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Text-to-speech as a mapping problem

/Text-to-speech synthesis (TTS) N

Text (seq of discrete symbols) - Speech (continuous time series)

Good morning = JWWWMWWWNWW}WWWMWWMW
- J

Automatic speech recognition (ASR)
Speech (continuous time series) - Text (seq of discrete symbols)

WWWWWWWMWWWWWWMWWWWW - Good morning

Machine Translation (MT)
Text (seq of discrete symbols) - Text (seq of discrete symbols)

Dobré rano - Good morning
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Speech production process

text
(concept)
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Speech synthesis methods (1)

Rule-based, formant synthesis (~’90s)
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L |
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F3 L @i F2 V!
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Moise A
Generator hd Fs Fd Qd
' k3 e
FH F& _@_ |~ F4d _®_

Block diagram of KlattTalk

— Based on parametric representation of speech
— Hand-crafted rules to control phonetic unit
DECtalk (or KlattTalk / MITTalk) [Klatt;*82]
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Speech synthesis methods (2)

Corpus-based, concatenative synthesis (’90s~)

H = =
s . -
W b

=N

W“W A
VARV

— Concatenate small speech units (e.g., phone) from a database
— Large data + automatic learning - High-quality synthetic voices

( N\

Single inventory; diphone synthesis [Moulines;‘90]
Multiple inventory; unit selection synthesis [Sagisaka;‘92, Black;‘96]
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Speech synthesis methods (3)

Corpus-based, statistical parametric synthesis (mid '90s~)

Feature Model
extraction training

Parameter | |

generation

Waveform
generation

{# = |

— Large data + automatic training
-—> Automatic voice building

— Source-filter model + statistical modeling
—> Flexible to change its voice characteristics

Hidden Markov models (HMMSs) as its statistical acoustic model

- HMM-based speech synthesis (HTS) [Yoshimura;02]

TOSHIBA

Leading Innovation >>>




Popularity of statistical speech synthesis

# of statistical speech synthesis
related papers in ICASSP

20
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16 /ﬁ
g 14 /
% 12 /
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Aim of this talk

Statistical speech synthesis is getting popular, but...

not many researchers fully understand how it works

Formulate & understand the whole corpus-based speech
synthesis process in a unified statistical framework
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Qutline

HMM-based speech synthesis

— Overview
— Implementation of individual components

Bayesian framework for speech synthesis

— Formulation
— Realizations in HMM-based speech synthesis
— Recent works

Conclusions

— Summary
— Future research topics
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HMM-based speech synthesis system (HTS)

SpssEl SliE! Training part

i |
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|Parameter generation

PAY VAN
: Context-dependent HMMs
& state duration models
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HMM-based speech synthesis system (HTS)

Speech signal
v
Excitation Spectral

Parameter Parameter
extraction Extraction
Excitation Spectral

parameters 1 I parameters




Speech production process

modulation of carrier wave

by speech information

.

frequency speech
transfer ~ -———-

characteristics o---

magnitude

start--end [ /&S Sound source
fundamental voiced: pulse
frequency unvoiced: noise

air flow
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Divide speech into frames

Speech is a non-stationary signal
... but can be assumed to be quasi-stationary
—> Divide speech into short-time frames (e.g., 5ms shift, 25ms length)

TOSHIBA 13
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Source-filter model

/Excitation (source) part Spectral (filter) part

pulse train —&excitation:é linear
(voiced) S em) time-invariant

| system — > speech
white noise ? hn) T =R e

\(\unvoiced)

z(n) = h(n) x e(n)
l Fourier transform

X(e) = H(e)E(e™)

TOSHIBA
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Spectral (filter) model

Parametric models speech spectrum

Autoregressive (AR) model

H(z) = ¢(0) /{1 - Z c(m)z‘m}

ML estimation of spectral model parameters

Exponential (EX) model

H(z) = exp Z c(m)z™™

c: = [c(0),...,c(M)]" :

c; = argmax p(z: | ¢)
ct spectral model parameters

p(x: | ¢:) : EX model = ML-based cepstral analysis

~

p(x: | ¢:) : AR model = Linear prediction (LP) [itakura;70]

)
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LP analysis (1)

x, = [2:(1),24(2),...,2:(N)]"  short-time windowed speech waveform
ri(n — 1)
SR
|
|
ri(n — 2)

