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Speech parameter generation algorithm
 Determine a speech parameter vector sequence that
 maximizes its output probability given label l & HMM λ

ô = arg max
o

p(o | l, λ̂)

= arg max
o

∑

∀q

p(o | q, λ̂)p(q | l, λ̂)

= arg max
o,q

p(o | q, λ̂)p(q | l, λ̂)

q̂ = arg max
q

p(q | l, λ̂)

ô = arg max
o

p(o | q̂, λ̂)



Output prob of o given l & HMM λ

p (o | l, λ) =
∑

∀q

p (o | q, λ)P ( |q l, λ)

=

N
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=

state-output state-transition

N (o ; µq,Σq)

p (o | q, λ) =
T∏

t=1

N (ot ; µqt ,Σqt ) ⇐ single Gaussian

diagonal



Generated trajectory

Variance Mean

ô = arg max
o

p(o | q̂, λ̂)

= arg max
o
N (o ; µq̂,Σq̂)

= µq̂ ⇐ mean vector sequence



Relationship between o and c
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[
ct
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]
∆ct = ct − ct−1

ot
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⇐ static
⇐ dynamic



Speech parameter generation algorithm

ô = arg max
o

p(o | q̂, λ̂)
∣∣∣
o=Wc

= arg max
o
N (o ; µq̂,Σq̂)|o=Wc

⇓
ĉ = arg max

c
N (Wc ; µq̂,Σq̂)

W>Σ−1
q Wĉ = W>Σ−1

q µq

⇓
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Inconsistency between training & synthesis
 Training & synthesis parts are inconsistent 
	 - Training part
	 	 * Baum-Welch training
	 	 * Labels are often given manually
	 	 * Model training model w/o dynamic feature constraints
	 - Synthesis part
	 	 * Viterbi (single-path) approximation
	 	 * Labels are often given automatically (by text analysis)
	 	 * Parameter generation w/ dynamic feature constraints

 How about introducing dyn feature constraints to training?



Output prob of o given l & HMM λ

p (o | l, λ) =
∑

∀q

p (o | q, λ)P ( |q l, λ)

=

N
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=

state-output state-transition

N (o ; µq,Σq)

p (o | q, λ) =
T∏

t=1

N (ot ; µqt ,Σqt ) ⇐ single Gaussian

diagonal



Inconsistency in HMM w/ dynamic features

⇒ incorrect!

Why?

p(o | q, λ) = N (Wc ; µq,Σq)

6= 1
∫

c

N (Wc ; µq,Σq)dc

Under o = Wc

⇒ integral over c must be 1
     to be a valid PDF

Why does this happen?
Static features ⇒ random variables
Dynamic features ⇒ Not random variables!!



Normalization

⇒ invalid PDF!N (Wc ; µq,Σq)

Normalized to achieve valid PDF

Zq =
∫

c

N (Wc ; µq,Σq) dc

=

√
(2π)MT |Pq|√
(2π)2MT |Σq|

exp
{
−1

2
(
µ>q Σ−1

q µq − r>q Pqrq
)}

⇒ valid PDF!!1
Zq
N (Wc ; µq,Σq)



Definition of trajectory HMM
Use normalized Gaussian ⇒ trajectory HMM is defined

p(c | q, λ) =
1
Zq
N (Wc ; µq,Σq)

p (c | l, λ) =
∑

∀q

p (c | q, λ)P ( |q l, λ)
state-output state-transition

= N (c ; c̄q,Pq)

Rq c̄q = rq

Rq = W>Σ−1
q W = P−1

q

rq = W>Σ−1
q µq

mean
vec

cov 
mat

⇐ normalized Gaussian

⇐ Gaussian over c
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Trajectory HMM & speech parameter generation
 Mean vector of trajectory HMM

 Trajectory by speech parameter generation algorithm

 ⇒ they are identical

W>Σ−1
q Wc̄q = W>Σ−1

q µq

W>Σ−1
q Wĉ = W>Σ−1

q µq



Trajectory HMM as globally normalized model
HMM ⇒ locally (frame-level) normalized model

Trajectory HMM ⇒ globally (utt-level) normalized model

p(o | q, λ) =
T∏

t=1

p (ot | qt, λ)

=
T∏

t=1

N (ot ; µqt ,Σqt )

p(c | q, λ) =
1
Zq
N (Wc ; µq,Σq)

=
1
Zq

T∏

t=1

N
([
c>t ,∆ c

>
t

]>
; µqt ,Σqt

)



