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Abstract

This paper describes the speaker diarisation system developed
at Cambridge University in March 2005. This system combines
techniques used successfully in our previous speaker diarisation
systems with an additional second clustering stage based on
state-of-the-art speaker identification methods. Several strate-
gies for using the new system are investigated and the final sys-
tem gives a diarisation error rate of 6.9% on the RT-04 Fall diari-
sation evaluation data when processing all the test data together
or 8.6% when processing the test data shows independently.

1. Introduction

Audio diarisation is the task of automatically segmenting an
input audio stream into acoustically homogeneous segments
and attributing them to sources. In general, these sources
can include particular speakers, music, background noise
sources and other source/channel characteristics. In the NIST
Rich Transcription evaluations[1] within the DARPA EARS
program, the task is limited to speaker diarisation; namely
providing a list of ‘who spoke when’ throughout some audio
data.

Speaker diarisation has many applications such as enabling
speakers to be tracked through debates, allowing speaker-based
indexing of databases, aiding speaker adaptation in speech
recognition and improving readability of automatic transcripts.

In this paper we describe the speaker diarisation system
developed at Cambridge University in March 2005. This draws
on techniques used in our previous diarisation system[2] but
includes several modifications to the core components and
incorporates a new additional clustering stage. The final system
gives a diarisation error rate (DER) of 6.9% on the RT-04
Fall diarisation evaluation data when processing all the test
data together, or 8.6% when processing each test data show
independently. This compares well with other state-of-the-art
diarisation systems [3].1

The paper is structured as follows. Section2 describes our
baseline diarisation system. The techniques used to improve
the system are described in section3. Section4 describes the
experimental set up and results. Finally conclusions are offered
in section5.

This work was supported by DARPA grant MDA972-02-1-0013.
The paper does not necessarily reflect the position or the policy of the
US Government and no official endorsement should be inferred.

1Note that the RT evaluation rules specify that the test shows must
be processed in chronological order.

2. Baseline Diarisation System
The baseline system consists of the three main components
typically found in most canonical speaker diarisation systems,
namely speech detection, speaker change point detection and
speaker clustering [4]. The system is illustrated in Figure1.
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Figure 1:The diarisation system architecture. The baseline sys-
tem uses the Speech Detection (SD), Change Point Detection
(CPD) and Iterative Agglomerative Clustering (IAC) stages,
whilst the March 2005 system also includes a Gender Deter-
mination (GD) and SID-like additional clustering stage (SID).

In the speech detection (SD) stage, the speech signal is par-
titioned into regions of wideband speech (S), speech with music
(MS), narrowband speech (T) and music only (M) using a GMM
classifier incorporating an MLLR adaptation stage. The MS re-
gions are relabelled as S whilst the M portions are discarded.
Wideband and narrowband data are subsequently treated inde-
pendently. A phone recogniser which has 45 context indepen-
dent phone models per gender plus a silence model with null
language model is then run for each bandwidth. Silence por-
tions larger than 1 second are discarded and portions of speech
between these silences form the new segments.



The change point detector (CPD) finds potential changes in
audio characteristics within each segment using the symmetric
divergence (KL2) distance metric between two adjacent sliding
windows of 1 second length. A single diagonal covariance
Gaussian is used for each window and the distance threshold is
chosen to over-segment the data.

The next stage uses an iterative agglomerative clustering
(IAC) scheme similar to [5]. A single Gaussian model is built
for each segment and the likelihood change for each potential
merge of segments is calculated. The merge with the smallest
likelihood loss is performed and the statistics are recalculated.
This is repeated until the potential likelihood loss on merging
reaches a certain threshold. These new models are then used to
resegment the data using a Viterbi decode. This whole process
is repeated until the segmentation converges or a maximum
number of iterations are reached.

The baseline system used up to 6 iterations with both
diagonal covariance and then full covariance models. The
introduction of the diagonal covariance stage was necessary
due to the large number of small segments coming from the
CPD stage, but the thresholds were chosen so most of the
clustering occurred in the full covariance stage. The likelihood
thresholds were phased in, using a smaller value for the first
iteration of each stage to reduce the number of merges carried
out in any one iteration. A minimum length of 0.6s was
enforced on the segments during the IAC stage.

