

Statistical Parametric Speech Synthesis Based on Speaker & Language Factorization

Toshiba Research Euorpe Ltd. Cambridge Research Lab.

Speech Synthesis Seminar Series @ CUED, Cambridge, UK June 21st, 2011

Background (1)

Use of inhomogeneous data for training HMMs - Speech data from single source (e.g., speaker)

* Amount of available data is limited

Background (1)

Use of inhomogeneous data for training HMMs

- Speech data from single source (e.g., speaker)
 - * Amount of available data is limited
- Multi-style learning
 - * Mix speech data from multiple sources

Background (2)

Use of inhomogeneous data for training HMMs

- Adaptive training [Anastasakos;'96]

- * One transform for each homogeneous block
- * Canonical model set is estimated given transforms

Background (3)

Use of inhomogeneous data for training HMMs

- Acoustic factorisation [Gales;'01]
 - * Multiple factors (e.g., speaker & noise)
 - * One transform for each factor
 - * Alter one transform while fixing the others

Background (3)

Use of inhomogeneous data for training HMMs

- Acoustic factorisation [Gales;'01]
 - * Multiple factors (e.g., speaker & noise)
 - * One transform for each factor
 - * Alter one transform while fixing the others

Polyglot Speech Synthesis

Synthesize multiple languages with common voice

Applications

- * Synthesize mix-lingual texts
- * Speech-to-speech translators
- * More efficient development of TTS for multiple languages

Polyglot Synthesis as Acoustic Factorization

- * Two factors (speaker & lang.), one transform for each factor
- * Alter language transform with the same speaker transform \Rightarrow Polyglot synthesis can be achieved
- * Increase amount of data by having multiple languages

Outline

- Background
- Conventional approaches
 - * Polyglot speaker
 - * Mixing mono-lingual corpora
 - * Cross-lingual speaker adaptation
- Speaker & language factorization (SLF)
 - * Concept
 - * Details
- Experiments
- Conclusions

Conventional Approaches (1)

Polyglot speaker [Traber;'99]

Conventional Approaches (2)

Leading Innovation >>>

Mix mono-lingual corpus [Latorre;'06, Black;'06]

Conventional Approaches (2)

Mix mono-lingual corpus [Latorre;'06, Black;'06]

All languages & speakers are simply mixed to estimate model → Language & speaker variations are not well addressed

Conventional Approaches (3)

Cross-language speaker adaptation [Chen;'09, Wu;'09]

 \Rightarrow adaptive training \longrightarrow mapping \Rightarrow adaptation

Conventional Approaches (3)

Cross-language speaker adaptation [Chen;'09, Wu;'09]

Language-dependent SAT models are estimated independently → Mismatch between language-dependent SAT models → Degrade adaptation & synthesis [Liang;'10]

Speaker transform

- Speaker-specific characteristics

- * Vocal tract length & shape, F0 height & range, voicing
- * Speaking rate
- * Speaker-specific speaking styles

Language transform

- Language-specific characteristics
 - * Language-dependent parts of syntactic, morphological, intonational, phonetic, & phonological factors

Canonical model

- Common characterisics across languages/speakers

* Cross-language parts of syntactic, morphological, intonational, phonetic, & phonological factors

Speaker transform

- Speaker-specific characteristics

- * Vocal tract length & shape, F0 height & range, voicing
- * Speaking rate, speaker-specific speaking styles

 \Rightarrow Constrained MLLR [Gales;'98]

Language transform

* Language-dependent parts of syntactic, morphological, intonational, phonetic, & phonological factors

Canonical model

* Cross-language parts of syntactic, morphological, intonational, phonetic, & phonological factors

 \Rightarrow CAT with cluster-dependent decision trees [Zen;'09]

Speaker adaptation by CAT [Gales;00]

- "Soft" version of speaker clustering

Target speaker

⇒ Weighted sum of underlying prototype speakers

Speaker adaptation by CAT [Gales;00]

- "Soft" version of speaker clustering

Prototype spekers are *fixed* across all speakers Interpolation weights *change* speaker-by-speaker

Speaker adaptation by CAT [Gales;00]

- "Soft" version of speaker clustering

Weight for bias cluster is always equal to 1 ⇒ Represent *common factor* across speakers

