

Context Modelling for HMM-Based Speech Synthesis

Kai Yu

Machine Intelligence Lab Cambridge University Engineering Department

Mar. 16, 2011

Overview

- Rich context features in speech synthesis
- Context dependent HMM modelling
 - Decision tree based state clustering
- Context groups and factorization
- Structured context modelling framework
 - Adaptive training with factorized decision tree
 - Product of expert
- Discussion welcome!

HMM based Statistical Speech Synthesis (HTS)

SSS (2011/03/16) Kai Yu - Context Modelling For HMM Based Speech Synthesis

3

HMM-based Speech Synthesis

Composite HMMs

Rich contexts of phone in speech synthesis

	the center	dhax s eh ntax					
Context features of eh							
Neighbouring phones		Left: s					
		Right: n					
Position		2 nd phone from word start					
		4 th phone from word end					
Stre	ss/Accent	Current phone stressed					
Linguistic role		Noun, object					
Emphasis		Current word emphasized					
		Previous word not emphasized					

Issues with Rich Contexts - Complexity

- Significantly increased model complexity
 - One HMM per context

```
aa^aa-v+dh=ax@2_1/A:1_0_1/B:1-0-2@1-1&11-3#9-2$2-1!1-2;8-2|aa/C:0+0+2/D:content_1
/E:in+1@10+3&7+1#1+2/F:det_1/G:0_0/H:13=12@1=1|L-L%/I:0=0/J:13+12-1
```

- Typical context dimension: 55
- Typical full context HMMs:
 - 34110 ARCTIC 1 hr, 1K sent
 - > 1e+23 All possible combinations
- Robustness of parameter estimation
- Unseen new contexts during synthesis (Generalization ability)

Issues with Rich Contexts – Acoustic Effect

- Contexts are of different acoustic effect natures
- Affected acoustic property
 - Source (F0) acoustic unit counts/phonetic/position
 - Spectrum phonetic/syllable
 - Duration position/phonetic
- Strength
 - Emphasis v.s. word stress
- Homogeneity (description) range
 - Phone/Syllable/Word/Phrase
 - Sentence/Corpus Speaker/Emotion
 - Sometimes range boundary is not clear

Issues with Rich Contexts – Label Inaccuracy

- From text to rich contexts
 - Dictionary mapping phone, accent, stress
 - Linguistic analysis syllable, phrase, content words, PoS
 - Counting number, position
 - Rich out-of-text information emotion, accent, etc.
- Analysis (conversion) is not accurate
 - Multiple pronunciations or uncommon realization
 - Automatic label generation errors
 - Labelling inconsistency (emotion, emphasis)
- How to improve accuracy of context label generation
- Exact effect of inaccurate context labels?

Decision tree based state clustering

- Why decision tree based clustering
 - Effective treatment of unseen contexts
 - Reduced model complexity via parameter sharing
- Yes/No context-specific questions
- State-based clustering instead of model based

Procedure of Decision Tree Based State Clustering

- Build mono-phone HMMs with single Gaussian per state
- Initialize full context-dependent HMMs
- For each state (stream) index, build one tree to construct parameter sharing structure
 - Pull all data together to form a single Gaussian dist. as the root node
 - For each leaf node, select a context question to split the node into two
 - Likelihood of the whole data set will increase
 - The selected question is the one maximizing the likelihood increase
 - Repeat the process until stopping criterion is met
- Gaussian parameters within each leaf node are tied

Decision question selection

Decision question example

	Left phone is vowel?		
Phonectic	Current phone is "aa"?		
	Current syllable is stressed?		
Position	Current phone is the 3 rd one of the syllable from backward?		
Number	The number of phones in the current syllable is 3?		