Estimating trajectory HMM parameters
 ML estimation of trajectory HMM  

 Locally normalized model
	 Parameter estimation for each state can be done separately

 Globally normalized model
	 Parameter estimation of all states have to be done jointly

λ̂ = arg max
λ

p(c | l, λ)

µ =
[
µ>1 ,µ

>
2 , . . . ,µ

>
N

]>

φ =
[
Σ−1

1 ,Σ−1
2 , . . . ,Σ−1

N

]
: all mean vectors 

: all precision matrices



∑

∀q
p(q | c, λ′)S>q Σ−1

q WPqW
>Σ−1

q Sqµ

=
∑

∀q
p(q | c, λ′)S>q Σ−1

q Wc

∂Q(λ, λ′)
∂φ

=
∑

∀q

p(q | c, λ′)
{1

2
S>q diag−1

(
WPqW

>−Wcc>W>

+Wc̄qc̄
>
qW

>+ µqc>W> +Wcµ>q − µq c̄>qW> −Wc̄qµ
>
q

)}

mean vectors ⇒ closed form

covariance matrices ⇒ numerical optimization

Parameter update formulae



Drawback of trajectory HMM training
 Exact EM is intractable
	 - Computing posterior prob of q is intractable
	 - Single-path (Viterbi) or Monte Carlo approximation

 Exact tree-based clustering is also intractable
	 - Splitting one nodes affects the other nodes
	 - Trees built for HMMs are often used

 Computationally & memory intensive
	 - High dimensional matrix operations
	 - Numerical optimization



Effect of parameter reestimation
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MGE training & trajectory HMM (1)
 ML training & MGE training w/ Euclidean dist [Wu;'06]

λ̂ML = arg max
λ

p(c | q, λ)

= arg max
λ
N (c ; c̄q,Pq)

λ̂MGE = arg min
λ
E(c ; q, λ)

= arg min
λ
||c− c̄q||2

= arg max
λ
N (c ; c̄q, I)

⇐ MMSE estimation

⇐ Identity covariance matrix
Euclidean distance



MGE training & trajectory HMM (3)
 Performance of ML & MGE w/ Euc is similar, why?
	 ⇒ Due to speech parameter generation algorithm

ĉML = arg max
c
p
(
c | q̂, λ̂ML

)

= arg max
c
N (c ; c̄q̂,Pq̂)

= c̄q̂

ĉMGE = arg max
c
p
(
c | q̂, λ̂MGE

)

= arg max
c
N (c ; c̄q̂, I)

= c̄q̂



MGE training & trajectory HMM (4)
 Random sampling from ML & MGE w/ Euc distance
	 ML

	 	
	 	 ⇒ Temporal correlations will be kept

	 MGE

	
	 	 ⇒ Temporal correlations will be discarded

c̃ML ∼ N (c̄q̂,Pq̂)

c̃MGE ∼ N (c̄q̂, I)



MGE training & trajectory HMM (5)
 Which is better, ML or MGE?
	 - w/ parameter generation, MGE is more reasonable
	 	 * MGE ⇒ µ & Σ to represent mean trajectory
	 	 * ML ⇒ µ for mean trajectory, Σ for mean trj & temporal cov
	 	 ⇒ MGE can focus on modeling mean trajectory

	 - w/ random sampling, ML is more reasonable
	 	 * MGE ignores temporal correlations
	 	 * ML models temporal correlations



Summary
 Trajectory HMM
	 - Derived from HMM w/ dynamic feature constraints
	 - Can be viewed as a globally normalized model
	 - All states need to be estimated jointly
	 - Generated params = mean vector of trajectory HMM

 MGE training
	 - MGE w/ Euclid distance = MMSE estimation of trajectory HMM
	 - w/ speech parameter generation algorithm (ML parm gen)
	 	 ⇒ ML & MGE work similarly
	 - w/ random sampling
	 	 ⇒ MGE won't work well
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Combination of multiple acoustic models
 Combine multiple AMs to reduce over-smoothing
	 * Training; estimate multiple-level AMs individually

	 * Synthesis; generate c that jointly maximize output probs from AMs

	 * Feature function,        , extracts acoustic feats for i-th AM from c
	 	 - e.g., dynamic feats, DCT, average, summation, global variance
	 * Parameters of AMs, λ  , are trained independently
	 	 → Use weights to control balance among AMs 
	 * Weights, α  , are determined by held-out data (or tuned manually)

fi(c)

i

i

λ̂i = arg max
λi

p (fi(c) | λi) i = 1, . . . ,M

ĉ = arg max
c

M∑

i=1

αi log p(fi(c) | λ̂i)



