Search Contact information
University of Cambridge Home Department of Engineering
University of Cambridge > Engineering Department > Machine Intelligence Lab

Abstract for gee_tr686

Cambridge University Engineering Department Technical Report CUED/F-INFENG/TR686

SYSTEMATIC MISREGISTRATION AND THE STATISTICAL ANALYSIS OF SURFACE DATA

A.H. Gee and G.M. Treece

27 June 2013

Spatial normalization is a key element of statistical parametric mapping and related techniques for analysing cohort statistics on voxel arrays and surfaces. The normalization process involves aligning each individual specimen to a template using some sort of registration algorithm. Any misregistration will result in data being mapped onto the template at the wrong location. At best, this will introduce spatial imprecision into the subsequent statistical analysis. At worst, when the misregistration varies systematically with a covariate of interest, it may lead to false statistical inference. Since misregistration generally depends on the specimen's shape, we investigate here the effect of allowing for shape as a confound in the statistical analysis, with shape represented by the dominant modes of variation observed in the cohort. In a series of experiments on synthetic surface data, we demonstrate how allowing for shape can reveal true effects that were previously masked by systematic misregistration, and also guard against misinterpreting systematic misregistration as a true effect. We introduce some heuristics for disentangling misregistration effects from true effects, and demonstrate the approach's practical utility in a case study of the cortical bone distribution in 268 human femurs.

[12.0 MBytes PDF, 13 pages]


(ftp:) gee_tr686.pdf (http:) gee_tr686.pdf

If you have difficulty viewing files that end '.gz', which are gzip compressed, then you may be able to find tools to uncompress them at the gzip web site.

If you have difficulty viewing files that are in PostScript, (ending '.ps' or '.ps.gz'), then you may be able to find tools to view them at the gsview web site.

We have attempted to provide automatically generated PDF copies of documents for which only PostScript versions have previously been available. These are clearly marked in the database - due to the nature of the automatic conversion process, they are likely to be badly aliased when viewed at default resolution on screen by acroread.

© 2005 Cambridge University Engineering Dept
Information provided by milab-maintainer