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Text-to-speech synthesis (TTS)

Text (seq of discrete symbols)  Speech (continuous time series)

Automatic speech recognition (ASR)

Speech (continuous time series)  Text (seq of discrete symbols)

Machine Translation (MT)

Text (seq of discrete symbols)  Text (seq of discrete symbols)
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Text-to-speech as a mapping problem

Dobré ráno  Good morning

Good morning 

 Good morning
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Speech production process



Rule-based, formant synthesis (~’90s)

– Based on parametric representation of speech

– Hand-crafted rules to control phonetic unit

DECtalk (or KlattTalk / MITTalk) [Klatt;‘82]
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Speech synthesis methods (1)

Block diagram of KlattTalk



Corpus-based, concatenative synthesis (’90s~)

– Concatenate small speech units (e.g., phone) from a database

– Large data + automatic learning  High-quality synthetic voices

Single inventory; diphone synthesis [Moullnes;‘90]

Multiple inventory; unit selection synthesis [Sagisaka;‘92, Black;‘96]
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Speech synthesis methods (2)



Corpus-based, statistical parametric synthesis (mid ’90s~)

– Large data + automatic training

 Automatic voice building

– Source-filter model + statistical modeling

 Flexible to change its voice characteristics

Hidden Markov models (HMMs) as its statistical acoustic model

 HMM-based speech synthesis (HTS) [Yoshimura;‘02]
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Speech synthesis methods (3)

Parameter

generation

Model

training

Feature

extraction

Waveform

generation
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Popularity of statistical speech synthesis

# of statistical speech synthesis

related papers in ICASSP
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Statistical speech synthesis is getting popular, but…

not many researchers fully understand how it works

Formulate & understand the whole corpus-based speech 

synthesis process in a unified statistical framework

Aim of this talk



Outline

9

HMM-based speech synthesis

– Overview

– Implementation of individual components

Bayesian framework for speech synthesis

– Formulation

– Realizations in HMM-based speech synthesis

– Recent works

Conclusions

– Summary

– Future research topics
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Context-dependent HMMs

& state duration models

Text analysis
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Divide speech into frames
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Speech is a non-stationary signal

… but can be assumed to be quasi-stationary

 Divide speech into short-time frames (e.g., 5ms shift, 25ms length)
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Parametric models speech spectrum

Autoregressive (AR) model Exponential (EX) model

ML estimation of spectral model parameters

: AR model  Linear prediction (LP) [Itakura;’70]

: EX model  ML-based cepstral analysis

Spectral (filter) model
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……

LP analysis (1)



LP analysis (2)



Excitation (source) model

excitationpulse train

white noise
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Excitation model: pulse/noise excitation

– Voiced (periodic)  pulse trains

– Unvoiced (aperiodic)  white noise

Excitation model parameters

– V/UV decision

– V  fundamental frequency (F0): 



Speech samples
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Natural speech

Reconstructed speech from extracted parameters (cepstral 

coefficients & F0 with V/UV decisions)

Quality degrades, but main characteristics are preserved
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Structure of state-output (observation) vector

Spectrum part

Excitation part

Spectral parameters

(e.g., cepstrum, LSPs)

log F0 with V/UV








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Dynamic features
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HMM-based modeling

 ・ ・
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Observation 

sequence

State 
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data & labels
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HMM-based modeling

 ・ ・
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Sentence

HMM
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Phoneme
 current phoneme

 {preceding, succeeding} two phonemes

Syllable
 # of phonemes at {preceding, current, succeeding}  syllable

 {accent, stress} of {preceding, current, succeeding} syllable

 Position of current syllable in current word

 # of {preceding, succeeding} {accented, stressed} syllable in current phrase

 # of syllables {from previous, to next} {accented, stressed} syllable

 Vowel within current syllable

Word
 Part of speech of {preceding, current, succeeding} word

 # of syllables in {preceding, current, succeeding} word

 Position of current word in current phrase

 # of {preceding, succeeding} content words in current phrase

 # of words {from previous, to next} content word

Phrase
 # of syllables in {preceding, current, succeeding} phrase

…..

Huge # of combinations ⇒ Difficult to have all possible models

Context-dependent modeling
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Decision tree-based context clustering [Odell;’95]
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Spectrum & excitation have different context dependency

 Build decision trees separately

Decision trees

for

mel-cepstrum

Decision trees

for F0 

Stream-dependent clustering
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Composition of sentence HMM for given text

TEXT

Text analysis

context-dependent label 

sequence

G2P

POS tagging

Text normalization

Pause prediction

 
sentence HMM given labels





Speech parameter generation algorithm
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Observation 
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4 10 5State duration
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Determination of state sequence (2)
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
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Speech parameter generation algorithm





 

Mean Variance


 step-wise, mean values

Without dynamic features
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Speech param. vectors includes both static & dyn. feats.

M2

The relationship between     &      can be arranged as








M M

Integration of dynamic features

47



48

Speech parameter generation algorithm







Solution
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filtering



Unvoiced frames & LP spectral coefficients

white noise Synthesized speech

Drive linear filter using white noise

 Equivalent to sampling from Gaussian distribution



Speech samples
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w/o dynamic features

w/  dynamic features

Use of dynamic features can reduce discontinuity



Outline
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HMM-based speech synthesis

– Overview

– Implementation of individual components

Bayesian framework for speech synthesis

– Formulation

– Realizations in HMM-based speech synthesis

– Recent works

Conclusions

– Summary

– Future research topics
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We have a speech database, i.e., a set of texts &  

corresponding speech waveforms.

Given a text to be synthesized, what is the speech waveform 

corresponding to the text?

