

Globally Normalized Model for Statistical Speech Synthesis

Toshiba Research Euorpe Ltd. Cambridge Research Lab.

Speech Synthesis Seminar Series @ CUED, Cambridge, UK January 26th, 2011

Outline

Trajectory HMM

- Speech parameter generation
- Derivation of trajectory HMM
- Relationship between parameter generation & trajectory HMM
- Trajectory HMM as globally normalized model
- Parameter estimation

Min generation error (MGE) training & trajectory HMM

- Relationship
- Properties of MGE

(If time remains) Product of Experts (PoE)

- Combination of multiple AMs as PoE
- PoE & trajectory HMM

TOSHIBA Leading Innovation >>>

HMM-based speech synthesis system

Speech parameter generation algorithm

Determine a speech parameter vector sequence that maximizes its output probability given label l & HMM λ

$$\hat{\boldsymbol{o}} = \arg \max_{\boldsymbol{o}} p(\boldsymbol{o} \mid \boldsymbol{l}, \hat{\lambda})$$

$$= \arg \max_{\boldsymbol{o}} \sum_{\forall \boldsymbol{q}} p(\boldsymbol{o} \mid \boldsymbol{q}, \hat{\lambda}) p(\boldsymbol{q} \mid \boldsymbol{l}, \hat{\lambda})$$

$$= \arg \max_{\boldsymbol{o}, \boldsymbol{q}} p(\boldsymbol{o} \mid \boldsymbol{q}, \hat{\lambda}) p(\boldsymbol{q} \mid \boldsymbol{l}, \hat{\lambda})$$

$$\hat{\boldsymbol{q}} = \arg \max_{\boldsymbol{q}} p(\boldsymbol{q} \mid \boldsymbol{l}, \hat{\lambda})$$

$$\hat{\boldsymbol{o}} = \arg \max_{\boldsymbol{o}} p(\boldsymbol{o} \mid \hat{\boldsymbol{q}}, \hat{\lambda})$$

Output prob of o given l & HMM λ

$$p(\boldsymbol{o} \mid \boldsymbol{l}, \lambda) = \sum_{\forall \boldsymbol{q}} \underbrace{p(\boldsymbol{o} \mid \boldsymbol{q}, \lambda) P(\boldsymbol{q} \mid \boldsymbol{l}, \lambda)}_{\text{state-output}} \underbrace{P(\boldsymbol{q} \mid \boldsymbol{l}, \lambda)}_{\text{state-transition}}$$

$$p(\boldsymbol{o} \mid \boldsymbol{q}, \lambda) = \prod_{t=1}^{T} \mathcal{N}(\boldsymbol{o}_{t} \; ; \; \boldsymbol{\mu}_{q_{t}}, \boldsymbol{\Sigma}_{q_{t}}) \iff \text{single Gaussian}$$

$$= \mathcal{N}\left(\begin{bmatrix} \boldsymbol{o}_{1} \\ \boldsymbol{o}_{2} \\ \vdots \\ \boldsymbol{o}_{T} \end{bmatrix} ; \begin{bmatrix} \boldsymbol{\mu}_{q_{1}} \\ \boldsymbol{\mu}_{q_{2}} \\ \vdots \\ \boldsymbol{\mu}_{q_{T}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{q_{1}} & \boldsymbol{0} \\ \boldsymbol{\Sigma}_{q_{2}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma}_{q_{T}} \end{bmatrix} \right)$$

$$= \mathcal{N}(\boldsymbol{o} ; \; \boldsymbol{\mu}_{\boldsymbol{q}}, \boldsymbol{\Sigma}_{\boldsymbol{q}}) \xrightarrow{\text{diagonal}}$$

Generated trajectory

$$\hat{\boldsymbol{o}} = \arg \max_{\boldsymbol{o}} p(\boldsymbol{o} \mid \hat{\boldsymbol{q}}, \hat{\lambda})$$
$$= \arg \max_{\boldsymbol{o}} \mathcal{N}(\boldsymbol{o} ; \boldsymbol{\mu}_{\hat{\boldsymbol{q}}}, \boldsymbol{\Sigma}_{\hat{\boldsymbol{q}}})$$

 $= \mu_{\hat{q}} \leftarrow$ mean vector sequence

Mean

Variance

Relationship between o and c

 $oldsymbol{o}_t = egin{bmatrix} oldsymbol{c}_t \ \Delta oldsymbol{c}_t \end{bmatrix} & \Leftarrow ext{ static} \ \Rightarrow ext{ dynamic} \end{bmatrix}$

$$\Delta \boldsymbol{c}_t = \boldsymbol{c}_t - \boldsymbol{c}_{t-1}$$

TOSHIBA Leading Innovation >>>

Speech parameter generation algorithm

$$\hat{\boldsymbol{o}} = \arg \max_{\boldsymbol{o}} p(\boldsymbol{o} \mid \hat{\boldsymbol{q}}, \hat{\lambda}) \Big|_{\boldsymbol{o} = \boldsymbol{W}\boldsymbol{c}}$$