LP analysis assumes that x; is a sample from M -th order AR process

M
ri(n) = Z ci(m)xy(n —m) + €(n) Linear AR process
m=1
¢ = [c(0), et (1), ..., e (M)]" M-th order LP coefficients
e (n) ~ N(0, c(0)) Gaussian noise
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LP analysis (2)

If we set & as

then

plae| ) = (m; 0.c0) (¥7%) ")

¢; = argmaxp(x; | ¢;) = LP analysis
Ct



Excitation (source) model

Kpulse train —— excitation \
e(n)
white noise ?
N /

Excitation model: pulse/noise excitation

— Voiced (periodic) = pulse trains
— Unvoiced (aperiodic) = white noise

Excitation model parameters

— V/UV decision
— V - fundamental frequency (FO): D¢

TOSHIBA
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Speech samples

Natural speech
%I

Reconstructed speech from extracted parameters (cepstral
coefficients & FO with V/UV decisions)

%I

Quality degrades, but main characteristics are preserved

TOSHIBA
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HMM-based speech synthesis system (HTS)

Excitation |

parameters

Labels

» Training HMI\/Is

| Spectral

parameters

g i
PV VAN AL
— : e
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Structure of state-output (observation) vector

-

Spectrum part <

S

Excitation part <

TOSHIBA
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_ Spectral parameters
(e.qg., cepstrum, LSPSs)

- A

- AA

|+ log FO with VUV
A
AA
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Dynamic features

- 0y

8t ~ O.5(Ct_|_1 — Ct—l)
82Ct

512 N Cip1 — 2C + Ciq

.

~

Ci+1 Ct+1

<><><> J><J>

ACt 1

Aciiq AT A’cpiq

/
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HMM-based modeling

Label
sil sil

sequence
Sentence >! Q Q ! Q @
HMM

bl()

Observation
sequence

State
seguence
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Multi-stream HMM structure

Spectrum
(cepstrum or LSP,
& dynamic features)

Excitation
(log FO
& dynamic features)

<

<

0y

7

v € ¢ Tuweals
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Observation of FO

a N
e T N |
\ Time /

Unable to model by continuous or discrete distribution

TOSHIBA
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Multi-space probability distribution (MSD)

voiced/unvoiced weights

TOSHIBA
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Structure of state-output distributions

4

72X

—i
% )
o | Spectral params é Single Gaussian
0 Y
4 ( N
Voiced /\ MSD
. . 2|l (Gaussian & discrete)
Unvoiced .
< >; S
m 0
o Log Fo |\ Voiced /\ , ‘MSD
% (Unvoiced ] ) (Gaussian & discrete)
9 (f . \\
N \ Voiced ey MSD
 Unvoiced - JII (Gaussian & discrete)
N > %
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Training process

data & labels

A 4

Reestimate CD-HMMs by
EM algorithm

A 4

Estimate CD-dur Models
from FB stats

Decision tree-based
clustering

Decision tree-based
clustering

Reestimate CD-HMMs by
EM algorithm

Untie parameter tying
structure

4 A
Compute variance
floor
. y,
4 A
Initialize CI-HMMs by
segmental k-means
. v,
4 : : )
Reestimate CI-HMMs by
EM algorithm
. y
4 )
Copy CI-HMMs to
CD-HMMs
\ y,
monophone

(context-independent, ClI)

fullcontext
(context-dependent, CD)

Estimated dur models

Estimated
HMMs
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HMM-based modeling

Transcription

Sentence
HMM

Observation
sequence

State
seguence

TOSHIBA
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R
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Context-dependent modeling

Phoneme
current phoneme

{preceding, succeeding} two phonemes

Syllable
- # of phonemes at {preceding, current, succeeding} syllable
{accent, stress} of {preceding, current, succeeding} syllable
Position of current syllable in current word
# of {preceding, succeeding} {accented, stressed} syllable in current phrase
# of syllables {from previous, to next} {accented, stressed} syllable
Vowel within current syllable
Word
Part of speech of {preceding, current, succeeding} word
# of syllables in {preceding, current, succeeding} word
Position of current word in current phrase
# of {preceding, succeeding} content words in current phrase
# of words {from previous, to next} content word
Phrase
# of syllables in {preceding, current, succeeding} phrase

Huge # of combinations = Difficult to have all possible models

31



Training process

data & labels

|

Compute variance
floor

Initialize CI-HMMs by
segmental k-means

A 4

Estimate CD-dur Models
from FB stats

Decision tree-based
clustering

Reestimate CI-HMMs by
EM algorithm

Copy CI-HMMs to
CD-HMMs

monophone
(context-independent, CI)

f v
Reestimate CD-HMMs by
EM algorithm
"
r
Decision tree-based
clustering
\

Reestimate CD-HMMs by

EM algorithm

Untie parameter tying
structure

fullcontext
(context-dependent, CD)

Estimated dur models

Estimated
HMMs
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Decision tree-based context clustering [odel;9s]

(k—a+b/A:...\_,8_E:QLQ_,
t—e+h/p: . —»QA:LQE O_.