Mixture model vs Product model 
 Mixture of experts

	 * Data is generated from union of experts
	 * Robust for modeling data with many variations
	 * GMM → Mixture of Gaussians

 Product of experts [Hinton;'02]

	 * Data is generated from intersection of experts
	 * Efficient for modeling data with many constraints
	 * PoG → Product of Gaussians

p (c | λ1, . . . , λM ) =
1
Z

M∑

i=1

αip (fi(c) | λi)

p (c | λ1, . . . , λM ) =
1
Z

M∏

i=1

{p (fi(c) | λi)}αi



Combination of multiple AMs as PoE
 Comibination of multiple AMs can be viewed as PoE

	 * Generating c from combination of multiple AMs
	  	 → Equivalent to generating c from PoE consisting of AMs
	 * Regarding combination of multiple AMs as PoE
	 	 → Jointly estimate multiple AMs
	 	 - AMs become complementary
	 	 - held-out data to estimate weights is no longer required 

ĉ = arg max
c
p (c | λ1, . . . , λM ) = arg max

c

1
Z

M∏

i=1

{p (fi(c) | λi)}αi

= arg max
c

M∏

i=1

{p (fi(c) | λi)}αi = arg max
c

M∑

i=1

αi log p (fi(c) | λi)

{λ̂1, . . . , λ̂M} = arg max
λ1 ,...,λM

1
Z

M∏

i=1

{p (fi(c) | λi)}αi



Product of Gaussians
 Product of Gaussians (PoG)

	 * Special case of PoE; All experts are Gaussian
	 * If all feature functions are linear
	 	 - PoG also becomes Gaussian
	 	 - Normalization constant

	 	 	 can be computed in closed form

p (c | λ1, . . . , λM ) =
1
Z

M∏

i=1

N (fi(c) ; µi,Σi)

Z =
∫ M∏

i=1

N (fi(c) ; µi,Σi) dc



Trajectory HMM as product of Gaussians
 Trajectory HMM can be viewed as PoG [Williams;'05, Zen;'07]

	 * Experts are Gaussians, feature functions are dynamic features
	 * Gaussian experts are multiplied over time
	 * Training/adaptation/search algorithms have been derived

p (c | λ) =
∑

∀q

p (c | q, λ)

p (c | q, λ) = N (c ; c̄q,Pq) =
1
Zq
N (Wc ; µq,Σq)

=
1
Zq

T∏

t=1

2∏

d=0

N
(
f

(d)
t (c) ; µ(d)

qt ,Σ
(d)
qt

)

Zq =
∫ T∏

t=1

2∏

d=0

N
(
f

(d)
t (c) ; µ(d)

qt ,Σ
(d)
qt

)
dc

f
(d)
t (c) : d-th dyn feat 

    at frame t

p ( |q λ)

c
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Trajectory HMM as product of Gaussians
 Trajectory HMM can be viewed as PoG [Williams;'05, Zen;'07]

	 * Experts are Gaussians, feature functions are dynamic features
	 * Gaussian experts are multiplied over time

p (c | λ) =
∑

∀q

p (c | q, λ)

p (c | q, λ) = N (c ; c̄q,Pq) =
1
Zq
N (Wc ; µq,Σq)

=
1
Zq

T∏

t=1

2∏

d=0

N
(
f

(d)
t (c) ; µ(d)

qt ,Σ
(d)
qt

)

Zq =
∫ T∏

t=1

2∏

d=0

N
(
f

(d)
t (c) ; µ(d)

qt ,Σ
(d)
qt

)
dc

f
(d)
t (c) : d-th dyn feat 

    at frame t

p ( |q λ)



Linear feature function with Gaussian experts
 Combining multiple AMs as PoE 
	 * Multiple-level AMs often use linear feature functions w/ Gaussians
	 	 - DCT [Latorre;'08, Qian;'09], average [Wang;'08], sum [Ling;'06, Gao;'08] 
	 * PoEs become the same form as trajectory HMM
 	 	 → Training algorithm for trajectory HMM are applicable

 Example: state & phoneme duration models [Ling;'06]

p (d | λ) =
1
Z
N (Wd ; µ,Σ)

=
1
Z

P∏

i=1

Ni∏

j=1

N (dij ; ξij , σij)

·
P∏

k=1

N (pk ; νk, ωk)
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dij : duration of state j in phoneme i

