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Abstract

This work is concerned with registration of ultrasound volumes acquired using a mechanically-
swept 3D probe to produce extended-field-of-view images. While the registration can be
achieved by attaching a position sensor to the probe, this can be an inconvenience in a clini-
cal setting and aligns the volumes incorrectly if there is tissue motion due to subject movement
or respiratory motion. The objective of this work is to replace the 6 degree of freedom (DOF)
sensor with a combination of 3 DOF image registration and an unobtrusively integrated iner-
tial sensor for measuring orientation. We aim to produce a highly reliable system that is able
to register a pair of volumes very quickly, making it suitable for clinical use. As such, this is
an extension of our previous work [1] and provides further results for a fast implementation
of the Nelder-Mead simplex algorithm using reslices. Additionally, we provide some results
for a voxel-array based multiresolution search algorithm. The multiresolution approach has
a more complete coverage of the search space at the expense of speed and is more exhaustive
in comparison to the Nelder-Mead Simplex algorithm. With similar reliability statistics for
the two algorithms, both are possible candidates for a clinical system.

1 Introduction

Currently, 3D ultrasound offers superior and efficient volumetric imaging at a lower cost than other
imaging modalities. However, with the limited field of view of the acquired volumes, there is a great
deal of interest in creation of 3D mosaics by stitching together consecutively recorded volumes.
This mosaicing will provide the sonographer with a compounded volume of higher quality and
the ability to visualise anatomical structures from a variety of different angles. For this purpose,
we propose a hybrid intensity-based image registration strategy. In multi-volume registration, we
consider the notion of a similarity measure between two volumes, where the target volume is kept
stationary while the position of the source volume is changed iteratively until an extreme value of
the similarity measure designates a registration point. In this regard, we have made the following
assumptions:

∙ The probe is held stationary while recording each volume so there is no need for intra-volume
registration.

∙ There is a reasonable overlap between the volumes.

∙ The relative orientation of the volumes is already known through the use of an inertial sensor.

∙ Any distortion of the tissue is small and therefore only a rigid body transformation is required
for successful registration.

∙ Although it is reasonable to assume that the subsequent volumes will be in roughly the
same direction of movement as the first pair of volumes, we have considered an undirected
approach.

Even though we have whole volumes of data available, we have chosen to use only a subset of
this data in order to speed up the computation in the search algorithm. As a result, we consider
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a slice-based strategy in which we evaluate the similarity measure on a subset of images across
the region-of-interest. This reduces the 3D data to a set of 2D images and makes the algorithms
acceptably fast. In order to provide invariance to overlap statistics, normalised mutual information
is used as a similarity measure [2].

Furthermore, we have considered two approaches to tackle image based volume registration.
In the first approach, we have used a very efficient reslicing algorithm [3] to generate vertical
and horizontal reslices orthogonal to the central frame of the source volume (see Fig. 9). Thus
we obtain two sets of images from two sweeps across the region-of-interest. Henceforth, they are
refered to as reslice pairs. Using this approach, we compared the performance of several iterative
algorithms on in vitro datasets. Fig. 1 reproduces some of the results from [1] to provide the
context for this development. Based on this study, we found the particle swarm optimiser to be
the most reliable algorithm. However, it is inherently slow as it maintains a higher number of
multiple solutions. Therefore, we rejected it along with Powell’s direction-set algorithm mainly on
account of computational time. The Levenberg-Marquardt method is the fastest of the algorithms
considered, but it is not very reliable. It works on the principle of reducing the sum of squares of
residuals. In order to use this algorithm, we must calculate the similarity measure separately for
individual slice pairs which makes it less robust. Thus we are left with the Nelder-Mead simplex
algorithm for further consideration which is not only reliable but also fast. The Nelder-Mead
simplex algorithm for a 3 DOF search requires only four initial position estimates (which can be
visualised as a tetrahedron). It requires only function evaluations, not derivatives and is faster
than other multiple solution algorithms. However, it can get stuck in a local minimum. We have
therefore used a heuristic approach based on multiple restarts, considering the local minimum as
one vertex of the simplex and reinitialising the other vertices within a certain range of the claimed
minimum. In comparison to [1], we have considered an efficient implementation of the Nelder-
Mead simplex algorithm in this paper. We consider a larger number of datasets and analyse the
reliability of the Nelder-Mead simplex algorithm against the amount of data used to calculate
the similarity measure and the initialisation range in the axial direction. This is done with the
intention of speeding up the algorithm.