\_ ),

- l- a
C=voiced? -

L="w"? yes no R=silence?

R=silence? ‘Y?,S——” ~._ho yes”,* ~~~~~~~~ Lzugy”?
yes no yes no

_______________________________________ synthesized

9 B g

_________________________________________________________________________________________________

H 8- 090 -39

8 w-at+t/A:. Q gy- e+51l/A9 g-u+pau/A:.
w—i+sil/A:. w—o+sh/A:. gy—-a+pau/A:..
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Stream-dependent clustering

Spectrum & excitation have different context dependency
- Build decision trees separately

4 N\
Decision trees
for
mel-cepstrum
\_ J
4 ™\

Decision trees
for FO




Training process

data & labels

|

A 4

Compute variance
floor

Reestimate CD-HMMs by
EM algorithm

A 4

Estimate CD-dur Models
from FB stats

Initialize CI-HMMs by
segmental k-means

Decision tree-based
clustering

Decision tree-based
clustering

7

Reestimate CI-HMMs by
EM algorithm

Reestimate CD-HMMs by
EM algorithm

Copy CI-HMMs to
CD-HMMs

Untie parameter tying
structure

monophone
(context-independent, CI)

fullcontext
(context-dependent, CD)

Estimated Hur models

Estimated
HMMs
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Estimation of state duration models [Yoshimura;'98]

-

O

~

Xito,t (1) O Z ato-1(f)asag " H bi (o)

j#i t=to

‘ Z ikbr (04, 4+1) Bty 11 (k)
ki
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Stream-dependent clustering

State duration
model

HMM

Decision trees
for
mel-cepstrum

Decision trees
for FO

Y4

A
ad

X
i
i

A
4

AN

Decision tree

for state dur.
models
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Training process

data & labels

|

A 4

Compute variance
floor

Reestimate CD-HMMs by
EM algorithm

Initialize CI-HMMs by
segmental k-means

Decision tree-based
clustering

Reestimate CI-HMMs by
EM algorithm

Reestimate CD-HMMs by
EM algorithm

A 4

Estimate CD-dur Models
from FB stats

Decision tree-based
clustering

P
I

Copy CI-HMMs to
CD-HMMs

Untie parameter tying
structure

monophone
(context-independent, CI)

fullcontext
(context-dependent, CD)

Estimated Hur models

Estimated
HMMs
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HMM-based speech synthesis system (HTS)

TEXT
¢

Text analysis

— T
S —

N —

\
R Parameter generation

Labels

Excitation

from HMMs

parameters I l

Context-dependent HMMs

— & state duration models

Spectral
parameters
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Composition of sentence HMM for given text

TEXT

G2P
POS tagging

Text analysis

Text normalization

Pause prediction

v

context-dependent label
sequence [

l

sentence HMM given labels

TOSHIBA
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Speech parameter generation algorithm

0 = argmaxp(o | I, 5\)
= argmgX;p(o,q |2, A)
q

~ argmaxp(o,q | I, )
o,q

41



Determination of state sequence (1)

Observation
sequence

State sequence

State duration

q

D

a11 22 a33
1 ai2 23
Sbi() o Sbe() S bs(+) ",
01| |02 O
1111 2 23 ... 3
\ J\ J
\ \ \ Y,
4 10 5

Determine state sequence via determining state durations

42



Determination of state sequence (2)

pi(-) : state-duration distribution of i-th state
d; : state duration of i-th state
K : number of states in a sentence HMM for w

%

TOSHIBA
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Determination of state sequence (3)

Geometric
pilds) = a7 (1 — ay)  d; { 1]

Gaussian

pi(di) :N(di ; mz',U?) — CZ’L =

State-duration prob.

8 State duration 44



Speech parameter generation algorithm

0 = argmaxp(o | I, 5\)
= argmgX;p(o,q |2, A)
q

~ argmaxp(o,q | I, )
o,q

TOSHIBA
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Variance
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Integration of dynamic features

Speech param. vectors includes both static & dyn. feats.

