
THE DEVELOPMENT OF THE CAMBRIDGE UNIVERSITY RT-04 DIARISATION SYSTEM

S. E. Tranter, M. J. F. Gales, R. Sinha, S. Umesh, P. C. Woodland

Cambridge University Engineering Department, Trumpington Street, Cambridge, CB2 1PZ, UK.
Email: {sej28,mjfg,rs460,su216,pcw }@eng.cam.ac.uk

ABSTRACT

This paper describes the development of the Cambridge University
RT-04 diarisation system, including details of the new segmenta-
tion and clustering components. The final system gives a diari-
sation error rate of 23.9% on the RT-04 evaluation data, a 34%
relative improvement over the RT-03s evaluation system. A fur-
ther reduction down to 18.1% is shown to be possible when using
the segmentation algorithm alone.

1. INTRODUCTION

Speaker diarisation is the task of automatically segmenting au-
dio data and providing speaker labels for the resulting regions of
audio. This has many applications such as enabling speakers to
be tracked through debates, allowing speaker-based indexing of
databases, aiding speaker adaptation in speech recognition and im-
proving readability of transcripts.

The Rich Transcription diarisation evaluations[1, 2, 3] provide
a framework to analyse the performance of such speaker diarisa-
tion systems on Broadcast News (BN) data. A Diarisation Error
Rate (DER) is defined which considers the sum of the missed, false
alarm and speaker-error rates after an optimal one-to-one mapping
of reference and hypothesis speakers has been performed. (This
mapping is necessary to associate the ‘relative’ speaker labels such
as ‘spkr1’ from the hypothesis to the ‘true’ speaker labels such as
‘Ted Koppel’ in the reference).

Cambridge University first built a complete diarisation sys-
tem in late 2002 and has participated in the diarisation evaluations
since then. This paper describes the development of the Cam-
bridge University diarisation system used in the Fall 2004 Rich
Transcription evaluation (RT-04)[3, 4].

The paper is structured as follows. Section2 describes the
diarisation system itself, sections3 and 4 describe the data and
scoring metrics used in the experiments, section5 describes the
development experiments, section6 details the performance on the
RT-04 evaluation data and plans for future work and conclusions
are given in sections7 and8.

2. SYSTEM ARCHITECTURE

The CU RT-04 diarisation system consists of three stages. The first
stage segments the data with an aim of producing acoustically ho-
mogeneous segments of speech which have bandwidth and speaker
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labels. Gender labelling is then performed using the first pass (P1)
of an ASR system to select the most likely gender for each segment
in turn. The last stage performs bandwidth and gender dependent
clustering to produce the final speaker labels. These stages are
described in more detail in sections2.1,2.2and2.3respectively.

2.1. Segmentation

The segmenter, illustrated in Figure1, is based on a system at
LIMSI [ 5, 6] but still incorporates some of the features of the Cam-
bridge University RT-03s segmenter [7].
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Fig. 1. The segmenter

The speech signal is coded into MFCC, wideband (WB) PLP
and narrowband (NB) PLP coefficients every 10ms using a 25ms
window. The data is then divided into regions of WB speech (S),
speech with music (MS), NB speech (T) and music only (M) using
a GMM classifier incorporating an MLLR adaptation stage, based
on 13 MFCC features with first and second differentials. The MS
regions are relabelled as S and the M portions are discarded. Wide-
band and narrowband data is subsequently treated independently.

A phone recogniser which has 45 context independent phone
models per gender plus a silence model with a null language model
is then run for each bandwidth. Silence portions longer than 1 sec-
ond are discarded and the speech portions between these silences
form the new segments. A change point detector then finds poten-
tial changes in audio characteristics within each segment. It uses
a distance metric,dSD, based on the symmetric Kullback Leibler
(symmetric divergence) distance [8]
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whereD is the dimension of the feature vector, tr(x) the trace of x,
µ the mean vector andΣ the covariance matrix. PLP coefficients
with c0 and first differentials are used. The size of search window
and the distance threshold are chosen to heavily over-segment the
data ready for the subsequent phases.