$$= \arg \max_{\boldsymbol{o}} \mathcal{N}(\boldsymbol{o} ; \boldsymbol{\mu}_{\hat{\boldsymbol{q}}}, \boldsymbol{\Sigma}_{\hat{\boldsymbol{q}}}) \Big|_{\boldsymbol{o} = \boldsymbol{W}\boldsymbol{c}}$$

$$\downarrow$$

$$\hat{\boldsymbol{c}} = \arg \max_{\boldsymbol{c}} \mathcal{N}(\boldsymbol{W}\boldsymbol{c} ; \boldsymbol{\mu}_{\hat{\boldsymbol{q}}}, \boldsymbol{\Sigma}_{\hat{\boldsymbol{q}}})$$

$$\downarrow$$

$$\boldsymbol{W}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{q}}^{-1} \boldsymbol{W} \hat{\boldsymbol{c}} = \boldsymbol{W}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{q}}^{-1} \boldsymbol{\mu}_{\boldsymbol{q}}$$

Generated trajectory

Inconsistency between training & synthesis

Training & synthesis parts are inconsistent

- Training part

- * Baum-Welch training
- * Labels are often given manually
- * Model training model w/o dynamic feature constraints

- Synthesis part

- * Viterbi (single-path) approximation
- * Labels are often given automatically (by text analysis)
- * Parameter generation w/ dynamic feature constraints

How about introducing dyn feature constraints to training?

Output prob of o given l & HMM λ

$$p(\boldsymbol{o} \mid \boldsymbol{l}, \lambda) = \sum_{\forall \boldsymbol{q}} \underbrace{p(\boldsymbol{o} \mid \boldsymbol{q}, \lambda) P(\boldsymbol{q} \mid \boldsymbol{l}, \lambda)}_{\text{state-output}} \underbrace{P(\boldsymbol{q} \mid \boldsymbol{l}, \lambda)}_{\text{state-transition}}$$

$$p(\boldsymbol{o} \mid \boldsymbol{q}, \lambda) = \prod_{t=1}^{T} \mathcal{N}(\boldsymbol{o}_{t} \; ; \; \boldsymbol{\mu}_{q_{t}}, \boldsymbol{\Sigma}_{q_{t}}) \iff \text{single Gaussian}$$

$$= \mathcal{N}\left(\begin{bmatrix} \boldsymbol{o}_{1} \\ \boldsymbol{o}_{2} \\ \vdots \\ \boldsymbol{o}_{T} \end{bmatrix} ; \begin{bmatrix} \boldsymbol{\mu}_{q_{1}} \\ \boldsymbol{\mu}_{q_{2}} \\ \vdots \\ \boldsymbol{\mu}_{q_{T}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{q_{1}} & \boldsymbol{0} \\ \boldsymbol{\Sigma}_{q_{2}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma}_{q_{T}} \end{bmatrix} \right)$$

$$= \mathcal{N}(\boldsymbol{o} ; \; \boldsymbol{\mu}_{\boldsymbol{q}}, \boldsymbol{\Sigma}_{\boldsymbol{q}}) \xrightarrow{\text{diagonal}}$$

Inconsistency in HMM w/ dynamic features

Under o = Wc

$$p(o \mid q, \lambda) = \mathcal{N}(Wc; \mu_q, \Sigma_q) \Rightarrow \text{incorrect!}$$

Why?

$$\int_{c} \mathcal{N}(\boldsymbol{Wc} \; ; \; \boldsymbol{\mu_q}, \boldsymbol{\Sigma_q}) d\boldsymbol{c} \neq 1 \; \Rightarrow \underset{\textbf{to be a valid PDF}}{\text{integral over } c \text{ must be 1}}$$

Why does this happen?

Static features \Rightarrow random variables Dynamic features \Rightarrow Not random variables!!

TOSHIBA Leading Innovation >>>

Normalization

Normalized to achieve valid PDF

$$Z_{\boldsymbol{q}} = \int_{\boldsymbol{c}} \mathcal{N} \left(\boldsymbol{W} \boldsymbol{c} \; ; \; \boldsymbol{\mu}_{\boldsymbol{q}}, \boldsymbol{\Sigma}_{\boldsymbol{q}} \right) d\boldsymbol{c}$$
$$= \frac{\sqrt{(2\pi)^{MT} |\boldsymbol{P}_{\boldsymbol{q}}|}}{\sqrt{(2\pi)^{2MT} |\boldsymbol{\Sigma}_{\boldsymbol{q}}|}} \exp \left\{ -\frac{1}{2} \left(\boldsymbol{\mu}_{\boldsymbol{q}}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{q}}^{-1} \boldsymbol{\mu}_{\boldsymbol{q}} - \boldsymbol{r}_{\boldsymbol{q}}^{\top} \boldsymbol{P}_{\boldsymbol{q}} \boldsymbol{r}_{\boldsymbol{q}} \right) \right\}$$

