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HMM-based speech synthesis system
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Speech parameter generation algorithm

Determine a speech parameter vector sequence that
maximizes its output probability given label | & HMM )\
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Output prob of o given [ & HMM )\

p(o]l\) ZPOIq, P(q |l )

state-output  state-transition

plo|q,\) = HJ\/'(ot . g, , 2g, ) < Single Gaussian
t=1

(oi]  [ka]| [Zq
= N 0.2 ; H.q o, =
\ 0T _ Hqr | L O
= N (0; pg,Se) diagonal
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Generated trajectory

A

o0 =argmaxp(o| g, )
O

argmax N (0 ; pg, Xg)

= g < mean vector sequence
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Relationship between o and ¢

Ot+1
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Speech parameter generation algorithm

A

0 = argmax p(o | g, \)
o o=Wc
Y
¢ =argmax N(We; pg, 34)
Y

W'S_ '"We=W'Z_'pu,

TOSHIBA
Leading Innovation >>>



Generated trajectory

[ ] [ ] [ ] —>: ;—»( )—>: ;—»O—»: ;—»( )—>: ;—N )—»: ;—N )—»: ;—P( )—»: ;—> [ ] [ ] ([ ]

A} N 4 A AN »

N // N a AR JAEEEN N

\ S ’ - \ / N

\ / N | 7 \ N N

\\ , \\ / | V2 \ / N \ \

N
S
N

[N
L fl N '\\ /'/' 'yI)// Ny \\L "N
O
-—
(U ) ) ) )
e
(7))
O
(qv) e o o °
-
o)
Mean Variance c
TOSHIBA

Leading Innovation >>>



Inconsistency between training & synthesis

Training & synthesis parts are inconsistent
- Training part
* Baum-Welch training
* Labels are often given manually
* Model training model w/o dynamic feature constraints
- Synthesis part
* Viterbi (single-path) approximation
* Labels are often given automatically (by text analysis)
* Parameter generation w/ dynamic feature constraints

How about introducing dyn feature constraints to training?
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Output prob of o given [ & HMM )\

p(o]l\) ZPOIq, P(q |l )

state-output  state-transition

plo|q,\) = HJ\/'(ot . g, , 2g, ) < Single Gaussian
t=1
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Inconsistency in HMM w/ dynamic features
Under o=Wec

po| g, A\) =NWce; pg,X,) = incorrect!
Why?

/N(Wc ; Wq, 2q)dc £ 1 = integral over c must be 1
c to be a valid PDF

Why does this happen?

Static features = random variables
Dynamic features = Not random variables!!

TOSHIBA
>)

Leading Innovation >>>



Normalization

Normalized to achieve valid PDF

Zq :/N(Wc; Lq, Xq) dc

(2m) ML | Py 1 _
= \/ d exp§ —— (u;quuq—rJquq)

V (2m)2MT 3, 2
NWe; pg,X4) = invalid PDF!

ZLN(WC . g, 2q) = valid PDF!!
q
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Definition of trajectory HMM

Use normalized Gaussian = trajectory HMM is defined

p(cl|l,A) ZPC\q, P(q|l )

state-output  state-transition

1
p(c| g, \) = Z—J\/(Wc © g, Xq) < normalized Gaussian
q
=N (c; ¢4, P;) < Gaussian over c

mean cov
vec mat

R,c, = rq
_ Ts1—1 _ p—1
R, =W'3S_'W = P,
rq=W'Z_ 'pq
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Trajectory HMM & speech parameter generation
Mean vector of trajectory HMM

T —1yx7 = Ty —1
W Y "Weg=W X "uq
Trajectory by speech parameter generation algorithm
Ty —1ya7 A Ty —1
W X, " We=W 3 "pu,

= they are identical
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Trajectory HMM as globally normalized model