Although, the Nelder-Mead simplex algorithm satisfies most of our requirements, we also con-
sider a voxel-array based approach similar to the one considered in [4] as an alternative approach.
One of the disadvantages of the algorithms considered in [1] was that they required the reslices to
be calculated at each new position. Since the orientation information of the volumes is known a
priori, a one-time generation of voxel-arrays and a multiresolution approach can avoid the need for
recalculating reslices and may have a speed advantage. The details are given in the next section.

2 Voxel-array based multiresolution search algorithm

This algorithm was originally used in [4] for rigid correction of misaligned pairs of sweeps initially
aligned using a spatial locator. It made use of a single reslice through the overlap region which
required some manual intervention to position correctly. However, in our implementation, we want
to avoid any manual intervention and have no initial information on the alignment. Therefore, we
must use multiple slices distributed over the volume to be sure that a few slices fall within the
overlap region. The original algorithm made use of 2D smoothing of the reslice image. We require
3D smoothing of the voxel-arrays because slices are taken in all three directions.

The working of the multiresolution search algorithm is given in Figs. 2 and 3. The algorithm
works by first aligning the centres of the source and target volumes, and then by fitting a minimum-
voxels bounding reslice. The size and orientation of this reslice is chosen automatically such that
it encompasses all of the data in the minimum number of voxels1. The voxel array is obtained

1An alternative approach would have been to create voxel-arrays within the extent of one of the volumes.
We have chosen not to do this because larger voxel-arrays give more data samples to calculate the similarity
measure. However, larger voxel-arrays will also introduce null-data from outside the volumes (see Fig. 4 for further
clarification). Furthermore, useful data is found mostly in the centre of the voxel-arrays particularly when the
volumes have different orientations (an extreme case could be volumes that are 90 degrees apart), therefore, the
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Figure 1: Comparison of performance of different algorithms for 5 in vitro datasets with 5 trials
per dataset for each algorithm. For the Nelder-Mead simplex algorithm (Simplex), the Levenberg-
Marquardt method (LM), and Powell’s direction-set method (Powell), the execution time is shown
including the two restarts. Here, the restarts are necessary to avoid local optimum and to increase
reliability. In case of the particle swarm optimiser (PSO), we have not allowed any restarts. The
comparison is provided on two similarity measures, namely, normalised mutual information (NMI),
and Kolmogorov’s distance (K).

by taking reslices parallel to the minimum-voxels bounding reslice between the minimum (min d)
and maximum (max d) extents of the data. In the reslice plane, the resolution is specified by
considering every resxy pixel(s). In the third direction, the resolution is specified by resz slice
spacing in cm. After obtaining the two voxel-arrays, a volume pyramid is then constructed by
smoothing and downsampling the original voxel-arrays. The search works in 4 levels with data
being coarse at L4 and fine at L1. An exhaustive search is done at L4 (considering a minimum
of 25% overlap in each dimension) by calculating the similarity measure on the 2D image slices
from corresponding volumes specified in all three directions. It should be emphasised here that
the locations of the slices are fixed with respect to the source volume. Also, as opposed to the
reslices used in the Nelder-Mead simplex algorithm, the width and height of the slices are bounded
by the dimensions of the voxel-arrays. After obtaining the optimal solution in L4, the subsequent
searches are limited to a narrower window (step x, step y, and step z around the optimum results
obtained from the previous level). Finally, the relative difference in the positions of the two voxel
arrays is used to update the position of the frames of the source volume.