Language adaptation by CAT

Extend CAT idea to represent languages

Target language

⇒ Weighted sum of underlying *prototype languages*

Language adaptation by CAT

Extend CAT idea to represent languages

Weight for bias cluster is always equal to 1

⇒ Represent common factor across *languages*

Language adaptation by CAT

Extend CAT idea to represent languages

Prototype languages have their own context dependencies \Rightarrow CAT with cluster-dependent decision trees [Zen;'09]

Language adaptation by CAT

Extend CAT idea to represent languages

Prototype languages have their own context dependencies \Rightarrow CAT with cluster-dependent decision trees [Zen;'09]

Tree Interesection Interpretation

Tree Interesection Interpretation

Tree Interesection Interpretation

context space for lang 1

context space for lang 2

Speaker transform

 $\Rightarrow \mathsf{CMLLR}$

Language transform

 \Rightarrow CAT non-bias clusters & CAT interpolation weights

Canonical model

 \Rightarrow CAT bias cluster

Trees & params can be updated iteratively by EM

Definition of State-Output Distributions

- $\boldsymbol{o}(t)$: observation vector at frame t
- m : mixture component index
- s : speaker label associated with o(t)
- l : language label associated with $\boldsymbol{o}(t)$
- A,b: CMLLR transforms
- λ : CAT interpolation weights

- μ : CAT cluster mean vectors
- $\boldsymbol{\Sigma}$: canonical covariance matrices
- r(m) : CMLLR regression class
- $q(\boldsymbol{m})$: CAT regression class
- $\boldsymbol{c}(\boldsymbol{m},\!\boldsymbol{i})$: mean vector index
- $\boldsymbol{v}(\boldsymbol{m})$: covariance matrix index

Training Process

ML estimation by EM algorithm

- Iteratively re-estimate trees, CAT & CMLLR params
- Training process
 - 1) Initialize trees, CAT & CMLLR params
 - 2) Re-construct trees
 - 3) Re-estimate CAT params while fixing CMLLR params
 - 4) Re-estimate CMLLR params while fixing CAT params
 - 5) Go to 2) until converge

Estimation

Update formulae

- CMLLR transform

* Same as normal CMLLR estimation [Gales;'98]

- CAT weights

* Same as normal CAT estimation [Gales;'00]

- Canonical covariance matrices & mixture weights

* Straightforward

- Canonical cluster mean vectors

- * All cluster mean vectors depend on each other due to trees
- * Trees are iteratively reconstructed

Update Formulae of SLF Cluster Mean Vectors

Auxiliary function

t,s,l

$$\begin{aligned} \mathcal{Q}(\mathcal{M}, \hat{\mathcal{M}}) &= -\frac{1}{2} \sum_{m,i} \left(\boldsymbol{\mu}_{c(m,i)}^{\top} \boldsymbol{G}_{ii}^{(m)} \boldsymbol{\mu}_{c(m,i)} \\ &+ 2 \sum_{j \neq i} \boldsymbol{\mu}_{c(m,i)}^{\top} \boldsymbol{G}_{ij}^{(m)} \boldsymbol{\mu}_{c(m,j)} - 2 \boldsymbol{\mu}_{c(m,i)}^{\top} \boldsymbol{k}_{i}^{(m)} \right) \\ \boldsymbol{G}_{ij}^{(m)} &= \sum_{t,l} \gamma_{m}(t) \lambda_{i,q(m)}^{(l)} \boldsymbol{\Sigma}_{v(m)}^{-1} \lambda_{j,q(m)}^{(l)} \\ \boldsymbol{k}_{i}^{(m)} &= \sum \gamma_{m}(t) \lambda_{i,q(m)}^{(l)} \boldsymbol{\Sigma}_{v(m)}^{-1} \underline{\hat{\boldsymbol{\rho}}}_{r(m)}^{(s)}(t) \end{aligned}$$