Efficient likelihood calculation from statistics

$$\begin{aligned} \mathcal{L}(S) &= -\frac{1}{2} \sum_{t,s \in S} \gamma_s(t) \log \mathcal{N}\Big(\mathbf{o}_t; \boldsymbol{\mu}(S), \boldsymbol{\Sigma}(S)\Big) \\ &= -\frac{\gamma(S)}{2} \Big(\log |\boldsymbol{\Sigma}(S)| + K \Big) \end{aligned}$$

Stopping criteria

- Likelihood increase less than threshold
- Occupancy of leaf nodes less than threshold
- Trade-off between model complexity and likelihood increase
 - Minimum description length

Manual scaling factor

$$l(\mathcal{M}_i) = -\log p(\mathcal{D}|\mathcal{M}_i^{\mathsf{ML}}) + \lambda \frac{\alpha_i}{2} \log N_{\mathcal{D}} + K$$

Likelihood of data given ML estimate Number of free Dat parameters tota

Data points or total occupancy

12

Problems with straightforward context modelling

- Weak contexts such as natural emphasis may be completely ignored
- Re-clustering of all contexts is required in case of any context change
- Effects of contexts are modelled sequentially rather than simultaneously
- Training data is fragmented with the tree growing
- Phone (state/stream) level likelihood may not be consistent with context range
- Incorporating new context will lead to exponentially increased parameters

Context groups and factorization

Context questions statistics

	Phone Identity	Position	Counts	Accent/ Stress	Part-of- Speech	Emphasis
mgc	192	8	16	3	3	0
lfO	368	98	10	320	25	0
dur	221	49	137	4	14	0

- Effect of contexts are different
- Structured modelling
 - Model the relationship and interaction of contexts
 - Wider coverage due to combination effect

Structured context modelling

- Issues to address
 - Assumptions of relationship between contexts
 - Model structure and parameters estimation
 - Model usage during synthesis
 - State clustering
- Adaptive HMM framework
- Product of Expert (PoE) framework

Adaptive HMM for context modelling

- Multiple sets of model parameters
 - Each model set is associated with one context group
 - Transforms are used to modify HMM parameters
 - Model context relationship

 $p(\mathbf{o}|s, w) = p(\mathbf{o}|\mathcal{M}(s, w)) \quad \mathcal{M}(s, w) = \mathcal{F}_{w}(\mathcal{M}_{s})$

- s and w are context FACTORS, each can contain several context features
- Homogeneity assumption:
 - Ms and Fw are unchanged within homogeneous block
 - Homogeneous range can be phone/sentence/corpus
- Full context c=[s,w]
 - Number of full contexts: Nc = Ns x Nw
 - Number of factorized contexts: Ns + Nw

Parameter Tying with Structured Context Modelling

- Decision tree based state clustering
- Clustering on combined feature c=[s,w]

- Structured clustering
 - Shared decision tree
 - Factorized decision tree

Shared Decision Tree

- Common context questions for all speakers to avoid unbalanced split during clustering
- Common decision trees for all speakers

Speaker Adaptation in ASR

- No question selection
- Common phonetic context trees for all speakers
- Speaker adaptation is a special case of context adaptive HMM framework

Factorized Decision Tree – Emphasis as e.g.

Model Structure of Context Adaptive Training

- Base Gaussians associated with base context tree
- Transform associated with emphasis context tree
- Param. of atomic nodes are combination of the two
- Two sets of para. estimation interleaves

22

Linear Transform Based Approach

- Context relationship is assumed to be (piecewise) linear
- Powerful in terms of context transformation
- Hard to model more than two context factors