These segments are then clustered into longer segments using
an iterative segmentation-clustering algorithm for each bandwidth
in the style of [6]. A model is built for each segment and the loss in
likelihood when combining two segments is calculated from: [9]
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whereΣ is the covariance matrix,µ the mean vector andN
the number of frames. Segments with a loss in log likelihood less
than a certain threshold are combined and then new models are
built using the new segmentation which are then used to resegment
the data in a Viterbi decode. This process is repeated until the
segmentation does not change or a maximum number of iterations
is reached. The first few iterations where there are many small
segments use a single diagonal covariance model per segment, but
subsequently a full covariance model is used. PLP coefficients
with c0, and first and second differentials are used for this stage.

2.2. Gender Determination

Before the final clustering stage, the P1 stage of the CUHTK RT-
03s ASR system [10] is used to transcribe the data. The empty
segments are discarded and a forced alignment with gender de-
pendent models is used to label the gender of each segment.

2.3. Clustering

The baseline clusterer is similar to that used in the CUED RT-03s
diarisation evaluation[7] but uses the BIC-based stopping criterion
introduced in [11].

The clusterer uses the start and end times of the segments from
the segmenter but makes no use of the speaker labels. The cluster-
ing is done bandwidth and gender dependently using a top-down
approach. Each segment is represented by a single full correlation
(not covariance) matrix of 13 static PLP (with c0) features. The
arithmetic harmonic sphericity distance metric[12] is used to move
the segments between the children nodes until convergence be-
fore using the BIC-based stopping criterion to determine whether
a given split should occur. The standard BIC formulation, given
in Equation1, is used with the slight modification that a ‘local’
(number of frames in the parent cluster) rather than ‘global’ (num-
ber of frames in the whole show) value ofN is used.L is the log
likelihood of the data,#M is the number of free parameters and
α is the tuning parameter (here 7.25).

BIC = L − 1

2
α#M log N (1)

After clustering, segments with the same cluster (speaker) la-
bel which are adjacent in time are merged. This does not affect the
diarisation score in itself, but makes the segmentation clearer to a
reader, and enables the iterative clustering scheme of section5.6
to be easily implemented. Thisbaseline clustereris described in
more detail in [11]. The RT-04 clusterer differed only in the way
the segments were sorted before clustering, changing the initiali-
sation. Section5.4has more details.

3. DATA USED IN EXPERIMENTS

Four development sets were used for the experiments reported in
this paper. They each consisted of roughly 30 minute extracts from
6 US news shows and are summarised in Table1.

The didev03 set was the development data for the spring
RT-03 diarisation evaluation[2] and the references were generated
using the process described in [13] using forced alignments pro-
vided by the LDC with 0.3s of silence smoothing applied. The
eval03 anddev04f2 sets was the official diarisation develop-
ment data for the RT-04 diarisation evaluation, and were generated
in a similar way to thedidev03 data but used forced alignments
from a LIMSI system and 0.5s silence smoothing. Thesttdev04
set was marked up manually for speakers at Cambridge University
and does not use the 0.5s smoothing rule, but still offers a useful
development set for diarisation experiments. The key features of
the development data sets are summarised in Table1.

Name didev03 sttdev04 eval03 dev04f2
Epoch Oct-Dec Jan Feb Nov/Dec

2000 2001 2001 2003
Spec. RT-03s CU RT-04 RT-04
Alignment LDC manual LIMSI LIMSI

(words) (spkrs) (words) (words)
Silence 0.3s N/A 0.5s 0.5s
Smoothing

Table 1. Summary of data sets used for development

The RT-04 diarisation evaluation data (eval04f ) consisted
of 12 shows broadcast in December 2003.

4. EVALUATING PERFORMANCE

4.1. Diarisation Error Rate (DER)

The diarisation error rate (DER) is the sum of the missed (speech
in reference but not in hypothesis), false alarm (speech in hypoth-
esis but not in reference) and speaker error (mapped reference and
hypothesised speakers differ) rates of a system when compared to
a manually defined reference. The latter is calculated by matching
the hypothesised speakers to reference speakers using a one-to-one
mapping which maximises the total overlap between the reference
and (corresponding) hypothesis speakers. Further details can be
found in [2].

A 0.25s no-score region (collar) was used round reference seg-
ment boundaries during scoring and regions of overlapping speech
in the reference were excluded from scoring.