CMLLR-transformed observation vector

Update Formulae of SLF Cluster Mean Vectors

Derivative of auxiliary function

$$egin{aligned} G_{n
u} = &\sum_{\substack{m,i,j \ c(m,i)=n \ c(m,j)=
u}} G_{ij}^{(m)} & k_n = &\sum_{\substack{m,i \ c(m,i)=n \ c(m,i)=n}} k_i^{(m)} \end{aligned}$$

$$\frac{\partial \mathcal{Q}(\mathcal{M},\hat{\mathcal{M}})}{\partial \boldsymbol{\mu}_n} = \boldsymbol{k}_n - \boldsymbol{G}_{nn} \boldsymbol{\mu}_n - \sum_{\nu \neq n} \boldsymbol{G}_{n\nu} \boldsymbol{\mu}_\nu \quad \Rightarrow \boldsymbol{0}$$

$$\hat{\boldsymbol{\mu}}_n = \boldsymbol{G}_{nn}^{-1} \left(\boldsymbol{k}_n - \sum_{
u
eq n} \boldsymbol{G}_{n
u} \boldsymbol{\mu}_{
u}
ight)$$

ML estimate of a CAT mean vector

 \Rightarrow depends on all the other CAT mean vectors

Update Formulae of SLF Cluster Mean Vectors

Joint update of all cluster mean vectors

$$\begin{bmatrix} G_{11} & \dots & G_{1N} \\ \vdots & \ddots & \vdots \\ G_{N1} & \dots & G_{NN} \end{bmatrix} \begin{bmatrix} \hat{\mu}_1 \\ \vdots \\ \hat{\mu}_N \end{bmatrix} = \begin{bmatrix} k_1 \\ \vdots \\ k_N \end{bmatrix}$$

$$G_{n\nu} = \sum_{\substack{m,i,j,t,l \\ c(m,i)=n \\ c(m,j)=\nu}} \gamma_m(t) \lambda_{i,q(m)}^{(l)} \boldsymbol{\Sigma}_{v(m)}^{-1} \lambda_{j,q(m)}^{(l)} \quad \boldsymbol{k}_n = \sum_{\substack{m,i,t,s,l \\ c(m,i)=n}} \gamma_m(t) \lambda_{i,q(m)}^{(l)} \boldsymbol{\Sigma}_{v(m)}^{-1} \hat{\boldsymbol{o}}_{r(m)}^{(s)}(t)$$
transformed observation

Size of linear equations > 10,000, but sparse ⇒ Sparse storage (CSR) & solver (CG or PARDISO)

All CAT mean vectors can be determined jointly

Update Procedure of Decision Trees

Rebuild tree while fixing other trees & params

Log likelihood

$$\mathcal{L}(n) = \frac{1}{2} \sum_{m \in S(n)} \left(k_i^{(m)} - \sum_{j \neq i} G_{ij}^{(m)} \mu_{c(m,j)} \right)^{\mathsf{T}} \left(\sum_{m \in S(n)} G_{ii}^{(m)} \right)^{-1} \sum_{m \in S(n)} \left(k_i^{(m)} - \sum_{j \neq i} G_{ij}^{(m)} \mu_{c(m,j)} \right)^{\mathsf{T}} \left(\sum_{m \in S(n)} G_{ii}^{(m)} \right)^{\mathsf{T}} \left(\sum_{m \in S($$

 \rightarrow Trees can be updated one-by-one

Block Diagram of SLF Training

Block Diagram of SLF Cross-Lingual Adaptation

TOSHIBA Leading Innovation >>>

Block Diagram of SLF Language Adaptation

Outline

- Background
- Conventional approaches
 - * Polyglot speaker
 - * Mixing mono-lingual corpora
 - * Cross-lingual speaker adaptation
- Speaker & language factorization (SLF)
 - * Concept
 - * Details
- Experiments
- Conclusions

Data

- German, French, Spanish, UK & US English
- 10 speakers per language (5 female & 5 male)
 - 8 speakers for training, 2 speakers for adaptation & test
- 100~150 utterances per speaker
- Consistent microphone & recording condition

Data preparation

- IPA-like universal phone set
- Universal context-dependent label format
 - * phone, syllable, word, phrase, & utterance-level contexts

Experimental Conditions

Speech analysis / training / synthesis setup

- Similar to HTS-2008 (SAT system for BC08) [Yamagishi;'08]
 - * 39 mel-cepstrum, log F0, 23 Bark critical band aperiodicity
 - * Delta & Delta-Delta
- LI-SAT (language-independent) was trained
- Initialize SLF model by LI-SAT model then reestimate
- LD-SAT (language-dependent) models were also trained
- Cov mats & mix weights had the same tree as bias cluster
- 3 regression classes for CAT & CMLLR
 - * silence, short pause, & speech
- Speech parameter generation algorithm with GV [Toda;'07]