: speech waveform

: speech waveforms

: set of texts

: text to be synthesized

database
Given

unknown

Statistical framework for speech synthesis (1)
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Bayesian framework for prediction

1. Estimate predictive distribution given variables

2. Draw sample from the distribution

: speech waveform

: speech waveforms

: set of texts

: text to be synthesized

database
Given

unknown

Bayesian framework for speech synthesis (2)
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: acoustic model (e.g. HMM            )

1. Estimating predictive distribution is hard 

 Introduce acoustic model parameters

Bayesian framework for speech synthesis (3)
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: parametric representation of speech waveform

(e.g., cepstrum, LPC, LSP, F0, aperiodicity)

Bayesian framework for speech synthesis (4)

2. Using speech waveform directly is difficult 

 Introduce parametric its representation
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: labels derived from text 

(e.g. prons, POS, lexical stress, grammar, pause)

Bayesian framework for speech synthesis (5)

3. Same texts can have multiple pronunciations, POS, etc. 

 Introduce labels
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Bayesian framework for speech synthesis (6)

4. Difficult to perform integral & sum over auxiliary variables 

 Approximated by joint max
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Bayesian framework for speech synthesis (7)

5. Joint maximization is hard 

 Approximated by step-by-step maximizations
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Bayesian framework for speech synthesis (8)

6. Training also requires parametric form of wav & labels 

 Introduce them & approx by step-by-step maximizations

: parametric representation of speech waveforms

: labels derived from texts



65

Bayesian framework for speech synthesis (9)
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Text analysis

HMM-based speech synthesis system (HTS)
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Problems

Many approximations

– Integral & sum ≈ max

– Joint max ≈ step-by-step max

Poor approximation

Recent works to relax approximations

– Max  Integral & sum

 Bayesian acoustic modeling

 Multiple labels

– Step-wise max  Joint max

 Statistical vocoding
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Bayesian acoustic modeling (1)
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Bayesian acoustic modeling (2)

Bayesian approach

– Parameters are hidden variables & marginalized out

– Bayesian approach with hidden variables  intractable

 Variational Bayes [Attias;’99]

 Jensen's inequality
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Bayesian acoustic modeling (3)

Variational Bayesian acoustic modeling for speech 

synthesis [Nankaku;’03]

– Fully VB-based speech synthesis

 Training posterior distribution of model parameters

 Parameter generation from predictive distribution

– Automatic model selection

 Bayesian approach provides posterior probability of model structure

– Setting priors

 Evidence maximization [Hashimoto;’06]

 Cross validation [Hashimoto;’09]

– VB approach works better than ML one when

 Data is small

 Model is large



Multiple labels (1)

Label sequence is regarded as hidden variable & marginalized
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Multiple labels (2)

Joint front-end / back-end model training [Oura;’08]

– Labels = regarded as hidden variable & marginalized

 Robust against label errors

– Front- & back-end models are trained simultaneously

 Combine text analysis & acoustic models as a unified model
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Simple pulse/noise vocoding

Vocal tract filter

excitation

pulse train

white noise

synthesized

speech

Basic pulse/noise vocoder

– Binary switching between voiced & unvoiced excitations

 Difficult to represent mix of voiced & unvoiced sounds

– Excitations signals of human speech are not pulse or noise

 Colored voiced/unvoiced excitations
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State-dependent filtering [Maia;’07]

Synthesized
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Voiced
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Waveform-level statistical model (1) [Maia;’10]

Synthesized

speech

Voiced

excitation

Mixed

excitation

+

Pulse train 

generator

White noise
Unvoiced

excitation
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Waveform-level statistical model (2) [Maia;’10]

Integral & sum are intractable 

 Approx integral & sum by joint max

Conventional  step-by-step maximization

Proposed  iterative joint maximization



Outline

77

HMM-based speech synthesis

– Overview

– Implementation of individual components

Bayesian framework for speech synthesis

– Formulation

– Realizations in HMM-based speech synthesis

– Recent works

Conclusions

– Summary

– Future research topics



Summary
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HMM-based speech synthesis

– Statistical parametric speech synthesis approach

– Source-filter representation of speech + statistical acoustic modeling

– Getting popular

Bayesian framework for speech synthesis

– Formulation

– Decomposition to sub-problems

– Correspondence between sub-problems & modules in HMM-based 

speech synthesis system

– Recent works to relax approximations



Drawbacks of HMM-based speech synthesis

Quality of synthesized speech

– Buzzy

– Flat

– Muffled

Three major factors degrade the quality

– Poor vocoding

 how to parameterize speech?

– Inaccurate acoustic modeling

 how to model extracted speech parameter trajectories?

– Over-smoothing

 how to recover generated speech parameter trajectories?

Still need a lot of works to improve the quality
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Future challenging topics in speech synthesis

Keynote speech by Simon King in ISCA SSW7 last year

Speech synthesis is easy, if ...

• voice is built offline & carefully checked for errors

• speech is recorded in clean conditions

• word transcriptions are correct

• accurate phonetic labels are available or can be obtained

• speech is in the required language & speaking style

• speech is from a suitable speaker

• a native speaker is available, preferably a linguist

Speech synthesis is not easy if we don’t have right data
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Future challenging topics in speech synthesis

Non-professional speakers

• AVM + adaptation (CSTR)

Too little speech data

• VTLN-based rapid speaker adaptation (Titech, IDIAP)

Noisy recordings

• Spectral subtraction & AVM + adaptation (CSTR)

No labels

• Un- / Semi-supervised voice building (CSTR, NICT, CMU, Toshiba)

Insufficient knowledge of the language or accent

• Letter (grapheme)-based synthesis (CSTR)

• No prosodic contexts (CSTR, Titech)

Wrong language

• Cross-lingual speaker adaptation (MSRA, EMIME)

• Speaker & language adaptive training (Toshiba)
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Thanks!
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