HMM =- locally (frame level) normalized model

O‘qa Hp Ot‘Qta

— HN(Ot ; “’qwz%)
t=1

Trajectory HMM = globally (utt-level) normalized model

1
ple|aN) = N (Wes pg, Sq)

Zq
T
T
H (ct7ACt ) l’l’Qt7ZQt)
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Estimating trajectory HMM parameters
ML estimation of trajectory HMM

A= argm}e\xxp(c 1))

Locally normalized model
Parameter estimation for each state can be done separately

Globally normalized model
Parameter estimation of all states have to be done jointly

: T
pw=p g, .., 0y
¢=[27",25", ..., 25| : all precision matrices

- all mean vectors
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Parameter update formulae

> plg|e,N)S S, WP,WTS 'Sy
Vq
= Zp(q e, N)S, 2 ' We
Vq
mean vectors = closed form

0 )\ )
Q Zp q | c, )\’ S’J(Jliag_l(WPqWT—chTWT

+Waqé;WT+ pec' W'+ Wep] — pgeg W' —Wegn, )}
covariance matrices = numerical optimization
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Drawback of trajectory HMM training

Exact EM is intractable
- Computing posterior prob of q is intractable
- Single-path (Viterbi) or Monte Carlo approximation

Exact tree-based clustering is also intractable
- Splitting one nodes affects the other nodes
- Trees built for HMMs are often used

Computationally & memory intensive
- High dimensional matrix operations
- Numerical optimization
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Effect of parameter reestimation

sil | J IilblulN Inlol | Iiltslulrylolklul wl a | pau

— Training data

— Mean sequence of the HMM
— Mean sequence of the trajectory HMM (w/o update)

— Mean sequence of the trajectory HMM (with update)
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MGE training & trajectory HMM (1)

ML training & MGE training w/ Euclidean dist (wu;06]

Amr, = argmax p(c | g, A)

= argm)e\nx/\/'(c; Cq, Py)

AMGE = arg m}%n E(c; q,N)
= arg mAin llc — €4]]2 <= MMSE estimation

Euclidean distance

arg m}z\xx./\/' (c; ¢q,I) < Identity covariance matrix
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MGE training & trajectory HMM (3)

Performance of ML & MGE w/ Euc is similar, why?
= Due to speech parameter generation algorithm

CMI, = arg max p (c | q, )\ML)

= argmax N (c; ¢4, Py)
C

— G,

CMGE = arg mf}Xp (C \ q, )\MGE)

= argmax N (c; ¢4, 1)
C

=
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MGE training & trajectory HVMIM (4)

Random sampling from ML & MGE w/ Euc distance
ML

cur ~ N (¢g, Py)
= Temporal correlations will be kept

MGE
CMGE ~ N ((_Zq, I)

= Temporal correlations will be discarded
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MGE training & trajectory HMIM (5)

Which is better, ML or MGE?
- w/ parameter generation, MGE is more reasonable
*MGE = p & X to represent mean trajectory
* ML = p for mean trajectory, X for mean trj & temporal cov
= MGE can focus on modeling mean trajectory

- w/ random sampling, ML is more reasonable
* MGE ignores temporal correlations
* ML models temporal correlations
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Summary

Trajectory HMM
- Derived from HMM w/ dynamic feature constraints
- Can be viewed as a globally normalized model
- All states need to be estimated jointly
- Generated params = mean vector of trajectory HMM

MGE training
- MGE w/ Euclid distance = MMSE estimation of trajectory HMM
- w/ speech parameter generation algorithm (ML parm gen)
= ML & MGE work similarly
- w/ random sampling
= MGE won't work well
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Combination of multiple acoustic models

Combine multiple AMs to reduce over-smoothing
* Training; estimate multiple-level AMs individually

A

A = argmaxp (file) | Ai) i=1,....M

* Synthesis; generate c that jointly maximize output probs from AMs

A

M
C = arg mgxz a;logp(fi(e) | Ai)
i=1

* Feature function, f;(c), extracts acoustic feats for :-th AM from ¢

- e.g., dynamic feats, DCT, average, summation, global variance
* Parameters of AMs, )\, , are trained independently