Number of Leaf Nodes

Cluster	mel-cep	log F0	band ap	dur
1 (bias)	2,071	4,059	5,940	1,168
2	102	3,304	20	46
3	164	3,744	17	38
4	88	3,582	18	27
5	129	3,259	25	21
6	125	2,956	28	41
Total	2,679	20,904	6,048	1,341
LI-SAT	2,235	7,557	6,014	1,371
LD-SAT	2,957	9,129	6,551	1,739

Total sizes of trees were comparable

Number of Leaf Nodes

Cluster	mel-cep	log F0	band ap	dur
1 (bias)	2,071	4,059	5,940	1,168
2	102	3,304	20	46
3	164	3,744	17	38
4	88	3,582	18	27
5	129	3,259	25	21
6	125	2,956	28	41
Total	2,679	20,904	6,048	1,341

Bias cluster was largest in all speech params

 \Rightarrow Common factor across languages was dominant

Number of Leaf Nodes

Cluster	mel-cep	log F0	band ap	dur
1 (bias)	2,071	4,059	5,940	1,168
2	102	3,304	20	46
3	164	3,744	17	38
4	88	3,582	18	27
5	129	3,259	25	21
6	125	2,956	28	41
Total	2,679	20,904	6,048	1,341

Non-bias clusters had large number of leaf nodes ⇒ Language-dependent factors had large contribution

Examples of CAT Interpolation Weights

me	l-cep	1	2	3	4	5	6
	German	[1	0.62	.40	-0.02	.34	.33]
	UK English	[1	.29	.58	. 42	.25	.23]
	US English	[1	.34	.46	.85	.26	.24]
	Spanish	[1	.49	. 38	.05	. 63	.40]
	French	[1	.43	.31	-0.07	.38	. 68]
log	F0	1	2	3	4	5	6
	German	[1	0.90	.05	.14	.10	.10]
	IIK English	٢1	04	88	18	06	081
		╏┷		.00]
	US English	[1	.11	.20	. 82	.04	.09]
	US English Spanish	[1 [1	.11 .06	.20 .12	.82 .12	.04 .91	.09] .08]

Paired Comparison Test

Preference test among LD-SAT, LI-SAT, & SLF

- 50 test sentences excluded from training data / language
- Carried out on Amazon Mechanical Turk

Results

Language	LD-SAT	LI-SAT	SLF	No pref.
	39.7	36.2	—	24.1
German	35.2	—	46.8	18.0
	—	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.2	23.0
	29.1	55.3		15.6
US English	26.2	_	60.6	13.1
	_	36.7	47.6	15.6

Evaluation of Cross-Lingual Adaptation

DMOS & MOS test setup

- Target speakers: 6 German speakers from EMIME German/English bilingual corpus
- Target language was English
- Amazon Mechanical Turk
- 5-scale similarity/naturalness score
 - * DMOS 1: very dissimilar 5: very similar
 - * MOS 1: very natural 5: very unnatural

Evaluation of Cross-Lingual Adaptation

Systems to be compared

- 1) US English LD-SAT w/o adaptation (AVM)
- 2) US English LD-SAT adapted by state-mapping cross-lingual speaker adaptation based on transform mapping (CROSS-T)
- 3) US English LD-SAT adapted by state-mapping cross-lingual speaker adaptation based on data mapping (CROSS-D)
- 4) LI-SAT w/ adaptation (LI-SAT)
- 5) SLF adapted by transform mapping (SLF-T)
- 6) SLF adapted by data mapping (SLF-D)
- 7) US English LD-SAT adapted by targets' English data (INTRA)
- 8) Vocoded natural speech (VOCOD)

Naturalness by Cross-Lingual Adaptation

Naturalness by Cross-Lingual Adaptation

Naturalness by Cross-Lingual Adaptation

Evaluation of Language Adaptation

Experimental setup

- 1 of 5 languages was excluded from training data
- Estimate language transform
 - * 8 speakers in target language
- Adapt to 2 target speakers in target language
- Amazon Mechanical Turk
- Preference test about naturalness
- 5-scale naturalness score