$$\mathcal{N}(\boldsymbol{W}\boldsymbol{c} \; ; \; \boldsymbol{\mu}_{\boldsymbol{q}}, \boldsymbol{\Sigma}_{\boldsymbol{q}}) \Rightarrow \text{invalid PDF!}$$
$$\frac{1}{Z_{\boldsymbol{q}}} \mathcal{N}(\boldsymbol{W}\boldsymbol{c} \; ; \; \boldsymbol{\mu}_{\boldsymbol{q}}, \boldsymbol{\Sigma}_{\boldsymbol{q}}) \Rightarrow \text{valid PDF!!}$$

Definition of trajectory HMM

Use normalized Gaussian \Rightarrow trajectory HMM is defined

$$\begin{split} p\left(\boldsymbol{c} \mid \boldsymbol{l}, \lambda\right) &= \sum_{\forall \boldsymbol{q}} \underbrace{p\left(\boldsymbol{c} \mid \boldsymbol{q}, \lambda\right) P\left(\boldsymbol{q} \mid \boldsymbol{l}, \lambda\right)}_{\text{state-output state-transition}} \\ p\left(\boldsymbol{c} \mid \boldsymbol{q}, \lambda\right) &= \frac{1}{Z_{\boldsymbol{q}}} \mathcal{N}(\boldsymbol{W}\boldsymbol{c} \; ; \; \boldsymbol{\mu}_{\boldsymbol{q}}, \boldsymbol{\Sigma}_{\boldsymbol{q}}) \; \Leftarrow \text{normalized Gaussian} \\ &= \mathcal{N}\left(\boldsymbol{c} \; ; \; \bar{\boldsymbol{c}}_{\boldsymbol{q}}, \boldsymbol{P}_{\boldsymbol{q}}\right) \; \Leftarrow \text{Gaussian over } \boldsymbol{c} \\ & \overset{\text{mean cov}}{\underset{\text{vec mat}}{\text{mat}}} \\ \boldsymbol{R}_{\boldsymbol{q}} \bar{\boldsymbol{c}}_{\boldsymbol{q}} &= \boldsymbol{r}_{\boldsymbol{q}} \\ \boldsymbol{R}_{\boldsymbol{q}} &= \boldsymbol{W}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{q}}^{-1} \boldsymbol{W} = \boldsymbol{P}_{\boldsymbol{q}}^{-1} \\ \boldsymbol{r}_{\boldsymbol{q}} &= \boldsymbol{W}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{q}}^{-1} \boldsymbol{\mu}_{\boldsymbol{q}} \end{split}$$

Covariance matrix P_q

Trajectory HMM & speech parameter generation

Mean vector of trajectory HMM

$$\boldsymbol{W}^{ op} \boldsymbol{\Sigma}_{\boldsymbol{q}}^{-1} \boldsymbol{W} ar{m{c}}_{\boldsymbol{q}} = \boldsymbol{W}^{ op} \boldsymbol{\Sigma}_{\boldsymbol{q}}^{-1} \boldsymbol{\mu}_{\boldsymbol{q}}$$

Trajectory by speech parameter generation algorithm

$$oldsymbol{W}^{ op} oldsymbol{\Sigma}_{oldsymbol{q}}^{-1} oldsymbol{W} \hat{oldsymbol{c}} = oldsymbol{W}^{ op} oldsymbol{\Sigma}_{oldsymbol{q}}^{-1} oldsymbol{\mu}_{oldsymbol{q}}$$

 \Rightarrow they are identical

Trajectory HMM as globally normalized model

$$\begin{aligned} \mathsf{HMM} &\Rightarrow \mathsf{locally} \text{ (frame-level) normalized model} \\ p(\boldsymbol{o} \mid \boldsymbol{q}, \lambda) &= \prod_{t=1}^{T} p\left(\boldsymbol{o}_t \mid q_t, \lambda\right) \\ &= \prod_{t=1}^{T} \mathcal{N}\left(\boldsymbol{o}_t \; ; \; \boldsymbol{\mu}_{q_t}, \boldsymbol{\Sigma}_{q_t}\right) \end{aligned}$$

Trajectory HMM \Rightarrow globally (utt-level) normalized model

$$p(\boldsymbol{c} \mid \boldsymbol{q}, \lambda) = \frac{1}{Z_{\boldsymbol{q}}} \mathcal{N}(\boldsymbol{W}\boldsymbol{c} \; ; \; \boldsymbol{\mu}_{\boldsymbol{q}}, \boldsymbol{\Sigma}_{\boldsymbol{q}})$$
$$= \frac{1}{Z_{\boldsymbol{q}}} \prod_{t=1}^{T} \mathcal{N}\left(\left[\boldsymbol{c}_{t}^{\top}, \Delta \boldsymbol{c}_{t}^{\top}\right]^{\top} \; ; \; \boldsymbol{\mu}_{q_{t}}, \boldsymbol{\Sigma}_{q_{t}}\right)$$