The baseline system for this paper uses a ‘local’ BIC crite-
rion (as described in e.g. [6]) for both the stopping decision and
the ordering of merges, and updates the statistics assuming that
the data in the cluster has been concatenated. Different meth-
ods such as centroid or furthest neighbour clustering, and using
a constant threshold for ordering and/or stopping were tried but
did not perform consistently better.

3. The March 2005 Diarisation System
The LIMSI RT-04F diarisation evaluation system showed sig-
nificant performance improvements by incorporating an addi-
tional clustering stage which employed state-of-the-art speaker
identification (SID) techniques [7]. We therefore investigated
incorporating these ideas into our system, as illustrated in Fig-
ure 1. Changes were also made to the CPD algorithm which
in turn meant that the diagonal covariance IAC stage could be
removed. These changes are now discussed further.

3.1. Gender Determination

The final clustering stage is done gender-dependently. To pro-
vide the gender labels, each segment was run through the first
pass of the CUHTK RT-03s ASR system [8]. The empty seg-
ments were discarded and a forced alignment with gender-
dependent models was used to give the final gender labels as
was done in [2].

3.2. Speaker Identification (SID) Clustering

A further agglomerative clustering stage was added. Each
gender/bandwidth combination was processed separately. Max-
imum A Posteriori (MAP) adaptation (mean-only) was applied
towards each cluster from the appropriate gender/bandwidth
Universal Background Model (UBM). Feature warping as
described in [9] using a sliding window of 3 seconds was
applied to help reduce the effect of the acoustic environment.

The cross likelihood ratio (CLR) between any two given
clusters is defined:[7]

CLR(ci, cj) = log

�
L(xi|λj) L(xj |λi)

L(xi|λubm) L(xj |λubm)

�
whereL(xi|λj) is the average likelihood per frame of dataxi

given the modelλj . The pair of clusters with the highest CLR
is merged and a new model is created using all the data in the
new cluster. The process is repeated until the highest CLR is
below a predefined threshold,θCLR.

3.3. Iterative MAP Adaptation

In MAP adaptation of GMMs, the mean parameter is estimated
using the formula:[10].
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where cit is the a posteriori probability for the Gaussian
mixture componenti given the observationxt. τ is the fixed
relevance factor which controls the balance between the
observed data and prior (UBM) meanmi.

It has been shown that multiple iterations of MAP adapta-
tion of a UBM model when used in conjunction with feature
warping has a beneficial effect for speaker recognition [11].
This technique, known as iterative MAP (IT-MAP), keeps
the prior fixed, but updates the Gaussian posteriors after each
iteration using the model from the previous iteration.

We also investigated the effect of using the mean from the
previous MAP iteration instead of the prior mean in equation1
for the second and subsequent iterations, so the second iteration
equation becomes:
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where the superscript indicates the iteration. Although not
strictly within the MAP framework, we refer to this approach as
variable prior MAP (VP-MAP). For IT-MAP, if the value ofτ
is set small initially, the Gaussian posteriors will not vary from
iteration to iteration. VP-MAP yields a simple procedure for
gradually decreasing the effect of the prior with the increasing
number of iterations.

3.4. Building the UBMs

The baseline UBMs were diagonal covariance Gaussian Mix-
ture Models (GMM) and were built using the 1996/7 Hub4
training data. Additional sets of UBMs were built adding half
of the reference development data (dating from October 2000 to
January 2001), or using the test data itself (in an unsupervised
fashion). Both MAP-adapting the baseline GMM, and concate-
nating the additional data with the original data and rebuilding
the GMMs were tried.

3.5. Modifications in CPD

The change point detection (CPD) algorithm was altered to find
local maxima in the divergence distance metric between the
sliding windows. A left to right search of these peaks was then
made removing the smaller of any pairs of neighbouring peaks
which occurred within a specified minimum duration. This in
turn meant the need for the diagonal covariance iterations in the
IAC stage was reduced.