— Use weights to control balance among AMs
* Weights, «, , are determined by held-out data (or tuned manually)



Mixture model vs Product model

Mixture of experts

p(CAla---a)\M)%iaip(fi(c))\i) M:/V\

* Data is generated from union of experts

* Robust for modeling data with many variations
* GMM — Mixture of Gaussians

Product of experts [Hinton;'02] /J\Q
1 4 o
p(cw---»AM):Zi[[l{mfi(c)Mi)} /\/\: ¢

* Data is generated from intersection of experts

* Efficient for modeling data with many constraints

* PoG — Product of Gaussians
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Combination of multiple AMs as PoE

Comibination of multiple AMs can be viewed as PoE

M

) 1 o

C = argm(z}xp(c | AL, Ar) = atg max — H{p (file) [ )}
i=1

M M
= argmax | [ {p (fi(c) | A\)}™ = argmax ) _a;logp(fi(e) | Xi)
1=1 1=1
* Generating ¢ from combination of multiple AMs

— Equivalent to generating ¢ from PoE consisting of AMs
* Regarding combination of multiple AMs as PoE
— Jointly estimate multiple AMs

{M,..., )} =arg max — H{p (fi(c) | M)V

A, s 2
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Product of Gaussians

Product of Gaussians (PoG)
ple| M.\ HN fi(e) s pi, i)

* Special case of PoE; All experts are Gaussian
* If all feature functions are linear

- PoG also becomes Gaussian

- Normalization constant

/HNfz i, 2p) de

can be computed in closed form
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Trajectory HMM as product of Gaussians

Trajectory HMM can be viewed as PoG [williams;'05, Zen;'07]

pel )= Zp (c|a,\)p(a|X)

p(CIQ7>‘):N(C;éqapq):Z_N(WC;[,l,q,Zq)
q
N (g, 2q) We ] 1% ) c
TR N AN I T ... 0 I 0 O :
M) 282/\ — |Aciq e I I O O Ci_o
R AN |- 0 0o I o0 Ci_1
uql) E(U/\ — ACt - Tt 0 —1I 1 0 Ct
Ko, ) E<0 _/\ — Cti+1 Tt 0 0 0 1 Cti1
WD 30 A\ = |Ace 0 0 I I
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Trajectory HMM as product of Gaussians

Trajectory HMM can be viewed as PoG [williams;'05, Zen;'07]
Zp g, \) p(q|A)

plelgN)=N(c; ¢q, Py) = Z_N(WC5 g, 2q)
q

T

2
1 D(c); pld, B
Zq I_ION( (e) 2o ) t(d>(c) . d-th dyn feat

- at frame ¢

-

* Experts are Gaussians, feature functions are dynamic features

1d

2

[TV (£7) s 1l 20 de
d=0

Rembl,

t=1

* Gaussian experts are multiplied over time
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Linear feature function with Gaussian experts
Combining multiple AMs as PoE

* Multiple-level AMs often use linear feature functions w/ Gaussians
- DCT [Latorre;'08, Qian;'09], average [Wang;'08], sum [Ling;'06, Gao;'08]

* PoEs become the same form as trajectory HMM
— Training algorithm for trajectory HMM are applicable

Example: state & phoneme duration models [Ling; 06]

1 %% d
p(d|A) = EN(Wd; p, %) R 7
d12 0O 1 O 0 d11
1 dis| |0 0 1 dis
~ 7 H HN(dz‘j » &ij» Oig) p1 1 1 1 di3
1=19=1 do1 _ 1 0 0 d21
P doo 0 0 1 0 do2
LN s v 0 0 1] [
Do 1 1 1 .
k=1
d;; : duration of state j in phoneme 1