Estimating trajectory HMM parameters

ML estimation of trajectory HMM

$$\hat{\lambda} = \arg\max_{\lambda} p(\boldsymbol{c} \mid \boldsymbol{l}, \lambda)$$

Locally normalized model

Parameter estimation for each state can be done separately

Globally normalized model

Parameter estimation of all states have to be done jointly

$$oldsymbol{\mu} = ig[oldsymbol{\mu}_1^ op, oldsymbol{\mu}_2^ op, \dots, oldsymbol{\mu}_N^ op ig]^ op$$
 : all mean vectors $oldsymbol{\phi} = ig[oldsymbol{\Sigma}_1^{-1}, oldsymbol{\Sigma}_2^{-1}, \dots, oldsymbol{\Sigma}_N^{-1}ig]$: all precision matrices

Parameter update formulae

$$\sum_{\forall q} p(q \mid c, \lambda') S_q^{\top} \Sigma_q^{-1} W P_q W^{\top} \Sigma_q^{-1} S_q \mu$$
$$= \sum_{\forall q} p(q \mid c, \lambda') S_q^{\top} \Sigma_q^{-1} W c$$

mean vectors \Rightarrow closed form

$$\begin{aligned} \frac{\partial \mathcal{Q}(\lambda, \lambda')}{\partial \phi} &= \sum_{\forall q} p(q \mid c, \lambda') \Big\{ \frac{1}{2} \boldsymbol{S}_{q}^{\top} \operatorname{diag}^{-1} \big(\boldsymbol{W} \boldsymbol{P}_{q} \boldsymbol{W}^{\top} - \boldsymbol{W} \boldsymbol{c} \boldsymbol{c}^{\top} \boldsymbol{W}^{\top} \\ &+ \boldsymbol{W} \bar{\boldsymbol{c}}_{q} \bar{\boldsymbol{c}}_{q}^{\top} \boldsymbol{W}^{\top} + \boldsymbol{\mu}_{q} \boldsymbol{c}^{\top} \boldsymbol{W}^{\top} + \boldsymbol{W} \boldsymbol{c} \boldsymbol{\mu}_{q}^{\top} - \boldsymbol{\mu}_{q} \bar{\boldsymbol{c}}_{q}^{\top} \boldsymbol{W}^{\top} - \boldsymbol{W} \bar{\boldsymbol{c}}_{q} \boldsymbol{\mu}_{q}^{\top} \big) \Big\} \end{aligned}$$

covariance matrices \Rightarrow numerical optimization

Drawback of trajectory HMM training

Exact EM is intractable

- Computing posterior prob of q is intractable
- Single-path (Viterbi) or Monte Carlo approximation

Exact tree-based clustering is also intractable

- Splitting one nodes affects the other nodes
- Trees built for HMMs are often used

Computationally & memory intensive

- High dimensional matrix operations
- Numerical optimization

Effect of parameter reestimation

- —Training data
- Mean sequence of the HMM
- Mean sequence of the trajectory HMM (w/o update)
- Mean sequence of the trajectory HMM (with update)

Outline

Trajectory HMM

- Speech parameter generation
- Derivation of trajectory HMM
- Relationship between parameter generation & trajectory HMM
- Trajectory HMM as globally normalized model
- Parameter estimation

Min generation error (MGE) training & trajectory HMM

- Relationship
- Properties of MGE

(If time remains) Product of Experts (PoE)

- Combination of multiple AMs as PoE
- PoE & trajectory HMM

TOSHIBA Leading Innovation >>>

MGE training & trajectory HMM (1)

ML training & MGE training w/ Euclidean dist [Wu;'06]

$$\begin{split} \hat{\lambda}_{\mathrm{ML}} &= \arg \max_{\lambda} p(\boldsymbol{c} \mid \boldsymbol{q}, \lambda) \\ &= \arg \max_{\lambda} \mathcal{N} \left(\boldsymbol{c} \; ; \; \bar{\boldsymbol{c}}_{\boldsymbol{q}}, \boldsymbol{P}_{\boldsymbol{q}} \right) \\ \hat{\lambda}_{\mathrm{MGE}} &= \arg \min_{\lambda} \mathcal{E}(\boldsymbol{c} \; ; \; \boldsymbol{q}, \lambda) \\ &= \arg \min_{\lambda} \frac{||\boldsymbol{c} - \bar{\boldsymbol{c}}_{\boldsymbol{q}}||_{2}}{\mathrm{Euclidean\ distance}} \\ &= \arg \max_{\lambda} \mathcal{N} \left(\boldsymbol{c} \; ; \; \bar{\boldsymbol{c}}_{\boldsymbol{q}}, \boldsymbol{I} \right) \Leftarrow \mathsf{Identity\ covariance\ matrix} \end{split}$$

MGE training & trajectory HMM (3)

Performance of ML & MGE w/ Euc is similar, why?