Parameter Estimation – Linear Transform Based Context Adaptive Training

$$\begin{split} \hat{\Lambda}_{\mathbf{r}_{c}} &= \mathcal{F}_{\mathbf{r}_{e}} \left(\Lambda_{\mathbf{r}_{p}} \right) \mathbf{r}_{c} = \mathbf{r}_{p} \cap \mathbf{r}_{e} & \hat{\mu}_{m} = \mathbf{A}_{\mathbf{r}_{e}(\mathbf{m})} \mu_{\mathbf{r}_{p}(\mathbf{m})} + \mathbf{b}_{\mathbf{r}_{e}(\mathbf{m})} = \mathbf{W}_{\mathbf{r}_{e}(\mathbf{m})} \xi_{\mathbf{r}_{p}(\mathbf{m})} \\ \hat{\Sigma}_{m} &= \Sigma_{\mathbf{r}_{p}(\mathbf{m})} \\ & \mathbf{W}_{\mathbf{r}_{e},\mathbf{d}} = \mathbf{G}_{\mathbf{r}_{e},d}^{-1} \mathbf{k}_{\mathbf{r}_{e},d} & \mathbf{G}_{\mathbf{r}_{e},d} = \sum_{t} \sum_{m \in \mathbf{r}_{e}} \frac{\gamma_{m}(t)}{\sigma_{dd}^{\mathbf{r}_{p}(\mathbf{m})}} \xi_{\mathbf{r}_{p}(\mathbf{m})} \xi_{\mathbf{r}_{p}(\mathbf{m})} \\ & \mathbf{k}_{\mathbf{r}_{e},d} = \sum_{t} \sum_{m \in \mathbf{r}_{e}} \frac{\gamma_{m}(t)o_{t,d}}{\sigma_{dd}^{\mathbf{r}_{p}(\mathbf{m})}} \xi_{\mathbf{r}_{p}(\mathbf{m})} \\ & \mu_{\mathbf{r}_{p}} = \mathbf{G}_{\mathbf{r}_{p}}^{-1} \mathbf{k}_{\mathbf{r}_{p}} & \mathbf{G}_{\mathbf{r}_{p}} = \sum_{t} \sum_{m \in \mathbf{r}_{p}} \gamma_{m}(t) \mathbf{A}_{\mathbf{r}_{e}(\mathbf{m})}^{\top} \Sigma_{m}^{-1} \mathbf{A}_{\mathbf{r}_{e}(\mathbf{m})} \\ & \mathbf{k}_{\mathbf{r}_{p}} = \sum_{t} \sum_{m \in \mathbf{r}_{p}} \gamma_{m}(t) \mathbf{A}_{\mathbf{r}_{e}(\mathbf{m})}^{\top} \sum_{m}^{-1} \left(\mathbf{o}_{t} - \mathbf{b}_{\mathbf{r}_{e}(\mathbf{m})} \right) \\ \Sigma_{\mathbf{r}_{p}} = \operatorname{diag} \left(\frac{\sum_{t,m \in \mathbf{r}_{p}} \gamma_{m}(t) (\mathbf{o}_{t} - \hat{\mu}_{m}) (\mathbf{o}_{t} - \hat{\mu}_{m})^{\top}}{\sum_{t,m \in \mathbf{r}_{p}} \gamma_{m}(t)} \right) \end{split}$$

SSS (2011/03/16) Kai Yu - Context Modelling For HMM Based Speech Synthesis

24

Cluster based approach

- Less powerful due to simple interpolation weights
- Regression base-class can be used for interpolation weights
- Easy to be used for more than two factors

Parameter Estimation – Cluster Based Context Adaptive Training

SSS (2011/03/16) Kai Yu - Context Modelling For HMM Based Speech Synthesis

State Clustering for Factorized Decision Tree

- Independent construction
 - Context factors are completely independent
 - Easy implementation
- Dependent construction
 - Construct decision tree for one factor given the decision tree structure of the other factor
 - Interleave between multiple sets of model parameters
- Simultaneous construction
 - At each split, all trees are optimized inter-dependently

Dependent Decision Tree Construction

MLLR based context adaptive training as example

$$\mathcal{L}(S) = -\frac{1}{2} \sum_{t,s \in S} \gamma_s(t) \Big(\log |\mathbf{\Sigma}(S)| + \big(\mathbf{o}_t - \mathbf{A}_{r_s} \boldsymbol{\mu}(S) - \mathbf{b}_{r_s}\big)^\top \mathbf{\Sigma}^{-1}(S) \big(\mathbf{o}_t - \mathbf{A}_{r_s} \boldsymbol{\mu}(S) - \mathbf{b}_{r_s}\big) + K \Big)$$