4.2. Segment Purity

The quality of the segmentation is measured by performing ‘ideal’
(sometimes called ‘oracle’) clustering on the segmenter output by
assigning to each segment the true reference speaker with which
it has most overlap, before scoring in the usual way. Thisseg-
ment impuritygives a measure of the miss, false alarm and within-
segment speaker error, and indicates the diarisation potential from
the segmentation. The number of segments must also be consid-
ered since it is possible to monotonically improve the segment pu-
rity (lower the segment impurity) by continuously splitting seg-
ments into ever smaller regions.

5. DEVELOPMENT EXPERIMENTS

5.1. Changing the Segmentation Algorithm

The segmentation described in section2.1was introduced into the
Cambridge University diarisation system for the RT-04 evaluation.
It is based on a system from LIMSI [5, 6] which was initially used
in their ASR system but recently has been employed extremely
successfully in their diarisation system. [14, 15]

Unlike the segmentation used in the Cambridge University RT-
03 spring (RT-03s) diarisation evaluation ([7]) it produces putative
speaker labels as well as the start and end times and hypothesised
bandwidth of each segment. This enables a DER to be obtained
after the segmentation stage. However, since there is a subse-
quent clustering stage in the diarisation system (which makes no
use of the putative speaker labels), the most important property of
the segmenter output is the segment impurity as described in sec-
tion 4.2.

Results for the Cambridge University RT-03s and RT-04 seg-
mentations are given in Table2. They show that the change of
segmenter results in a decrease in DER from 23.2% to 20.3% over
the 24 development shows when using the baseline clusterer de-
scribed in section2.3.

Segment- Segment-Purity Seg +Clust
ation Dataset MS/FA/SPE/SI @ NumSegDER DER
RT-03s didev03 0.1/3.0/1.9/5.07 @ 875 - 18.8

eval03 0.3/1.9/1.7/3.92 @ 869 - 19.8
sttdev041.0/0.9/2.1/4.01 @ 913 - 22.9
dev04f2 1.3/4.1/1.0/6.33 @ 1077 - 32.7
ALL 0.69/2.34/1.70/4.74 @ 3734 - 23.2

RT-04 didev03 0.6/1.6/1.0/3.16 @ 790 27.9 18.0
eval03 0.6/0.7/0.9/2.17 @ 706 31.2 15.9
sttdev042.2/0.3/0.9/3.36 @ 786 30.1 21.2
dev04f2 1.5/1.8/0.6/3.93 @ 632 39.9 26.9
ALL 1.26/1.03/0.85/3.14 @ 291429.7 20.3

Table 2. Effect of changing from the RT-03s to the RT-04 segmen-
tation system. The % miss (MS), false alarm (FA), speaker error
(SPE) and segment impurity (SI) are given, along with the num-
ber of segments after the gender-labelling phase. Also provided
are the DER from the segmentation itself (where applicable) and
when applying the baseline clusterer.

5.2. Changing the Likelihood Threshold in Segmentation

The final full-covariance re-segmentation stage of the segmenter
uses a threshold on the log likelihood to determine which seg-
ments should be associated with the same speaker labels. The
value of this threshold is critical in determining the segmenter out-
put - too low and the data will beoversegmentedin that too many
segments will be output, whereas too high and the data will have a
low segment purity as some segments will contain multiple refer-
ence speakers. The effect of changing the likelihood threshold in
the full-covariance resegmentation stage is summarised in Table3
and illustrated in Figure2.

Lhood Segment-Purity Seg + base+RT04
Thr. Dataset MS/FA/SPE/SI @ NumSegDER Clust Clust

3000 didev03 0.6/1.6/1.0/3.16 @ 790 27.9 18.0 14.0
eval03 0.6/0.7/0.9/2.17 @ 706 31.2 15.9 15.2
sttdev042.2/0.3/0.9/3.36 @ 786 30.1 21.2 22.2
dev04f2 1.5/1.8/0.6/3.93 @ 632 39.9 26.9 23.5
ALL 1.26/1.03/0.85/3.14 @ 291429.67 20.34 18.71

11000 didev03 0.6/1.6/2.6/4.82 @ 619 17.2 15.6 17.5
eval03 0.6/0.8/1.4/2.68 @ 586 17.8 17.7 17.7
sttdev042.1/0.3/2.1/4.46 @ 643 21.5 22.7 19.8
dev04f2 1.5/1.9/1.1/4.47 @ 484 20.4 23.7 23.3
ALL 1.23/1.06/1.82/4.10 @ 233219.31 19.95 19.45