4. Experiments
4.1. Data and Scoring Metric

The experiments reported in this paper use a development set of
24 US broadcast news shows, denoteddev24 and a 12-show
subset of this, denoteddev12 which was the official RT-04
Fall diarisation development data. Each show is approximately
30 minutes long. The number of speakers in a show varies
between 3 and 39. Thedev12 data was recorded in February
2001 and Nov/Dec 2003, whilst the other 12 dev shows,
(dev12comp ), come from October 2000 to January 2001. The
eval set is the official RT-04 Fall diarisation evaluation data and
consists of 12 shows recorded in December 2003. See [2] for
further details.

The main metric of performance is the diarisation error
rate (DER). It is the sum of the missed (speech in reference
but not in hypothesis), false alarm (speech in hypothesis but
not in reference) and speaker error (mapped reference and
hypothesised speakers differ) rates of a system when compared
to a manually defined reference. The latter term is calculated
by matching the hypothesised speakers to reference speakers
using a one-to-one mapping which maximises the total overlap
between the reference and (corresponding) hypothesis speakers.
Further details can be found in [12].

In addition to this metric, we also use a measure of segment
(and cluster) impurity, which represents the DER that would
be obtained if applying ‘oracle’ clustering (using the reference
speaker information) whilst not splitting any hypothesis seg-
ment (cluster). This also includes the miss and false alarm rate
and represents the best possible achievable DER given the seg-
mentation (and clustering).

4.2. Effect of Feature Type and Feature Warping

The effect of the type of feature (PLP, MFCC), inclusion ofc0,
energy, or just the differentials thereof was investigated. The
results showed that PLP features with first differentials and no
energy gave the best performance, outperforming MFCCs by
around 0.8%. The feature warping itself was found to signifi-
cantly reduce the DER from 17.6% to 10.8%.

4.3. Type of MAP,τ , and Number of Iterations

The effect of using the two schemes for multiple iterations of
MAP, as discussed in section3.3, is shown in Figure2 for 2
iterations. The VP-MAP approach outperformed the IT-MAP
approach and 2 iterations was found to give better results than
1 or 5 iterations, with the optimalτ being 10 for this case.
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Figure 2:Effect of different MAP approaches andτ values used
in deriving the cluster models in the SID stage.

4.4. Processing Narrowband Data

Three methods of processing the automatically labelled
narrowband (NB) data in the SID clustering stage, namely (i)
passing NB clusters directly to the output, (ii) clustering the
NB data using the wideband (WB) coding and (iii) clustering
the NB data using the NB coding were tried. There was little
difference between the (i) and (iii) schemes, with the latter
being slightly better on thedev24 data, but scheme (ii) gave
a degredation of around 1.5% absolute in DER for allθCLR

values. This behaviour is different to what we have previously
seen for clustering experiments where using wideband coding
is beneficial even for segments labelled as NB, although using
a separateθCLR for the NB case may alleviate this somewhat.

4.5. Building the UBM

Several different methods of building the UBMs were inves-
tigated. The results are given in Table1. The experiments
reported in the proceeding sections used a 512 component
GMM trained on 6 hours of the training data (K-512). That was
replaced by a 1024 component GMM trained on 7.5 hours of
source-balanced training data (B-1024). This reduced the DER
from 10.7% to 10.4% on thedev24 data.

The dev12 data was kept as held-out dev data, and the
reference information for the remaining twelve dev shows was
used to make new UBMs, to add data from more recently
broadcast shows. TheB+D UBMs simply concatenated the
baseline UBM training data,B, with the reference dev data,
D, and then rebuilt the GMMs; whilst theB→D models were
formed by performing a single iteration of (mean-only) MAP
adaptation, withτ = 20 from theB models to theD data. This
reduced the DER on thedev12 data from 8.6% to 8.4% and
on the eval data from 9.9% to 9.5%.