0y = [ctT,Ac;r]T

\
i
2M

The relationship betweeno; & ¢; can

o

Ct—1
Ot—1 Ac,

Ci
Oy Ac; -

Ct+1
Ot+1 Acyyq

ACt = Ct — Ct_—1

W

Ci—1

Ct

Ct+1

Act_l Act

~

Actir

C

OlN NO Of:---

e Qo O

NN Oolo of -

pe arranged as
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Speech parameter generation algorithm

A
A

0 = argmaxp(o | g, \)
@ o=Wec

N2
¢ = argmaxp(We | G, \)

= argmax N (Wce; pg, 34)

TOSHIBA
ion >
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Solution

g[S )
(=i ey B Lo
o7 oo
slolole -
=1 K= E=l =
i=i B=1 E=1 N
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_U .
- o
W
E_m
0T T
00T
- I-{T10
< 0]T|0
-1 T|0 -
O1T{0 -
0{0]0 -
L{ofo -
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Generated speech parameter trajectory

Variance

SJIEITS

olweuAg

Mean

50
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Generated spectra

sil a i sil

M%@m&&

or . o
=l ., (
i =Nt ) .
w/o dynamic ol
features =
N
g1-
or /%( 2
wl
w/ dynamic §z_
L ok
features N
L |
TOSHIBA 5
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HMM-based speech synthesis system (HTS)

Excitation Spectral

parameters | I—l parameters
Excitation [Excitation| Synthesis | = SYNTHESIZED
generation Filter SPEECH
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Source-filter model

Generated Generated
excitation parameter spectral parameter
(log FO with V/UV) (cepstrum, LSP)
pulse train linear
\KD e(n) time-invariant Synthesized
excitation = system speech
white noise ? h(n) w(n) = h(n) x e(n)

s L e

TOSHIBA 53
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Unvoiced frames & LP spectral coefficients

white noise Synthesized speech
ct(0)
€t (n) - * 1 — EM

m=

ez [ )

Drive linear filter using white noise

-> Equivalent to sampling from Gaussian distribution

& ~ N (0,¢,(0) (2T®) )

TOSHIBA
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Speech samples

w/0 dynamic features ¢
w/ dynamic features ¢

Use of dynamic features can reduce discontinuity

TOSHIBA
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Qutline

HMM-based speech synthesis

— Overview
— Implementation of individual components

Bayesian framework for speech synthesis

— Formulation
— Realizations in HMM-based speech synthesis
— Recent works

Conclusions

— Summary
— Future research topics

TOSHIBA
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Statistical framework for speech synthesis (1)

We have a speech database, I.e., a set of texts &

corresponding speech waveforms.

Given a text to be synthesized, what is the speech waveform

corresponding to the text?

—

W : set of texts
— database

X : speech waveforms

w : text to be synthesized

— Glven

T ; speech waveform <

unknown

57



Bayesian framework for speech synthesis (2)

Bayesian framework for prediction

sampling

Draw x from p(x | w, X, W) :

- D W, X, w
W : set of texts ’ ’
— database _
X : speech waveforms | — Given
w : text to be synthesized
T ; speech waveform < unknown

1. Estimate predictive distribution given variables
2. Draw sample from the distribution

58



Bayesian framework for speech synthesis (3)

1. Estimating predictive distribution is hard ®
- Introduce acoustic model parameters

p(z | w, X, W)
|} introduce acoustic model A 0888@

Z/p(w,)\|w,W,X)d)\:/p(:n|w,)\)p()\|W,X)d)\

)\ : acoustic model (e.g. HMM +888-)

TOSHIBA 59
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Bayesian framework for speech synthesis (4)

2. Using speech waveform directly is difficult ®
- Introduce parametric Iits representation

ple | w, X, W) o
/(w|w)\) (A | X, W)d -WW ki

|} introduce parametric representation of speech o

_ / / p(z | 0)p(o | w, Np(A | X, W)dAdo

O : parametric representation of speech waveform x
(e.g., cepstrum, LPC, LSP, FO, aperiodicity)

TOSHIBA 60
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Bayesian framework for speech synthesis (5)

3. Same texts can have multiple pronunciations, POS, etc. ®
- Introduce labels

p(x | w, X, W)

_ / / p(x | 0)p(o | w, Np(\ | X, W)drdo

|l introduce labels derived from texts, I & L

_ / / S p(@ | 0)p(o | L,A)P( | w)p(X | X, W)dAdo

[ : labels derived from text w
(e.g. prons, POS, lexical stress, grammar, pause)