16000 didev03 0.6/1.6/4.1/6.29 @ 578 22.7 18.9 16.1
eval03 0.6/0.8/2.9/4.22 @ 559 21.9 16.4 17.2
sttdev042.1/0.3/3.6/6.00 @ 605 24.5 20.5 20.5
dev04f2 1.5/1.9/1.6/4.98 @ 467 15.9 13.0 20.0
ALL 1.23/1.06/3.12/5.40 @ 220921.55 17.47 18.78

17000 didev03 0.6/1.6/4.3/6.56 @ 570 24.1 17.5 17.0
eval03 0.6/0.8/2.6/3.96 @ 563 22.8 15.5 16.6
sttdev042.1/0.3/3.7/6.10 @ 604 25.1 19.9 21.4
dev04f2 1.5/1.9/1.8/5.15 @ 463 16.6 14.8 20.7
ALL 1.23/1.06/3.18/5.47 @ 220022.46 17.11 18.97

Table 3. Effect of changing the likelihood threshold used in com-
bining segments in the segmentation stage. The % miss (MS),
false alarm (FA), speaker error (SPE) and segment impurity (SI)
are given along with the number of segments after the gender-
labelling phase. Also provided are the DER from the segmentation
itself and when applying the baseline and RT-04 clusterers.

The results show that as the threshold is increased, the segment
purity worsens as the number of segments decreases. The best seg-
menter DER is 19.31% using a threshold of 11000, with the DER
of applying the baseline and RT-04 clusterers being 19.95% and
19.45% respectively. (The equivalent numbers for using static-
only coefficients in the full-covariance stage are 19.15%, 21.57%
and 21.21% respectively with a threshold of 2600.) The best over-
all performance was 17.11% for a threshold of 17000 using the
baseline clusterer, the RT-04 clusterer giving 18.97% for this case.
The best performance on the dev04f2 subset was 12.95% using the
baseline clusterer and a threshold of 16000.

When developing the evaluation system, since the segmenter
was being used as an initial stage before applying an independent
clusterer, it was felt that the segmenter should try to minimise the
segment impurity and hence oversegment the data. This would
allow a potentially better score if improvements could be made in
the subsequent clustering. For this reason a threshold of 3000 was
used in the evaluation system, which led to a DER of 20.3% with
the baseline clusterer and 18.7% with the RT-04 clusterer.
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Fig. 2. Effect of changing the likelihood threshold in the final stage
of the segmenter. Results show the segment impurity and number
of segments, the DER of the segmenter output and the DER of the
baseline and RT-04 clusterers.

5.3. Silence Removal

Silence is removed in two different places in the diarisation sys-
tem. Firstly, regions of greater than a critical length which are
not labelled as speech by the dual-phone recogniser are removed.
This threshold is set by looking at the effect of the sum of the
missed speech and false alarm speech, since these components are
weighted equally in the DER. A traditional ASR system would
try to have a very low miss rate, but the diarisation segmentation
trades this off by allowing it to increase if the false alarm rate re-
duces by a greater amount.

Results of varying the silence stripping threshold are given in
Table4. The value of 1s was used as the silence threshold since
this gave the lowest sum of missed and false alarm speech, and the
lowest segment impurity. It also gave the lowest segmenter DER.

Empty segments after the P1 stage of the ASR system are also
discarded before the final clustering stage. The effect on the miss,
false alarm and segment impurity rates is given in Table5. The
number of segments over the 4 datasets is reduced by 3% with no
effect on segment purity.

Silence Dataset Segment-Purity Segmenter
Threshold MS/FA/SPE/SI @ NumSegDER
0.5s didev03 1.8/0.8/1.0/3.57 @ 1348 28.9

eval03 2.0/0.2/0.9/3.05 @ 1229 34.8
sttdev046.8/0.1/0.9/7.83 @ 1359 34.8
dev04f2 3.3/0.5/0.6/4.37 @ 1254 47.5
ALL 3.62/0.39/0.85/4.86 @ 5190 36.1

1s didev03 0.6/1.6/1.0/3.21 @ 814 28.0
eval03 0.6/0.8/0.9/2.21 @ 735 31.3
sttdev042.1/0.3/0.9/3.27 @ 814 30.0
dev04f2 1.5/1.9/0.6/3.99 @ 642 40.2
ALL 1.22/1.08/0.85/3.15 @ 3005 32.0

