Search Contact information
University of Cambridge Home Department of Engineering
University of Cambridge > Engineering Department > Machine Intelligence Lab

Abstract for vogiatzis_bmvc2004

Proc. 15th British Machine Vision Conference, pp 117-126 2004


G. Vogiatzis, P.H.S. Torr, S. Seitz and R. Cipolla.


This paper generalizes Markov Random Field (MRF) stereo methods to the generation of surface relief (height) fields rather than disparity or depth maps. This generalization enables the reconstruction of complete object models using the same algorithms that have been previously used to compute depth maps in binocular stereo. In contrast to traditional dense stereo where the parametrization is image based, here we advocate a parametrization by a height field over any base surface. In practice, the base surface is a coarse approximation to the true geometry, e.g., a bounding box, visual hull or triangulation of sparse correspondences, and is assigned or computed using other means. A dense set of sample points is defined on the base surface, each with a fixed normal direction and unknown height value. The estimation of heights for the sample points is achieved by a belief propagation technique. Our method provides a viewpoint independent smoothness constraint, a more compact parametrization and explicit handling of occlusions. We present experimental results on real scenes as well as a quantitative evaluation on an artificial scene.

(ftp:) vogiatzis_bmvc2004.pdf (http:) vogiatzis_bmvc2004.pdf

If you have difficulty viewing files that end '.gz', which are gzip compressed, then you may be able to find tools to uncompress them at the gzip web site.

If you have difficulty viewing files that are in PostScript, (ending '.ps' or '.ps.gz'), then you may be able to find tools to view them at the gsview web site.

We have attempted to provide automatically generated PDF copies of documents for which only PostScript versions have previously been available. These are clearly marked in the database - due to the nature of the automatic conversion process, they are likely to be badly aliased when viewed at default resolution on screen by acroread.

© 2005 Cambridge University Engineering Dept
Information provided by milab-maintainer