 \Rightarrow Due to speech parameter generation algorithm

$$\hat{\boldsymbol{c}}_{\mathrm{ML}} = \arg \max_{\boldsymbol{c}} p\left(\boldsymbol{c} \mid \hat{\boldsymbol{q}}, \hat{\lambda}_{\mathrm{ML}}\right)$$

$$= \arg \max_{\boldsymbol{c}} \mathcal{N}\left(\boldsymbol{c} \; ; \; \bar{\boldsymbol{c}}_{\hat{\boldsymbol{q}}}, \boldsymbol{P}_{\hat{\boldsymbol{q}}}\right)$$

$$= \bar{\boldsymbol{c}}_{\hat{\boldsymbol{q}}}$$

$$\hat{\boldsymbol{c}}_{\mathrm{MGE}} = \arg \max_{\boldsymbol{c}} p\left(\boldsymbol{c} \mid \hat{\boldsymbol{q}}, \hat{\lambda}_{\mathrm{MGE}}\right)$$

$$= \arg \max_{\boldsymbol{c}} \mathcal{N}\left(\boldsymbol{c} \; ; \; \bar{\boldsymbol{c}}_{\hat{\boldsymbol{q}}}, \boldsymbol{I}\right)$$

$$= \bar{\boldsymbol{c}}_{\hat{\boldsymbol{q}}}$$

MGE training & trajectory HMM (4)

Random sampling from ML & MGE w/ Euc distance ML

 $ilde{m{c}}_{ ext{ML}} \sim \mathcal{N}\left(m{ar{c}}_{m{\hat{q}}}, m{P}_{m{\hat{q}}}
ight)$

 \Rightarrow Temporal correlations will be kept

MGE

 $ilde{m{c}}_{ ext{MGE}} \sim \mathcal{N}\left(ar{m{c}}_{\hat{m{q}}},m{I}
ight)$

 \Rightarrow Temporal correlations will be discarded

MGE training & trajectory HMM (5)

Which is better, ML or MGE?

- w/ parameter generation, MGE is more reasonable
 - * MGE \Rightarrow μ & Σ to represent mean trajectory
 - * ML $\Rightarrow \mu$ for mean trajectory, Σ for mean trj & temporal cov
 - \Rightarrow MGE can focus on modeling mean trajectory

- w/ random sampling, ML is more reasonable

- * MGE ignores temporal correlations
- * ML models temporal correlations

Summary

Trajectory HMM

- Derived from HMM w/ dynamic feature constraints
- Can be viewed as a globally normalized model
- All states need to be estimated jointly
- Generated params = mean vector of trajectory HMM

MGE training

- MGE w/ Euclid distance = MMSE estimation of trajectory HMM
- w/ speech parameter generation algorithm (ML parm gen)
 - \Rightarrow ML & MGE work similarly
- w/ random sampling
 - \Rightarrow MGE won't work well

Outline

Trajectory HMM

- Speech parameter generation
- Derivation of trajectory HMM
- Relationship between parameter generation & trajectory HMM
- Trajectory HMM as globally normalized model
- Parameter estimation

Min generation error (MGE) training & trajectory HMM

- Relationship
- Properties of MGE

(If time remains) Product of Experts (PoE)

- Combination of multiple AMs as PoE
- PoE & trajectory HMM

TOSHIBA Leading Innovation >>>

Combination of multiple acoustic models

Combine multiple AMs to reduce over-smoothing

* Training; estimate multiple-level AMs *individually*

$$\hat{\lambda}_i = \arg \max_{\lambda_i} p\left(f_i(\boldsymbol{c}) \mid \lambda_i\right) \quad i = 1, \dots, M$$

 * Synthesis; generate c that *jointly* maximize output probs from AMs

$$\hat{\boldsymbol{c}} = \arg\max_{\boldsymbol{c}} \sum_{i=1}^{M} \alpha_i \log p(f_i(\boldsymbol{c}) \mid \hat{\lambda}_i)$$

- * Feature function, $f_i(c)$, extracts acoustic feats for *i*-th AM from c
 - e.g., dynamic feats, DCT, average, summation, global variance
- * Parameters of AMs, λ_i , are trained *independently*

 \rightarrow Use weights to control balance among AMs

* Weights, α_i , are determined by *held-out data* (or tuned manually)

Mixture model vs Product model

Mixture of experts

$$p(\boldsymbol{c} \mid \lambda_1, \dots, \lambda_M) = \frac{1}{Z} \sum_{i=1}^M \alpha_i p(f_i(\boldsymbol{c}) \mid \lambda_i)$$

$$\rightarrow$$

- * Data is generated from *union* of experts
- * Robust for modeling data with many variations
- * GMM \rightarrow Mixture of Gaussians