2s didev03 0.2/2.6/1.1/3.93 @ 813 29.8
eval03 0.4/1.8/1.0/3.14 @ 770 32.4
sttdev041.1/0.8/1.0/2.94 @ 804 31.9
dev04f2 1.3/3.8/0.7/5.73 @ 658 38.2
ALL 0.77/2.12/0.94/3.83 @ 3045 32.9

Table 4. Effect of changing the silence stripping threshold in the
segmenter. The % miss (MS), false alarm (FA), speaker error
(SPE) and segment impurity (SI) are given along with the num-
ber of segmentsbeforethe gender-labelling phase.

Stage Dataset Segment-Purity
MS/FA/SPE/SI @ NumSeg

before didev03 0.6/1.6/1.0/3.21 @ 814
P1 eval03 0.6/0.8/0.9/2.21 @ 735
ASR sttdev04 2.1/0.3/0.9/3.27 @ 814

dev04f2 1.5/1.9/0.6/3.99 @ 642
ALL 1.22/1.08/0.85/3.15 @ 3005

after didev03 0.6/1.6/1.0/3.16 @ 790
P1 eval03 0.6/0.7/0.9/2.17 @ 706
ASR sttdev04 2.2/0.3/0.9/3.36 @ 786

dev04f2 1.5/1.8/0.6/3.93 @ 632
ALL 1.26/1.03/0.85/3.14 @ 2914

Table 5. Effect of removing empty segments after P1 of the ASR
system. The % miss (MS), false alarm (FA), speaker error (SPE)
and segment impurity (SI) are given @ the number of segments.

5.4. Initialising the Clusterer and Bandwidth Dependency

The clusterer initially assigns the segments to the children nodes
based on the order they are presented. Therefore changing the or-
der of the segments to the clusterer alters the initialisation and thus
can affect the clustering results. The RT-04 segmenter assigned the
speaker labels to the groups of segments somewhat arbitrarily, and
initially no sorting of the segments was performed before the clus-
tering stage. It was felt that presenting the segments in an order
which kept those assigned the same cluster in the segmenter to-
gether, would be beneficial.

An experiment was therefore carried out into ways of sort-
ing the segments before clustering. Two methods of allocating the
cluster labels to the groups of segments from the segmenter were
made. The first assigned the cluster labels (bandwidth and gender
dependently) in ascending order using the first time of each cluster
to decide the ordering. The second was similar but used the mid-
time of each cluster to determine the ordering. The segments were
then sorted by this new cluster-id ( and by start time in the case
of ties) before clustering - thus ensuring that segments assigned
the same cluster-id in the segmenter would be more likely to be



initialised together in the clustering stage. Contrast runs with no
sorting or with purely time-based sorting were also run. The re-
sults are given in Table6.

sorting didev03 eval03 sttdev04dev04f2 ALL
none 18.0 15.9 21.2 26.9 20.4
time 17.5 16.7 21.5 25.7 20.2
spkr-start17.5 17.9 22.6 17.5 19.0
spkr-mid 14.0 15.2 22.2 23.5 18.7

bandwidth dependent clustering
none 18.3 18.6 22.4 26.9 21.4
time 18.5 15.8 20.6 25.7 20.0
spkr-start19.4 17.9 21.3 20.0 19.7
spkr-mid 16.7 16.2 23.5 23.5 20.0

bandwidth independent clustering

Table 6. Effect on DER of sorting the segments before cluster-
ing. Results are presented for both bandwidth dependent and band-
width independent clustering

Although the improvements are not consistent across the datasets,
the average DER across all 24 development shows is reduced from
20.4% to 18.7% by sorting the segments by the re-assigned seg-
menter cluster-id and then time, before clustering. This was used
for all further experiments. It is a little disturbing to note some of
the variation in DER from making these changes to the initialisa-
tion. Thedev04f2 data set in particular changes from 17.5 to
23.5% just by re-allocating the initial cluster-id from its midpoint
instead of its first occurrence in the show.

Table6 also gives results for bandwidth independent cluster-
ing. This performed worse than the bandwidth dependent case,
showing that automatically detected bandwidth information can be
useful in distinguishing speakers.

