Abstract for arandjelovic_PR06

Pattern Recognition, 2006. (under review)


O. Arandjelović and R. Cipolla


The objective of this work is to recognize faces using video sequences both for training and novel input, in a realistic, unconstrained setup in which lighting, pose and user motion pattern have a wide variability and face images are of low resolution. There are three major areas of novelty: (i) illumination generalization is achieved by combining coarse histogram correction with fine illumination manifold-based normalization; (ii) pose robustness is achieved by decomposing each appearance manifold into semantic Gaussian pose clusters, comparing the corresponding clusters and fusing the results using an RBF network; (iii) we describe a fully automatic recognition system based on the proposed method and an extensive empirical evaluation on 600 head motion video sequences with extreme illumination, pose and motion pattern variation. On this challenging data set our system consistently demonstrated a very high recognition rate (95% on average), significantly outperforming state-of-the-art methods from they literature.

(ftp:) arandjelovic_PR06.pdf (http:) arandjelovic_PR06.pdf

If you have difficulty viewing files that end '.gz', which are gzip compressed, then you may be able to find tools to uncompress them at the gzip web site.

If you have difficulty viewing files that are in PostScript, (ending '.ps' or '.ps.gz'), then you may be able to find tools to view them at the gsview web site.

We have attempted to provide automatically generated PDF copies of documents for which only PostScript versions have previously been available. These are clearly marked in the database - due to the nature of the automatic conversion process, they are likely to be badly aliased when viewed at default resolution on screen by acroread.