

Department of Engineering  
University of Cambridge > Engineering Department > Machine Intelligence Lab 
GENERALISED EPIPOLAR CONSTRAINTS
Kalle Astrom, Roberto Cipolla and Peter J. Giblin
1996
The frontier of a curved surface is the envelope of contour generators showing the boundary , at least locally , of the visible region swept out under viewer motion. In general, the outlines of curved surfaces (apparent contours) from different viewpoints are generated by different contour generators on the surface and hence do not provide a constraint on viewer motion. Frontier points, however, have projections which correspond to a real point on the surface and can be used to constrain viewer motion by the epipolar constraint.
We show how to recover viewer motion from frontier points and generalise the ordinary epipolar constraint to deal with poin ts, curves and apparent contours of surfaces. This is done for both continuous and discrete motion, known or unknown orientation, calibrated and uncalibrated, perspective, weak perspective and orthographic cameras. Results of an iterative scheme to recover the epipolar line structure from real image sequences using only the outlines of curved surfaces, is presented. A statistical evaluation is performed to estimate the stability of the solution. It is also shown how the full motion of the camera from a sequence of images can be obtained from the relative motion between image pairs.
If you have difficulty viewing files that end '.gz'
,
which are gzip compressed, then you may be able to find
tools to uncompress them at the gzip
web site.
If you have difficulty viewing files that are in PostScript, (ending
'.ps'
or '.ps.gz'
), then you may be able to
find tools to view them at
the gsview
web site.
We have attempted to provide automatically generated PDF copies of documents for which only PostScript versions have previously been available. These are clearly marked in the database  due to the nature of the automatic conversion process, they are likely to be badly aliased when viewed at default resolution on screen by acroread.
 Search  CUED  Cambridge University  
©
2005 Cambridge University Engineering Dept Information provided by milabmaintainer 