- Decision tree structure of MLLR is fixed
- 1. Estimate mean/cov for full context-dept HMMs given MLLR
- 2. Split each leaf node using applicable context questions
- 3. Calculate likelihood increase of each split
 - Re-estimate new mean/cov of each leaf node
 - Evaluate likelihood of the whole data set
- 4. Choose the question yielding the largest likelihood increase and split the corresponding leaf node
- 5. Go to 3 until the stopping criterion is met

Simultaneous Decision Tree Construction

- 1. Estimate parameters for full context-dependent HMMs
- 2. Create root nodes for each context factor
- 3. Split all leaf nodes of all trees using applicable context questions
- 4. Calculate likelihood increase of each split
 - Identify the parameter set associated with the tree
 - Re-estimate the parameters given the split and the other sets of parameters
 - Evaluate likelihood of the whole data set
- 5. Choose the question and the leaf node which yields the largest likelihood increase and split it
- 6. Go to 3 until the stopping criterion is met

29

Canonical State Model

- Construct "canonical" state models
- Each context-dependent model is transformed from the canonical state models

30

General Form of Canonical State Model

Canonical state model is a large global GMM

$$p(\mathbf{o}|s_{\mathbf{g}}) = \sum_{m=1}^{M} c_{\mathbf{g}}^{(m)} \mathcal{N}(\mathbf{o}; \boldsymbol{\mu}_{\mathbf{g}}^{(m)}, \boldsymbol{\Sigma}_{\mathbf{g}}^{(m)})$$

Context specific state models are transformed from it

$$\begin{split} p(\mathbf{o}|s) &= \mathcal{N}(\mathbf{o}; \boldsymbol{\mu}_{s}, \boldsymbol{\Sigma}_{s}) \\ \boldsymbol{\mu}_{s} &= \mathcal{F}_{\mu}(\boldsymbol{\Lambda}_{s_{g}}; \boldsymbol{\theta}_{s}) \\ \boldsymbol{\Sigma}_{s} &= \mathcal{F}_{\Sigma}(\boldsymbol{\Lambda}_{s_{g}}; \boldsymbol{\theta}_{s}) \end{split} \\ \boldsymbol{\Lambda}_{s_{g}} &= \{c^{(m)}, \boldsymbol{\mu}_{g}^{(m)}, \boldsymbol{\Sigma}_{g}^{(m)}\}, m = 1, \cdots, M \end{split}$$

Forms of state specific transform

Gaussian Selection

$$\mathcal{F}_{\mu}(\Lambda_{s_{g}};\theta_{s}) = \sum_{m} \delta(m-m_{s})\mu_{m} \quad \mathcal{F}_{\Sigma}(\Lambda_{s_{g}};\theta_{s}) = \sum_{m} \delta(m-m_{s})\Sigma_{m}$$

Parameter Interpolation

$$\mathcal{F}_{\mu}(\boldsymbol{\Lambda}_{s_{g}};\boldsymbol{\theta}_{s}) = \sum_{m} \lambda_{sm} \boldsymbol{\mu}_{m} \quad \mathcal{F}_{\Sigma}(\boldsymbol{\Lambda}_{s_{g}};\boldsymbol{\theta}_{s}) = \sum_{m} \delta(m-m_{s}) \boldsymbol{\Sigma}_{m}$$

Linear transform

$$\mathcal{F}_{\mu}(\Lambda_{s_{g}};\theta_{s}) = \sum_{m} \delta(m - m_{s}) \mathbf{A}_{s} \boldsymbol{\mu}_{m} + \mathbf{b}_{s} \quad \mathcal{F}_{\Sigma}(\Lambda_{s_{g}};\theta_{s}) = \sum_{m} \delta(m - m_{s}) \boldsymbol{\Sigma}_{m}$$