TOSHIBA 61
ion >
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Bayesian framework for speech synthesis (6)

4. Difficult to perform integral & sum over auxiliary variables ®
—> Approximated by joint max

plx | w, X, W)
_ / / S p(@ | 0)p(o | 1, )P( | w)p(A | X, W)dAdo

|} approximate integral & sum by joint max
~p(x | 0)p(6 |1, )P | w)p(A | X, W)

arg max p(z | o)p(o | I, \)P(L | w)p(A | X, W)

N
(@)
>

——

|

TOSHIBA 62
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Bayesian framework for speech synthesis (7)

5. Joint maximization is hard ®
—> Approximated by step-by-step maximizations

{6,i,A} = argmaxp(e | o)p(o | L,N)PE | w)p(r ] X, W)

| approx joint max by step-by-step max

A

A = arg mexp()\ | X, W) <« training

[ = arg max P(l | w) < text analysis

6 = argmaxp(o | I, \) « speech parameter generation
o

TOSHIBA 63
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Bayesian framework for speech synthesis (8)

6. Training also requires parametric form of wav & labels ®
- Introduce them & approx by step-by-step maximizations

A = arg maxp(X | X, W)
4
L =arg max P(L | W) < labeling
O = arg max p(X | O) « feature extraction
A = arg max p(O | L, \)p(\) < acoustic model training

O : parametric representation of speech waveforms X
L : labels derived from texts W

TOSHIBA 64
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Bayesian framework for speech synthesis (9)

Draw & from p(x | w, X, W)

J

O = arg max p(X | O) « feature extraction
L =arg max P(L | W) < labeling
A = arg mfxxp(OA | L, \)p(\) « acoustic model training
[ = arg max P(l | w) « text analysis
O = arg max p(o [ 5\) « speech parameter generation
a from p(x | ) < waveform reconstruction

TOSHIBA 65
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HMM-based speech synthesis system (HTS)

S |
E Speech signal I
i |
i o v i
I Cyraitatian | | CnAantra I
| O = arg mgxp(X '0) :
I/\
7, — arg maXP(L | VW \extraction | | Extraction :
E “tion Spectral i
| T parsmatare | L men ers |
g \ = arg maxp(O | L , A)p(A) :
j Labels |
| - _ |
: ~— I |
| :
i A !
E DAYV i )
: TEXT 088: cE -BE8- :
. 1 ' : Context-dependent HMMs |

& state duration models

|l = argmax P(l | w)

Y

Labels S

Excitation Spectral

parameters | ] parameters
. Excitatior ~ p(x | 0)Synthesis | | SYNTHESIZED
Synthesis part generation | | Filter SPEECH

f 6 = rgmaxp(o|l )\) :




Problems

Many approximations

— Integral & sum = max
— Joint max = step-by-step max
—> Poor approximation

Recent works to relax approximations

— Max - Integral & sum
v' Bayesian acoustic modeling
v Multiple labels

— Step-wise max - Joint max
v’ Statistical vocoding

TOSHIBA
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Bayesian acoustic modeling (1)

ML-based approach (point estimate of \)

A A

A = arg m)z\xxp(O | L, \)

AN

0 = argmaxp(o | [, \)

Bayesian approach (posterior probability of \)

TOSHIBA
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Bayesian acoustic modeling (2)

Bayesian approach
— Parameters are hidden variables & marginalized out
— Bayesian approach with hidden variables - intractable
—> Variational Bayes [Attias; 99]

TOSHIBA 69
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Bayesian acoustic modeling (3)

Variational Bayesian acoustic modeling for speech
synthesis [Nankaku;’03]

— Fully VB-based speech synthesis

v Training posterior distribution of model parameters

v' Parameter generation from predictive distribution
— Automatic model selection

v' Bayesian approach provides posterior probability of model structure
— Setting priors

v' Evidence maximization [Hashimoto; 06]

v' Cross validation [Hashimoto;'09]
— VB approach works better than ML one when

v' Data is small

v' Model is large

TOSHIBA
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Multiple labels (1)

Conventional
L =arg max P(L | W) A = arg m}z}xp(é | L, \)p(\)
[ = arg max P(l | w) 6 = argmaxp(o | I, \)

Incorporate multiple possible labels

A=argmax ) p(O|L,\P(L|W)p())
VL

Label sequence is regarded as hidden variable & marginalized

TOSHIBA
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Multiple labels (2)

Joint front-end / back-end model training [Oura;’08]

{\,A} = argmax ) p(O | L, \)P(L | W,A)p(\)p(A)