Product of experts [Hinton;'02]

$$p(\boldsymbol{c} \mid \lambda_1, \dots, \lambda_M) = \frac{1}{Z} \prod_{i=1}^M \left\{ p(f_i(\boldsymbol{c}) \mid \lambda_i) \right\}^{\alpha_i}$$

* Data is generated from *intersection* of experts

- * Efficient for modeling data with many constraints
- * PoG \rightarrow Product of Gaussians

Combination of multiple AMs as PoE

Comibination of multiple AMs can be viewed as PoE

$$\hat{\boldsymbol{c}} = \arg\max_{\boldsymbol{c}} p\left(\boldsymbol{c} \mid \lambda_{1}, \dots, \lambda_{M}\right) = \arg\max_{\boldsymbol{c}} \frac{1}{Z} \prod_{i=1}^{M} \left\{ p\left(f_{i}(\boldsymbol{c}) \mid \lambda_{i}\right) \right\}^{\alpha_{i}}$$
$$= \arg\max_{\boldsymbol{c}} \prod_{i=1}^{M} \left\{ p\left(f_{i}(\boldsymbol{c}) \mid \lambda_{i}\right) \right\}^{\alpha_{i}} = \arg\max_{\boldsymbol{c}} \sum_{i=1}^{M} \alpha_{i} \log p\left(f_{i}(\boldsymbol{c}) \mid \lambda_{i}\right)$$

* Generating c from combination of multiple AMs

 \rightarrow Equivalent to generating c from PoE consisting of AMs

* Regarding combination of multiple AMs as PoE

→ *Jointly* estimate multiple AMs

$$\{\hat{\lambda}_1, \dots, \hat{\lambda}_M\} = rg\max_{\lambda_1, \dots, \lambda_M} \frac{1}{Z} \prod_{i=1}^M \left\{ p\left(f_i(\boldsymbol{c}) \mid \lambda_i\right) \right\}^{lpha_i}$$

Product of Gaussians

Product of Gaussians (PoG)

$$p(\boldsymbol{c} \mid \lambda_1, \dots, \lambda_M) = \frac{1}{Z} \prod_{i=1}^M \mathcal{N}(f_i(\boldsymbol{c}) ; \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

- * Special case of PoE; All experts are Gaussian
- * If all feature functions are linear
 - PoG also becomes Gaussian
 - Normalization constant

$$Z = \int \prod_{i=1}^{M} \mathcal{N} \left(f_i(\boldsymbol{c}) \; ; \; \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i \right) d\boldsymbol{c}$$

can be computed in *closed form*

Trajectory HMM as product of Gaussians

Trajectory HMM can be viewed as PoG [Williams;'05, Zen;'07]

$$p(\boldsymbol{c} \mid \lambda) = \sum_{\forall \boldsymbol{q}} p(\boldsymbol{c} \mid \boldsymbol{q}, \lambda) p(\boldsymbol{q} \mid \lambda)$$
$$p(\boldsymbol{c} \mid \boldsymbol{q}, \lambda) = \mathcal{N}(\boldsymbol{c} \; ; \; \bar{\boldsymbol{c}}_{\boldsymbol{q}}, \boldsymbol{P}_{\boldsymbol{q}}) = \frac{1}{Z_{\boldsymbol{q}}} \mathcal{N}(\boldsymbol{W}\boldsymbol{c} \; ; \; \boldsymbol{\mu}_{\boldsymbol{q}}, \boldsymbol{\Sigma}_{\boldsymbol{q}})$$

Trajectory HMM as product of Gaussians

Trajectory HMM can be viewed as PoG [Williams;'05, Zen;'07]

$$\begin{split} p\left(\boldsymbol{c} \mid \lambda\right) &= \sum_{\forall \boldsymbol{q}} p\left(\boldsymbol{c} \mid \boldsymbol{q}, \lambda\right) p\left(\boldsymbol{q} \mid \lambda\right) \\ p\left(\boldsymbol{c} \mid \boldsymbol{q}, \lambda\right) &= \mathcal{N}\left(\boldsymbol{c} \; ; \; \bar{\boldsymbol{c}}_{\boldsymbol{q}}, \boldsymbol{P}_{\boldsymbol{q}}\right) = \frac{1}{Z_{\boldsymbol{q}}} \mathcal{N}\left(\boldsymbol{W}\boldsymbol{c} \; ; \; \boldsymbol{\mu}_{\boldsymbol{q}}, \boldsymbol{\Sigma}_{\boldsymbol{q}}\right) \\ &= \frac{1}{Z_{\boldsymbol{q}}} \prod_{t=1}^{T} \prod_{d=0}^{2} \mathcal{N}\left(f_{t}^{\left(d\right)}(\boldsymbol{c}) \; ; \; \boldsymbol{\mu}_{q_{t}}^{\left(d\right)}, \boldsymbol{\Sigma}_{q_{t}}^{\left(d\right)}\right) \\ Z_{\boldsymbol{q}} &= \int \prod_{t=1}^{T} \prod_{d=0}^{2} \mathcal{N}\left(f_{t}^{\left(d\right)}(\boldsymbol{c}) \; ; \; \boldsymbol{\mu}_{q_{t}}^{\left(d\right)}, \boldsymbol{\Sigma}_{q_{t}}^{\left(d\right)}\right) d\boldsymbol{c} \end{split}$$

