Search Contact information
University of Cambridge Home Department of Engineering
University of Cambridge > Engineering Department > Machine Intelligence Lab

Abstract for stenger_hci04

Intl. Workshop on Human-Computer Interaction, Prague, Czech Republic, May 2004


B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla

May 2004

This paper presents an analysis of the design of classifiers for use in a hierarchical object recognition approach. In this approach, a cascade of classifiers is arranged in a tree in order to recognize multiple object classes. We are interested in the problem of recognizing multiple patterns as it is closely related to the problem of locating an articulated object. Each different pattern class corresponds to the hand in a different pose, or set of poses. For this problem obtaining labelled training data of the hand in a given pose can be problematic. Given a parametric 3D model, generating training data in the form of example images is cheap, and we demonstate that it can be used to design classifiers almost as good as those trained using non-synthetic data. We compare a variety of different template-based classifiers and discuss their merits.

(ftp:) stenger_hci04.pdf (http:) stenger_hci04.pdf

If you have difficulty viewing files that end '.gz', which are gzip compressed, then you may be able to find tools to uncompress them at the gzip web site.

If you have difficulty viewing files that are in PostScript, (ending '.ps' or '.ps.gz'), then you may be able to find tools to view them at the gsview web site.

We have attempted to provide automatically generated PDF copies of documents for which only PostScript versions have previously been available. These are clearly marked in the database - due to the nature of the automatic conversion process, they are likely to be badly aliased when viewed at default resolution on screen by acroread.

© 2005 Cambridge University Engineering Dept
Information provided by milab-maintainer