General PoE (non-linear feat or non-Gaussian)

General form of PoE
1 = N
ple|A,...; Am) = EH{p(fi(C) | A
=1

* Feature functions can be non-linear, experts can be non-Gaussian
* Normalization term has no closed form
* Training is complex, usually normalization term is approximated

Example: global variance (GV) [Toda;'07]
1 o
p(c | (L)\a)\GV) — Z_N<C§ éq;Pq) N(fv(c) ; Hvazv)
q
1 T
fu(c) = 7 ;diag [(Ct —C) (¢t — E)T} . intra-utt variance, quadratic
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Contrastive divergence learining

Contrastive divergence learning [Hinton;'02]
* Training algorithm for general PoE

* Combination of sampling & gradient methods
1. Draw J samples from PoE
D ~uple|N) j=1,....0  A={\,..., \u}: PoE model params
2. Compute approximated derivative of log likelihood w.r.t. A

dlogp(c | A) N <8logp(c|>\)> B <8logp(c|)\)>

O O O

expectation over data expectation over samples
3. Update model params using gradient method

N A <<alogp<c|x>> . <alogp<cu>> )
OA Po OA p; n . learning rate

A=)
4. lterate 1-3 until converge




Experiment - Multiple-Level Dur Models as PoE

Experimental conditions
* Training data; 2,469 utterances

* Development data; 137 utterances
- Used to optimize weights in conventional method
- Weights were optimized to minimize RMSE by grid search
- Baseline & proposed method did not use development data

* Almost the same training setup as Nitech-HTS 2005 [zen;'06]
* Test data; 137 utterances
* State, phone, & syllable-level models were clustered individually
- # of leaf nodes
* state; 607, phoneme; 1,364, syllable; 281

TOSHIBA

Leading Innovation >>>



Experimental Results

Duration prediction results (RMSE in frame (rel imp))

Model Phoneme Syllable Pause

Baseline (st) 5.08 (ref) 8.98 (ref) 35.0 (ref)

uPoE (st*ph) 4.62 (9.1%) 8.13 (9.5%) 31.8 (9.1%)

UPOE (st*ph*syl) | 4.62 (9.1%) 8.11 (9.7%) 31.8 (9.1%)

PoE (st*ph) 4.60 (9.4%) 8.04 (10.5%) 31.9 (8.9%)

POE (st*ph*syl) | 4.57 (10.0%) | 8.02 (10.7%) 31.9 (8.9%)

st; state only, st*ph; state & phoneme, st*ph*syl; state, phoneme, & syllable
uPoE; individually trained multiple-level duration models with optimized weights
PoE; jointly estimated multiple-level duration models



Experiment - Global Variance as PoE

Experimental conditions
* Training data; 2,469 utterances

- Training data was split into mini-batch (250 utterances)

- 10 MCMC sampling at each contrastive divergence learning
* Hybrid Monte Carlo with 20 leap-frog steps
* Leap-frog size was adjusted adaptively

- Learning rate was annealed at every 2,000 iterations
- Momentum method was used to accelerate learning
- Context-dependent logarithmic GV w/o silence was used
* Test sentences; 70 sentences
- Paired comparison test, # of subjects 7 (native English speaker)

- 30 sentences per subject
TOSHIBA
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Experimental Results

Paired comparison test result

Baseline PoE No preference

17.1 32.4 50.5

Baseline; conventional (not jointly estimated) GV

PoE; proposed (jointly estimated) GV

Difference was statistically significant at p<0.05 level
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Summary

Statistical parametric synthesis based on PoE
- Combination of multiple-level AMs is formulated as PoE
- Jointly estimate multiple-level AMs as PoE
* Linear feature function with Gaussian experts

— Can be estimated in the same way as trajectory HMM
* Non-linear feature function and/or non-Gaussian experts
— Contrastive divergence learning

- Experiments
* Jointly estimating multiple AMs as PoE improved performance
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