* Experts are Gaussians, feature functions are dynamic features
* Gaussian experts are multiplied over time

Linear feature function with Gaussian experts

Combining multiple AMs as PoE

* Multiple-level AMs often use linear feature functions w/ Gaussians

- DCT [Latorre;'08, Qian;'09], average [Wang;'08], sum [Ling;'06, Gao;'08]

* PoEs become the same form as trajectory HMM

 \rightarrow Training algorithm for trajectory HMM are applicable

Example: state & phoneme duration models [Ling;'06]

$$p(\boldsymbol{d} \mid \boldsymbol{\lambda}) = \frac{1}{Z} \mathcal{N} (\boldsymbol{W}\boldsymbol{d} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= \frac{1}{Z} \prod_{i=1}^{P} \prod_{j=1}^{N_i} \mathcal{N} (d_{ij} ; \xi_{ij}, \sigma_{ij})$$
$$\cdot \prod_{k=1}^{P} \mathcal{N} (p_k ; \nu_k, \omega_k)$$

 d_{ij} : duration of state j in phoneme i

					VV					\boldsymbol{a}	
d_{11}		[1	0	0]			
d_{12}		0	1	0	0			•••	Γ	d_{11}]
d_{13}		0	0	1				•••		d_{12}	
p_1		1	1	1				• • •		d_{13}	
d_{21}					1	0	0	• • •	- [d_{21}	Γ
d_{22}			Δ	0		1	0	• • •		d_{22}	
d_{23}			U		0	0	1	• • •		d_{23}	
p_2				1	1	1	• • •	T	•	Γ	
•			•	•	•	•	•		- L	• _	J
• _		L۰	•	•	•	•	•	· · · ·]			

1

General PoE (non-linear feat or non-Gaussian)

General form of PoE

$$p(\boldsymbol{c} \mid \lambda_1, \dots, \lambda_M) = \frac{1}{Z} \prod_{i=1}^M \left\{ p(f_i(\boldsymbol{c}) \mid \lambda_i) \right\}^{\alpha_i}$$

- * Feature functions can be non-linear, experts can be non-Gaussian
- * Normalization term has no closed form
- * Training is complex, usually normalization term is approximated

Example: global variance (GV) [Toda;'07]

$$p(\boldsymbol{c} \mid \boldsymbol{q}, \lambda, \lambda_{\text{GV}}) = \frac{1}{Z_{\boldsymbol{q}}} \mathcal{N}(\boldsymbol{c} \; ; \; \bar{\boldsymbol{c}}_{\boldsymbol{q}}, \boldsymbol{P}_{\boldsymbol{q}})^{\alpha} \mathcal{N}(f_{v}(\boldsymbol{c}) \; ; \; \boldsymbol{\mu}_{v}, \boldsymbol{\Sigma}_{v})$$

$$f_v(\boldsymbol{c}) = \frac{1}{T} \sum_{t=1}^T \operatorname{diag} \left[(\boldsymbol{c}_t - \bar{\boldsymbol{c}}) (\boldsymbol{c}_t - \bar{\boldsymbol{c}})^\top \right] : \text{ intra-utt variance, } \boldsymbol{quadratic}$$

Contrastive divergence learining

Contrastive divergence learning [Hinton;'02]

- * Training algorithm for general PoE
- * Combination of sampling & gradient methods
 - 1. Draw J samples from PoE

 $c^{(j)} \sim p(c \mid \lambda) \quad j = 1, \dots, J \qquad \lambda = \{\lambda_1, \dots, \lambda_M\}$: PoE model params

2. Compute approximated derivative of log likelihood w.r.t. λ

$$\frac{\partial \log p\left(\boldsymbol{c} \mid \boldsymbol{\lambda}\right)}{\partial \boldsymbol{\lambda}} \approx \left\langle \frac{\partial \log p\left(\boldsymbol{c} \mid \boldsymbol{\lambda}\right)}{\partial \boldsymbol{\lambda}} \right\rangle_{p_{0}} - \left\langle \frac{\partial \log p\left(\boldsymbol{c} \mid \boldsymbol{\lambda}\right)}{\partial \boldsymbol{\lambda}} \right\rangle_{p_{J}}$$
expectation over data expectation over samples