5.5. Changing the Feature Vector

An experiment was conducted to see the effect of changing the
feature vector used in the clustering stage. The Cambridge Univer-
sity diarisation system has always used PLP coefficients (includ-
ing the cepstral c0 coefficient) but other sites have used MFCC
coefficients[11, 15, 16, 17] which can sometimes perform better
for diarisation[18]. The effect of changing the energy coding by
using no energy coefficient, the cepstral c0 coefficient (c0), the log
energy (E) and performing cepstral mean subtraction (Z) was also
investigated. The results are given in Table7. Different values of
theα parameter in the stopping criterion were also tried for the dif-
ferent codings, but 7.25 remained the optimal in almost all cases.

The results show that performing cepstral mean subtraction
considerably degrades performance, showing that the mean infor-
mation is helping distinguish speakers. However adding both c0
and the log energy did not help improve performance. The best
coding with MFCCs included the log energy but this did not per-
form as well as the PLP coding. The best performance overall was
obtained with PLP and c0 (the standard set up) but removing the c0
coefficient improved performance on the dev04f2 data by almost
5% absolute. Further investigation showed that the shows which
gained most from removing the c0 coefficient often seemed to have
a low mean value for the c0 coefficient over the show. Therefore
an investigation was made to see if there was a feature of the c0

Coefficients didev03 eval03 sttdev04dev04f2 ALL
BASE c0 E Z
PLP - - - 20.3 17.1 22.5 18.7 19.8
PLP Y - - 14.0 15.2 22.2 23.5 18.7
PLP - Y - 15.3 17.0 22.1 21.3 19.0
PLP Y Y - 18.0 16.8 23.3 22.4 20.2
PLP Y - Y 25.4 19.3 27.9 24.1 24.3
MFCC Y - - 17.9 18.6 22.1 27.2 21.3
MFCC - Y - 16.2 15.8 21.5 27.0 20.0
MFCC Y Y - 19.7 19.3 23.5 27.4 22.4
MFCC - Y Y 23.3 16.7 28.9 22.4 23.1

Table 7. Effect of changing the feature vector in clustering. Both
PLP and MFCC coding were tried with combinations of c0, log
energy (E) and cepstral mean subtraction (Z).

coding which might help predict whether the c0 coefficient should
be used in clustering for optimal performance.

5.5.1. c0 switching

It had been observed that usually including c0 in the feature vector
improved clustering, but some times it did not. Experiments were
performed to see if a property of the c0 coefficient itself could be
used to predict whether this gain would occur. Five properties of
the c0 coefficient were investigated, namely the mean value of the
data for the show after segmentation(mean(show)), the mean value
of the segment means(mean(segmean)), the standard deviation of
the segment means(stddev(segmean))and the ratios of the latter
two. The correlation coefficients between the showwise difference
in DER from including c0 and the property in question is given in
Table8.

Property Correlation
stddev(segmean) -0.0295
mean(segmean)/stddev(segmean) 0.0995
stddev(segmean)/mean(segmean) -0.2223
mean(segmean) 0.4223
mean(show) 0.4560

Table 8. Correlation Coefficients between the c0 property and the
difference in DER from including c0 in the clustering for all 24
development shows

The correlation coefficients show that the most correlated fea-
ture is the mean value of the c0 coefficient across the whole show
after segmentation, with a correlation of 0.456. Figure3 shows
a scatter plot of the mean c0 value against the difference in DER
when including c0 and the mean DER across all 24 development
shows when the clustering uses c0 if and only if the mean c0 value
after segmentation is above a certain threshold. The breakdown in
results over the different datasets is given in Table9.

The results show the mean DER over the 24 shows can be re-
duced from 18.7% to 17.7%, with the DER on the dev04f2 dataset
(closest in epoch to the eval04f data) reduced from 23.5% to 19.2%
if this method is used with a threshold of 50. However, there was
some concern that this may not hold across new datasets, so the c0-
switching was implemented as a contrast run for the RT-04 evalu-
ation, the primary run using c0 in the clustering stage for all cases.
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ment show. (b) Mean DER across all 24 development shows when
only including c0 in clustering if the mean value is above a critical
threshold.