(1: very natural - 5: very unnatural)

Examples of CAT Interpolation Weights

		clusters			
Language	Parameter	2	3	4	5
German	mel-cep.	.617	.414	.361	.318
(training)	log F 0	.929	.087	.119	.084
UK English	mel-cep.	.366	.695	.280	.274
(training)	log F 0	.040	.914	.060	.077
Spanish	mel-cep.	.481	.374	.645	.414
(training)	log F 0	.061	.146	.927	.102
French	mel-cep.	.477	.258	.411	.712
(training)	log F 0	.029	.119	.080	.937
US English	mel-cep.	.362	.535	.273	.277
(target)	log F 0	.014	.284	.029	.035

Examples of CAT Interpolation Weights

		clusters			
Language	Parameter	2	3	4	5
UK English	mel-cep.	.597	.424	.265	.242
(training)	log F 0	.887	.178	.039	.095
US English	mel-cep.	.468	.800	.255	.258
(training)	log F 0	.207	.867	.049	.100
Spanish	mel-cep.	.332	.148	.672	.366
(training)	log F 0	.099	.113	.946	.078
French	mel-cep.	.244	.001	.403	.756
(training)	log F 0	.081	.142	.067	.936
German	mel-cep.	.352	.271	.308	.356
(target)	log F 0	.076	.133	.028	.063

Preference Test

Adaptation data	Weights	Weights		
(x 8 spkrs)	only	+ Tree	No pref.	p (t-test)
US En. 10 utts.	36.4	45.1	18.5	0.003
US En. 50 utts.	32.8	51.8	15.4	< 0.001
German 10 utts.	25.9	51.1	23.0	< 0.001
German 50 utts.	22.4	69.9	7.4	< 0.001

Building additional tree was effective

MOS Test

MOS Test

MOS Test

Outline

- Background
- Conventional approaches
 - * Polyglot speaker
 - * Mixing mono-lingual corpora
 - * Cross-lingual speaker adaptation
- Speaker & language factorization (SLF)
 - * Concept
 - * Details
- Experiments
- Conclusions

Conclusions

Speaker & language factorization (SLF)

- Application of acoustic factorization to speech synthesis
- Combine 2 transforms
 - * CMLLR based speaker transform
 - * CAT w/ cluster-dependent trees for language transform
- Better naturalness by increasing amount of data
- Polyglot synthesis
- Adaptation to new languages

Future plans

- Increase amount of data & # of speakers per language
- Add more languages (e.g., Japanese, Mandarin)

References

[Anastasakos;'96] T. Anastasakos, et al., "A compact model for speaker adaptive training," in Proc. ICSLP, 1996, pp. 1137-1140.

[Gales;'01] M. Gales, "Acoustic factorisation," in Proc. ASRU, 2001, pp. 77-80.

[Traber;'99] C. Traber, et al., "From multilingual to polyglot speech synthesis," in Proc. Eurospeech, 1999, pp. 835-838.

[Latorre;'06] J. Latorre, et al., "New approach to the polyglot speech generation by means of an HMM -based speaker adaptable synthesizer," Speech Communication, vol. 48, no. 10, pp. 1227-1242, 2006. [Black;'06] A. Black, et al., "Speaker clustering for mulitilingual synthesis," in Proc. ISCA ITRW MULTILING, 2008.

[Chen;'09] Y.-N. Chen, et al. "State mapping for cross-language speaker adaptation in TTS," in Proc. ICASSP, 2009, pp. 4273-4276.

[Wu;'09] Y.-J. Wu, et al., "State mapping based method for cross-lingual speaker adaptation in HMM -based speech synthesis," in Proc. Interspeech, 2009, pp. 528-531.

[Gales;'98] M. Gales, "Maximum likelihood linear transformations for HMM-based speech recognition," Computer Speech & Language, vol. 12, no. 2, pp. 75-98, 1998.

[Zen;'09] H. Zen, et al., "Context-dependent additive log F0 model for HMM-based speech synthesis," in Proc. Interspeech, 2009, pp. 2091-2094.

[Gales;'00] M. Gales, "Cluster adaptive training of hidden Markov models," IEEE Trans. Speech Audio Processing, vol. 8, no. 4, pp. 417-428, 2000.