— Labels = regarded as hidden variable & marginalized
- Robust against label errors
— Front- & back-end models are trained simultaneously
- Combine text analysis & acoustic models as a unified model
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Simple pulse/noise vocoding

Basic pulse/noise vocoder

pulse train

? excitation H(z) o(n) :s:(ene)c*he(n)

white noise

— Binary switching between voiced & unvoiced excitations
—> Difficult to represent mix of voiced & unvoiced sounds

— Excitations signals of human speech are not pulse or noise
—> Colored voiced/unvoiced excitations

TOSHIBA

Leading Innovation >>>
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State-dependent filtering maia; o7

Sentence 8 8 8 8 8 8
HMM
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- S~o
- ~
- ~
- ~
- ~
- ~
.- ~
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- ~~
- ~
. ~-
.- ~
.- ~
~
.- ~
. ~
- -~
- ~.

Mel-cepstral
coefficients Co | Gy C?t Cin | Cus
Log FO
oo Peo | P | P | Pua| P
Filters V(z) G(z)
+ v
_,|Pulse train (n) 4 V(2)
excitation v
[ILTTT] H(z) — Synthesized
: < speech
Mixed
¥ excitation z(n) = h(n) * e(n)

White noise —* 1/G(z2)

Unvoiced
mmmww excitation




Waveform-level statistical model (1) maia;10]

generator ” Voiced
RERERR excitation

Pulse train t(n) V(z)

H(z) — Synthesized
speech
z(n) = h(n) * e(n)

Mixed
excitation

White noise —
1/G(z) Unvoiced

excitation
p(z | g \) = [H ™ N (Hy'e; Vi, (G1Ga) )

e L) =3 [ vl a.cale] g \pla | A)de

p(x | w, ) Zp (x| 1, \)p(l | w) « waveform-level statistical model

H,, V,,G, matrices representing impulse responses of H(z), V(z), & G(z)

A ={)X, A} setof acoustic (\.) & excitation (\.) model parameters
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Waveform-level statistical model (2) maia;10]

Integral & sum are intractable ®
—> Approx integral & sum by joint max

Conventional = step-by-step maximization
Proposed - iterative joint maximization

TOSHIBA

Leading Innovation >>>
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Qutline

HMM-based speech synthesis

— Overview
— Implementation of individual components

Bayesian framework for speech synthesis

— Formulation
— Realizations in HMM-based speech synthesis
— Recent works

Conclusions

— Summary
— Future research topics

TOSHIBA
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Summary

HMM-based speech synthesis
— Statistical parametric speech synthesis approach
— Source-filter representation of speech + statistical acoustic modeling
— Getting popular

Bayesian framework for speech synthesis

— Formulation
— Decomposition to sub-problems

— Correspondence between sub-problems & modules in HMM-based
speech synthesis system

— Recent works to relax approximations

TOSHIBA

Leading Innovation >>>
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Drawbacks of HMM-based speech synthesis

Quality of synthesized speech
— Buzzy
— Flat
— Muffled

Three major factors degrade the quality

— Poor vocoding
- how to parameterize speech?
— Inaccurate acoustic modeling
- how to model extracted speech parameter trajectories?
— Over-smoothing
- how to recover generated speech parameter trajectories?

Still need a lot of works to improve the quality
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Future challenging topics in speech synthesis

Keynote speech by Simon King in ISCA SSW7 last year

Speech synthesis is easy, if ...

 voice is built offline & carefully checked for errors

speech is recorded in clean conditions

« word transcriptions are correct

e accurate phonetic labels are available or can be obtained
« speech is in the required language & speaking style

« speech is from a suitable speaker

« a native speaker is available, preferably a linguist

Speech synthesis is not easy if we don’t have right data

TOSHIBA
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Future challenging topics in speech synthesis

Non-professional speakers

 AVM + adaptation (CSTR)
Too little speech data

* VTLN-based rapid speaker adaptation (Titech, IDIAP)
Noisy recordings

« Spectral subtraction & AVM + adaptation (CSTR)
No labels

« Un-/ Semi-supervised voice building (CSTR, NICT, CMU, Toshiba)
Insufficient knowledge of the language or accent

» Letter (grapheme)-based synthesis (CSTR)

* No prosodic contexts (CSTR, Titech)
Wrong language

« Cross-lingual speaker adaptation (MSRA, EMIME)

« Speaker & language adaptive training (Toshiba)

TOSHIBA 31
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Thanks!
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