W d
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General PoE (non-linear feat or non-Gaussian)
 General form of PoE
	

	 * Feature functions can be non-linear, experts can be non-Gaussian
	 * Normalization term has no closed form
	 * Training is complex, usually normalization term is approximated

 Example: global variance (GV) [Toda;'07]

fv(c) =
1
T

T∑

t=1

diag
[
(ct − c̄) (ct − c̄)>

]
: intra-utt variance, quadratic

p (c | λ1, . . . , λM ) =
1
Z

M∏

i=1

{p (fi(c) | λi)}αi

p (c | q, λ, λGV) =
1
Zq
N (c ; c̄q,Pq)αN (fv(c) ; µv,Σv)



Contrastive divergence learining
 Contrastive divergence learning [Hinton;'02]

	 * Training algorithm for general PoE
	 * Combination of sampling & gradient methods
	 	 1. Draw J samples from PoE

	 	 2. Compute approximated derivative of log likelihood w.r.t. λ

	 	 3. Update model params using gradient method

	 	 4. Iterate 1-3 until converge

c(j) ∼ p (c | λ) j = 1, . . . , J

∂ log p (c | λ)
∂λ

≈
〈
∂ log p (c | λ)

∂λ

〉

p0

−
〈
∂ log p (c | λ)

∂λ

〉

pJ

λ = {λ1, . . . , λM}

λ′ = λ− η ·

(〈
∂ log p (c | λ)

∂λ

〉

p0

−
〈
∂ log p (c | λ)

∂λ

〉

pj

)

expectation over data expectation over samples

λ ′= λ

: PoE model params

η : learning rate



Experiment - Multiple-Level Dur Models as PoE
 Experimental conditions
	 * Training data; 2,469 utterances
	 * Development data; 137 utterances
	 	 - Used to optimize weights in conventional method
	 	 - Weights were optimized to minimize RMSE by grid search
	 	 - Baseline & proposed method did not use development data
	 * Almost the same training setup as Nitech-HTS 2005 [Zen;'06]

	 * Test data; 137 utterances
	 * State, phone, & syllable-level models were clustered individually
	 	 - # of leaf nodes
	 	 	 * state; 607,  phoneme; 1,364,  syllable; 281



Experimental Results
 Duration prediction results (RMSE in frame (rel imp))

Model

Baseline (st)

uPoE (st*ph)

uPoE (st*ph*syl)

PoE (st*ph)

PoE (st*ph*syl)

Phoneme

5.08 (ref)

4.62 (9.1%)

4.62 (9.1%)

4.60 (9.4%)

4.57 (10.0%)

Syllable

8.98 (ref)

8.13 (9.5%)

8.11 (9.7%)

8.04 (10.5%)

8.02 (10.7%)

Pause

35.0 (ref)

31.8 (9.1%)

31.8 (9.1%)

31.9 (8.9%)

31.9 (8.9%)

st; state only,  st*ph; state & phoneme,  st*ph*syl; state, phoneme, & syllable
uPoE; individually trained multiple-level duration models with optimized weights
PoE; jointly estimated multiple-level duration models



Experiment - Global Variance as PoE
 Experimental conditions
	 * Training data; 2,469 utterances
	 	 - Training data was split into mini-batch (250 utterances)
	 	 - 10 MCMC sampling at each contrastive divergence learning
	 	 	 * Hybrid Monte Carlo with 20 leap-frog steps
	 	 	 * Leap-frog size was adjusted adaptively

	 	 - Learning rate was annealed at every 2,000 iterations
	 	 - Momentum method was used to accelerate learning
	 	 - Context-dependent logarithmic GV w/o silence was used
	 * Test sentences; 70 sentences
	 	 - Paired comparison test, # of subjects 7 (native English speaker)
	 	 - 30 sentences per subject



Experimental Results
 Paired comparison test result

Baseline

17.1

PoE

32.4

No preference

50.5

Baseline; conventional (not jointly estimated) GV

PoE; proposed (jointly estimated) GV

Difference was statistically significant at p<0.05 level



Summary
 Statistical parametric synthesis based on PoE
	 - Combination of multiple-level AMs is formulated as PoE
	 - Jointly estimate multiple-level AMs as PoE
	 	 * Linear feature function with Gaussian experts
	 	 	 → Can be estimated in the same way as trajectory HMM
	 	 * Non-linear feature function and/or non-Gaussian experts
	 	 	 → Contrastive divergence learning

	 - Experiments
	 	 * Jointly estimating multiple AMs as PoE improved performance
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