c0thresh didev03 eval03 sttdev04dev04f2 ALL
0 (PLP+c0)14.0 15.2 22.2 23.5 18.7
48 14.0 15.2 22.2 22.3 18.5
49 14.0 15.2 21.8 20.3 17.9
50 14.0 15.5 21.8 19.2 17.7
51 16.6 15.5 21.2 19.2 18.2
52 16.6 15.5 21.2 18.7 18.1
54 16.6 15.5 21.2 18.7 18.1
56 18.6 15.5 21.2 18.7 18.6
100 (PLP) 20.3 17.1 22.5 18.7 19.8

Table 9. Results per dataset from only including c0 in the cluster-
ing if the mean value of the show is greater than a threshold

5.5.2. Using Delta Features

An experiment was conducted which added first differentials (deltas)
to the feature vector but used a block diagonal covariance represen-
tation in the clustering. The results for differentα values on the de-

velopment datasets are illustrated in Figure4. The optimalα value
is much lower here than for the static only case (as it is influenced
by the independence of the features), and the best performance is
only 20.6% compared with the 18.7% from the static-only case,
therefore this was not used in the evaluation system.
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Fig. 4. Effect of changing theα value in the clustering when using
a block diagonal representation with static and delta coefficients.

5.6. Iterative Clustering

Iterative clustering or re-segmentation could potentially help im-
prove the performance of diarisation systems. We implemented a
simple iterative scheme which ran the clusterer and then merged
temporally adjacent segments which were clustered together, be-
fore running the clusterer again on the new segmentation. The
idea was that segments which are adjacent in time are often spo-
ken by the same speaker and thus if the clusterer also clustered
them together then there are two sources suggesting the segmenta-
tion should be refined to combine the segments in question.

The final clustering stage is run as before, but the preceding
clustering stages can be run differently if required. For example,
producing many clusters would minimise the risk of segments be-
ing falsely combined, whereas producing fewer clusters than nor-
mal and relying on the temporal adjacency criterion to restrict false
combinations might also be justified.

The results forα of 7.25 (optimal), 5 (conservative) and 10
(overclustered) for the non-final iteration are presented in Table10
and the segment purity for the case of using the optimalα = 7.25
throughout is given in Table11.

The results show that this technique did not help improve per-
formance overall, producing a increase in segment impurity and
corresponding increase in final DER even after only one extra iter-
ation, for all datasets except theeval03 data.

5.7. Varying the Parameters

Finally, theα value and the decision to use the ‘local’ or ‘global’
formulation of the BIC stopping criterion [11] was checked. The
results, illustrated in Figure5, confirm that the best result of 18.7%
occurs usingα=7.25 with the ‘local’ formulation.



non-
final itera- eval03 didev03 sttdev04dev04f2 OVERALL
α tions
- 0 63.3 59.7 62.4 67.5 63.1 @ 2914
- 1 15.2 14.0 22.2 23.5 18.7 @ 2629

7.25 2 14.9 15.9 22.6 23.6 19.3 @ 2587
7.25 3 15.6 14.8 22.3 23.7 19.1 @ 2570
7.25 10 15.6 15.0 22.0 23.7 19.1 @ 2565

5 2 15.3 15.9 23.1 24.3 19.7 @ 2609
5 3 16.7 17.3 24.3 28.9 21.7 @ 2616
5 10 16.4 18.6 23.6 28.1 21.6 @ 2621
10 2 15.0 17.5 21.6 23.1 19.3 @ 2540
10 3 16.9 17.8 24.6 24.0 20.9 @ 2521
10 10 19.9 21.3 25.3 22.9 22.4 @ 2515

Table 10. Iterative clustering merging temporally adjacent seg-
ments in the same cluster between stages. Results show the final
DER @ the number of segments.

iter didev03 eval03 sttdev04 dev04f2 ALL
0 1.0 @ 7900.9 @ 7060.9 @ 7860.6 @ 6320.85 @ 2914
1 1.6 @ 7140.9 @ 6441.9 @ 7021.2 @ 5691.43 @ 2629
2 2.1 @ 6941.0 @ 6382.0 @ 6951.2 @ 5601.59 @ 2587
3 2.2 @ 6861.4 @ 6352.2 @ 6911.2 @ 5581.80 @ 2570
10 2.3 @ 6811.4 @ 6352.2 @ 6911.2 @ 5581.82 @ 2565

Table 11. Segment impurityexcluding the MS and FA components
@ number of segments for the iterative clustering withα = 7.25.
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Fig. 5. Effect of changing theα value in the clustering when using
the full correlation matrix with static only PLP coefficients. (a)
uses the ‘local’ whilst (b) uses the ‘global’ formulation.