3. Update model params using gradient method

$$\begin{split} \boldsymbol{\lambda}' &= \boldsymbol{\lambda} - \eta \cdot \left(\left\langle \frac{\partial \log p\left(\boldsymbol{c} \mid \boldsymbol{\lambda}\right)}{\partial \boldsymbol{\lambda}} \right\rangle_{p_0} - \left\langle \frac{\partial \log p\left(\boldsymbol{c} \mid \boldsymbol{\lambda}\right)}{\partial \boldsymbol{\lambda}} \right\rangle_{p_j} \right) & \eta : \text{learning rate} \\ \boldsymbol{\lambda} &= \boldsymbol{\lambda}' \end{split}$$

4. Iterate 1-3 until converge

Experiment - Multiple-Level Dur Models as PoE

Experimental conditions

- * Training data; 2,469 utterances
- * Development data; 137 utterances
 - Used to optimize weights in conventional method
 - Weights were optimized to minimize RMSE by grid search
 - Baseline & proposed method did not use development data
- * Almost the same training setup as Nitech-HTS 2005 [Zen;'06]
- * Test data; 137 utterances
- * State, phone, & syllable-level models were clustered individually
 - # of leaf nodes
 - * state; 607, phoneme; 1,364, syllable; 281

Experimental Results

Duration prediction results (RMSE in frame (rel imp))

Model	Phoneme	Syllable	Pause
Baseline (st)	5.08 (ref)	8.98 (ref)	35.0 (ref)
uPoE (st*ph)	4.62 (9.1%)	8.13 (9.5%)	31.8 (9.1%)
uPoE (st*ph*syl)	4.62 (9.1%)	8.11 (9.7%)	31.8 (9.1%)
PoE (st*ph)	4.60 (9.4%)	8.04 (10.5%)	31.9 (8.9%)
PoE (st*ph*syl)	4.57 (10.0%)	8.02 (10.7%)	31.9 (8.9%)

st; state only, st*ph; state & phoneme, st*ph*syl; state, phoneme, & syllable uPoE; individually trained multiple-level duration models with optimized weights PoE; jointly estimated multiple-level duration models

Experiment - Global Variance as PoE

Experimental conditions

- * Training data; 2,469 utterances
 - Training data was split into mini-batch (250 utterances)
 - 10 MCMC sampling at each contrastive divergence learning
 - * Hybrid Monte Carlo with 20 leap-frog steps
 - * Leap-frog size was adjusted adaptively
 - Learning rate was annealed at every 2,000 iterations
 - Momentum method was used to accelerate learning
 - Context-dependent logarithmic GV w/o silence was used
- * Test sentences; 70 sentences
 - Paired comparison test, # of subjects 7 (native English speaker)
 - 30 sentences per subject

Experimental Results

Paired comparison test result

Baseline	PoE	No preference
17.1	32.4	50.5

Baseline; conventional (not jointly estimated) GV

PoE; proposed (jointly estimated) GV

Difference was statistically significant at p < 0.05 level

Summary

Statistical parametric synthesis based on PoE

- Combination of multiple-level AMs is formulated as PoE
- Jointly estimate multiple-level AMs as PoE
 - * Linear feature function with Gaussian experts
 - \rightarrow Can be estimated in the same way as trajectory HMM
 - * Non-linear feature function and/or non-Gaussian experts
 - \rightarrow Contrastive divergence learning

- Experiments

* Jointly estimating multiple AMs as PoE improved performance

References

[Hinton;'02] G. Hinton, "Training product of experts by minimizing contrastive divergence," Neural Computation, vol. 14, no. 8, pp. 1771-1800, 2002.

[Williams;'05] C. Williams, "How to pretend that correlated variables are independent by using difference observations," Neural Computation, vol. 17, no. 1, pp. 1--6, 2005.

[Zen;'07] H. Zen, et al., "Reformulating the HMM as a trajectory model by imposing explicit relationships between static and dynamic feature vector sequences," Computer Speech & Language, vol. 21, no. 1, pp.153-173, 2007.

[Latorre;'08] J. Latorre & M. Akamine, "Multilevel parametric-base F0 model for speech synthesis," Proc. Interspeech, pp. 2274--2277, 2008.

[Qian;'09] Y. Qian, et al., "Improved prosody generation by maximizing joint likelihood of state and longer units," Proc. ICASSP, pp. 1173--1176, 2009.

[Wang;'08] C.-C. Wang, et al., "Multi-layer F0 modeling for HMM-based speech synthesis," Proc. ISCSLP, pp. 129--132, 2008.

[Ling;'06] Z.-H. Ling, et al., "USTC system for Blizzard Challenge 2006 an improved HMM-based speech synthesis method," Proc. Blizzard Challenge Workshop, 2006.

[Gao;'08] B.-H. Gao, et al., "Duration refinement by jointly optimizing state and longer unit likelihood," Proc. Interspeech, 2266--2269, 2008.

[Toda;'07] T. Toda & K. Tokuda, "A speech parameter generation algorithm considering global variance for HMM-based speech synthesis," IEICE Trans. Inf. Syst., vol. E90-D, no. 5, pp. 816--824, 2007.