, qt , λ)

For example, for depth K = 2

q1 q2 q3 q4 q5 q6

c1 c2 c3 c4 c5 c6

Locally normalized – conditional distributions P(ct |ct−K :t−1, qt , λ) are all
individually normalized



Model

I turns problem of learning a model over trajectories P(c |q) from data

t . . . 20 21 22 23 24 . . .
qt . . . ae-3 ae-4 ae-4 ae-4 t-0 . . .
ct . . . 1.0 1.3 1.6 2.0 1.8 . . .

I into learning a function (ct−K :t−1, qt) 7→ ct from data

(ct−2, ct−1, qt) 7→ ct

(0.6, 0.7, ae-3) 7→ 1.0
(0.7, 1.0, ae-4) 7→ 1.3
(1.0, 1.3, ae-4) 7→ 1.6
(1.3, 1.6, ae-4) 7→ 2.0
(1.6, 2.0, t-0) 7→ 1.8

I a standard regression problem

⇒ can plug in any regression model



Model

I often we assume a linear-Gaussian form for the regression model

ct |ct−K :t−1, (qt = m), λ ∼ N

 K∑
k=1

ak
m︸︷︷︸

coeffs

ct−K + aK+1
m︸ ︷︷ ︸
bias

, (σ2)m︸ ︷︷ ︸
variance


I the collection of model parameters λ contains the model parameters

(am, (σ
2)m) for each state m

I but we can in principle use any regression model, including
complicated non-Gaussian non-linear regression models

⇒ flexible



Training and synthesis

A nice aspect of the autoregressive HMM is that in spite of this flexibility
its factorization properties ensure we can do efficient training and
synthesis

I P(c , q|λ) factorizes over time for the state sequence q

⇒ we can do efficient Viterbi, Forward-Backward, etc as for the
standard HMM

I parameter re-estimation procedure depends on the form of regression
model used

I for the autoregressive HMM with a linear-Gaussian regression model
the parameter re-estimation procedure is as follows3

I accumulate a (K + 1)× (K + 1) matrix Rm (typically 4× 4)
I and a (K + 1)-dimensional vector rm

I re-estimate am by solving Rmam = rm

⇒ efficient training using expectation-maximization

3M. Shannon and W. Byrne. Autoregressive HMMs for speech synthesis. In Proc. Interspeech
2009, 2009a. http://mi.eng.cam.ac.uk/~sms46/papers/shannon2009ahs.pdf

http://mi.eng.cam.ac.uk/~sms46/papers/shannon2009ahs.pdf


Training and synthesis

I autoregressive decision tree clustering is conceptually the same as for
the standard HMM but uses autoregressive accumulators and output
distributions instead of standard ones

I autoregressive clustering improves naturalness slightly compared to
re-using standard HMM trees with the autoregressive HMM4

I synthesis is just as for the standard HMM framework, since
P(c |q, λ) is still just a Gaussian

⇒ can do synthesis considering global variance as normal
I synthesis considering global variance for the autoregressive HMM has

roughly the same naturalness as for the standard HMM5

4M. Shannon and W. Byrne. Autoregressive clustering for HMM speech synthesis. In Proc.
Interspeech 2010, 2010.
http://mi.eng.cam.ac.uk/~sms46/papers/shannon2010autoregressive.pdf

5M. Shannon and W. Byrne. Autoregressive HMMs for speech synthesis. In Proc. Interspeech
2009, 2009a. http://mi.eng.cam.ac.uk/~sms46/papers/shannon2009ahs.pdf

http://mi.eng.cam.ac.uk/~sms46/papers/shannon2010autoregressive.pdf
http://mi.eng.cam.ac.uk/~sms46/papers/shannon2009ahs.pdf


Summary

The autoregressive HMM provides

I a consistent normalized model that can be used during both training
and synthesis

I efficient training using expectation-maximization

I a flexible framework
I e.g. non-linear regression models

I high-quality synthesis



Comparison (if time)
The autoregressive HMM has some strong similarities and some
important differences to the trajectory HMM

I if we fix the state sequence q the models are equivalent – both
model c |q as a Gaussian with band-diagonal precision matrix

I more generally for the autoregressive HMM

P(ct |c1:t−1, q, λ) = P(ct |ct−K :t−1, qt , λ)

whereas viewing the the trajectory HMM from this autoregressive
point of view

P(ct |c1:t−1, q, λ) = P(ct |ct−K :t−1, qt−1:T , λ)

Thus
I in principle the trajectory HMM can depend on how long the current

state lasts, and what future states are
I whereas the autoregressive HMM doesn’t know when the state qt is

about to change
⇒ the autoregressive HMM may use states differently to the trajectory

HMM
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Trajectory HMM

[see Heiga’s slides]
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