6. RESULTS ON THE RT-04 EVALUATION DATA

Table12 shows the results on the 12-show RT-04 evaluation data
(eval04f ) and the progress in diarisation at Cambridge Univer-
sity since the RT-03s evaluation. Introducing the new clustering[11]
reduced the primary DER from 36.3% to 27.9%, whilst subse-
quently introducing the new segmenter reduced this further to 22.5%.
It was discovered after the evaluation that the coding into PLP
coefficients had been affected by switching compilers despite no
change to the source code, and this had unfortunately led to an
increase of DER to 23.9%. This confirms the observation in sec-
tion 5.4 that the clustering is somewhat over-sensitive to slight
changes in input, possibly due to the system being top-down in-
stead of using the more common agglomerative method.

Coding Segment Cluster DER DER
ation ing main c0switch

RT-03s RT-03s RT-03s 36.33 -
RT-03s RT-03s RT-04 27.90 24.45
RT-03s RT-04 RT-04 22.48 22.35

† RT-04 RT-04 RT-04 23.86 24.12

Table 12. Progress since RT-03s on theeval04f data. The DER
of the main system is given along with the contrast run with the c0-
switching where applicable.† Official eval. submission (see [4]).

The contrast run which included the c0-switching did perform
better when using the RT-03s segmentation (24.5% instead of 27.9%)
but made little difference when used with the RT-04 segmenter.

An experiment was run to see the effect of using different cri-
teria to pick the likelihood threshold and clustering strategy on the
dev data. Three different strategies were tried namely (a) just use
the segmenter output which gave the best segmenter DER; (b) use
the clusterer output which gave best performance across all the
dev data; and (c) use the clusterer output which gave best perfor-
mance on thedev04f2 data, since this was closest in epoch to the
eval04f data. The results are given in Table13using the RT-03s
PLP coding.

likeli- post-ASR SegmenterBaseline RT-04
hood Segment ClustererClusterer
thresh Impurity DER DER DER
3000 0.4/1.1/1.2/2.69 @ 138335.15 22.03 22.48(e)
11000 0.4/1.1/2.2/3.73 @ 106318.72(a1) 22.90 21.02
16000 0.4/1.1/3.8/5.35 @ 98721.17 20.50(c) 22.18
17000 0.4/1.1/3.9/5.44 @ 98822.05 22.06(b) 21.44
†2600 0.4/1.1/3.5/5.05 @ 97918.12(a2) 21.82 23.49

Table 13. Effect on eval04f DER of using different criteria
on the dev data to choose the segmenter likelihood threshold and
clustering strategy. (e) represents the RT-04 evaluation system,
(a1) and (a2) are from the optimal segmenter DER on the dev data,
(b) the optimal clustered DER on the dev data, and (c) the optimal
clustered DER on thedev04f2 data. † no differentials used in
the feature vector in the full-covariance stage of the segmenter.

The results show that theeval04f DER could have been re-
duced by changing the strategy used to finalise the system on the
dev data, the best performance being 18.1% when using the seg-
menter output directly (with no differentials in the feature vector
in the full-covariance stage).



7. FUTURE WORK

Future work will look at trying to use multiple knowledge sources
to improve the diarisation system, for example by using the speaker
labels from the segmenter within the clusterer, or combining seg-
menter and clusterer outputs using cluster voting[19, 20]. More
information from the ASR system may also be incorporated, as
in [21]. The use of proxy speaker models[22] which has been suc-
cessfully implemented within the diarisation framework at MIT[23]
will also be investigated, along with the use of ‘standard’ speaker
identification techniques, which give large benefits in the LIMSI
RT-04 diarisation system[15]

8. CONCLUSIONS

This paper has described the Cambridge University RT-04 diarisa-
tion system, including details of the new segmentation and clus-
tering components. Many experiments made to try to improve the
performance of the system have been reported although few af-
fected the final system. The clustering component was rather sen-
sitive to the segmentation, with small changes in input often mak-
ing large changes in results. The final system gave a diarisation
error rate of 23.9% on the RT-04 evaluation data, a 34% relative
improvement over the Cambridge University RT-03s system, and
it was shown that this score could have been reduced further to
18.1% within this diarisation framework.
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