Combined Transformations

$$\mathcal{F}_{\mu}(\boldsymbol{\Lambda}_{s_{\mathsf{g}}};\boldsymbol{\theta}_{s}) = \mathbf{A}_{s} \sum_{m} \lambda_{sm} \boldsymbol{\mu}_{m} + \mathbf{b}_{s} \quad \mathcal{F}_{\Sigma}(\boldsymbol{\Lambda}_{s_{\mathsf{g}}};\boldsymbol{\theta}_{s}) = \sum_{m} \delta(m - m_{s}) \boldsymbol{\Sigma}_{m}$$

Comments on Canonical State Model

- Canonical state model is a more general form of context adaptive training
- Initialization of canonical state model
 - Data driven
 - Prior knowledge
- State clustering given canonical state model
 - Standard decision tree clustering with adapted full context model
 - Dependent decision tree clustering of context transformations

Product of Expert for Context Modelling

PoE for state output distribution

- Context combination with PoE
 - Multiple context groups are modelled separately
 - Contexts are always time syncrhonous
 - Directly model acoustic property

$$p(\mathbf{o}|c_1,\cdots,c_S) = \frac{1}{Z} \prod_{s=1}^S p(\mathbf{o}|\mathcal{M}_s) \quad Z = \int_{\mathbf{o}} \prod_{s=1}^S p(\mathbf{o}|\mathcal{M}_s) \, d\mathbf{o}$$

Use Gaussian as expert

$$p(\mathbf{o}|c_1,\cdots,c_S) = \frac{1}{Z}\prod_{s=1}^S \mathcal{N}(\mathbf{o};\boldsymbol{\mu}_s,\boldsymbol{\Sigma}_s) = \mathcal{N}(\mathbf{o};\boldsymbol{\mu},\boldsymbol{\Sigma})$$

- $c_1, \ldots c_s$ are context FACTORS
- Full context $c=[c_1, \dots c_S]$
 - Number of full contexts: $\prod_{s=1}^{3} N_s$
 - Number of factorized contexts:
- Product of Gaussian results in Gaussian

$$\mu = \Sigma \Big(\sum_{s=1}^{S} \Sigma_s^{-1} \mu_s \Big) \qquad \Sigma = \Big(\sum_{s=1}^{S} \Sigma_s^{-1} \Big)$$

Easy to calculate likelihood

Parameter Estimation In PoG

$$\mathcal{Q} = -\frac{1}{2} \sum_{t,c} \gamma_c(t) \Big(\log |\boldsymbol{\Sigma}_c| + (\mathbf{o}_t - \boldsymbol{\mu}_c)^T \boldsymbol{\Sigma}_c^{-1} (\mathbf{o}_t - \boldsymbol{\mu}_c) \Big) \quad c = [c_1, \cdots, c_S]$$

- c is full context label
- Given covariance matrices and other comp. mean vectors, mean update has closed-form solution

$$\mu_s = \left(\sum_{t,c_i=s} \gamma_c(t) \Sigma_c\right)^{-1} \left(\sum_{t,c_i=s} \gamma_c(t) (\mathbf{o}_t - \mathbf{b}_{c_i})\right)$$
$$\Sigma_c = \left(\sum_{i=1}^S \Sigma_{c_i}^{-1}\right)^{-1} \quad \mathbf{b}_{c_i} = \Sigma_c \left(\sum_{j=1, j \neq i} \Sigma_{c_j}^{-1} \mu_{c_j}\right)$$

- Simultaneous mean update and covariance update does not have closed-form solution
- Gradient descent approach to be used

State clustering with PoG

- Independent construction
 - Build decision tree using separate question sets
 - Perform intersection to get atomic leaf node
- Dependent construction
 - Interleave between multiple sets of model parameters
- Simultaneous construction
 - At each split, all trees are optimized inter-dependently
- No closed form parameter re-estimation -> more computational cost -> approximation required

Wrap Up

- Rich context modelling is crucial for HMM-based speech synthesis
- Straightforward full context modelling has limitations
- Structured context modelling is interesting
 - Context adaptive training and canonical state model concerns context relationship
 - Acoustic condition adaptation is a special form of context adaptive training
 - Product of expert directly models context acoustic property
- State clustering with structured context representation can have various forms