The previous experiment was repeated adding the test data
itself, E, instead of the dev data. No reference information was
used, the automatically generated segment boundaries and gen-
der labels being taken for the model building. This does how-
ever violate the (somewhat artificial) constraint in the RT eval-
uations that shows must be treated chronologically.2 The DER
on thedev24 data was reduced from 10.4% to around 10% but
the eval data saw a much greater drop, from 9.9% to around
8%. This is probably because the eval data set is temporally ho-
mogeneous (all 12 shows were broadcast within 18 days), and
suggests that collecting contemporaneous data around the test
shows could be useful whilst requiring little additional cost.

UBM Dev24 Dev12 Eval (OptEval)
K-512 10.7 8.7 9.9 (9.2)
B-512 10.7 9.2 8.6 (8.6)
B-1024 10.4 8.6 9.9 (8.9)
B→D-1024 10.0† 8.5 10.4 (8.0)
B+D-1024 10.3† 8.4 9.5 (8.3)
B→E-1024 10.2 - 7.8 (7.8)
B+E-1024 9.9 - 8.3 (8.3)

Table 1: Results of different methods of building the UBM.B
represents the baseline UBM,Dexploits thedev12comp refer-
ence dev data andE uses the test data (unsupervised). Concate-
nation (+) and MAP adapted (→) results are given. (OptEval
uses the bestθCLR on the eval data.)† Biased due to the inclu-
sion ofdev12comp in theD model.

2Using just the target test show forE was not effective.



4.6. Modification of the CPD

The new CPD algorithm discussed in section3.5 which en-
forced a minimum length constraint on the resulting segments
was introduced. The results, illustrated in Figure3, show that
this method successfully reduces the segment impurity. Further
improvements can be obtained by increasing the size of the slid-
ing windows from 1 to 2 seconds, with a corresponding increase
in minimum segment length of 0.5 to 1 second; and using full
covariance models on these larger windows. This reduced the
speaker error component of the segment impurity after the CPD
stage of the full system on thedev24 data from 1.7% to 0.2%
whilst keeping the number of segments around 11,000.
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Figure 3:Effect on Segment Impurity (excluding miss and false
alarm constituents) with improved change point detection.

4.7. Balancing the Clustering Stages

The new minimum length constraint on the CPD meant that full
covariance models could be used throughout the IAC stage. The
number of iterations of IAC was reduced to 2, with the tunable
parameter,α, set to 0 and then 1.5. Further iterations of the
IAC stage were found not to make significant changes in per-
formance. The chosen settings heavily under-clustered the data
during the IAC stage (see Table2), but provided a reasonable
starting point for the more successful SID clustering stage.3 The
final results for the complete system are given in Table3.

IAC DataSetMS/FA/SPE/DER Cluster Imp Seg Imp
Base Dev24 1.2/1.1/17.9/20.176.59@718 4.36@2363
Base Eval 0.3/1.1/17.4/18.755.04@336 3.63@1072
Final Dev24 1.2/1.1/41.3/43.553.69@17443.12@2877
Final Eval 0.3/1.1/43.3/44.652.60@838 2.44@1323

Table 2: Results after the IAC stage. The final system uses a
heavily under-clustered IAC stage, giving a much higher DER
but lower segment/cluster impurity for the final SID stage.

UBM Dev24 Dev12 Eval (OptEval)
B-1024 9.2 7.5 9.3 (8.4)
B→D-1024 9.0† 7.7 9.3 (7.3)
B+D-1024 8.8† 7.4 8.6 (7.8)
B→E-1024 9.1 - 7.5 (7.5)
B+E-1024 9.0 - 6.9 (6.8)

Table 3: Results using the new CPD and IAC stages. UBM
definitions are the same as Table1.

3Previouslyα was set to 1 then 3.9.

5. Conclusions
This paper has described the development of Cambridge Uni-
versity March 2005 diarisation system. Motivated by other
work, a state-of-the-art SID-like clustering stage was introduced
and shown to dramatically cut diarisation error rate. Further
modifications and enhancements have been introduced with the
final system giving a diarisation error rate of 6.9% on the RT-04
Fall evaluation data when processing all the test data simultane-
ously, or 8.6% when treating the data sequentially.
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