3 Comparative analysis of the two approaches

For evaluation of the two approaches, ultrasound data sets were recorded using a GE RSP6-
12 mechanically-swept 3D probe interfaced to a Dynamic Imaging Diasus US machine. The
depth setting was 3 cm with a single focus at 1.5 cm. The B-scan resolution was 0.01 cm/pixel.
Analogue RF echo signals were digitised after receive focusing and time-gain compensation, but
before log-compression and envelope detection, using a Gage Compuscope CS14200 14-bit digitiser

data around the central region should be given more importance.
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Figure 2: Flow diagram of the voxel-array based multiresolution search algorithm. Here, w, h, and
d represent the width, height, and depth of the voxel-array.

(http://www.gage-applied.com). The RF data was then converted to B-scan images using
Stradwin software (http://mi.eng.cam.ac.uk/˜rwp/stradwin/). Each data set comprised two
volumes, each of 50 frames swept over 10 degrees. We recorded data under three sets of conditions.
First, we acquired five in vitro scans of a speckle phantom containing several 5mm spherical
inclusions (P Class). Here, the ultrasound probe was mounted on a motorised Zaber’s linear
slide TLSR-300B gantry (http://www.zaber.com) to obtain precise translation offsets. We then
acquired two classes of in vivo data sets, five in which every effort was made to ensure the scanning
subject was stationary (R class in which breathing or movement was minimised at the time of
acquisition) and six belonging to M class in which small movement and probe pressure variations
were allowed. For these experiments, each B-scan’s position and orientation was recorded using a
Northern Digital Polaris optical tracking system (http://www.ndigital.com).

Comparing to the known offsets in the in vitro data, we measured the accuracy of the regis-
tration to be within 0.4 mm root mean square error (RMSE) when using 10 horizontal and 10
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Figure 3: Flow diagram of search procedure in the voxel-array based multiresolution search algo-
rithm. Here, the left pointing arrow is the assignment operator and the Upscale function is used to
map the indices of the voxel arrays from current level to next higher level in the volume pyramid.

vertical reslices and two restarts of the Nelder-Mead simplex algorithm [1]. There are two ways
that we can increase the reliability: we can increase the number of reslices (see Fig. 6), and we
can decrease the initialisation range in the axial direction (see Fig. 7). Increasing the number of
reslices increases the chance that the reslices will contain significant features of the data making
it easier to find the correct alignment. We observed that in typical datasets, the features were
more defined axially giving a sharper peak in the similarity metric in this direction (see Fig. 8). In
order to align the data, at least one of the vertices of the Nelder-Mead simplex algorithm must be
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(a) Nelder-Mead simplex algorithm using reslices

(b) Voxel-array based multiresolution search algorithm

Figure 4: Explanation of generation of slices in both approaches. Assuming that the
direction of insonification is towards the page and we are viewing the two volumes from the top,
the slices are represented by darker strips on the source volume. In both approaches, the left figure
shows how the data will look at the start when the two volumes are centrally aligned, and the right
figure shows an arbitrary position of the source volume in the vicinity of the target volume. Note
that in the current implementation, the similarity measure is calculated on the portions of the
reslice that coincides with the source volume. It may also be possible to include the lighter region
of reslices in the calculation of the similarity measure. In such a case, the normalised mutual
information remains unaffected when the field-of-view is varied i.e. when the lighter region ([2]
discusses this invariance in detail) dominates the darker region for the case when the two volumes
are further apart.

initialised close to the peak. Reducing the initialisation range in the axial direction increases the
chance of starting near the peak and hence improves reliability. Even with only a few reslices (4
horizontal and vertical reslice pairs) and just one restart, we were able to register all the datasets
in 8–15 seconds using a C++ implementation of our approach in Stradwin (see Fig. 5) on a 3.0
GHz Intel Core 2 Duo CPU machine.

While it may be a good idea to compare the voxel-array based multiresolution search algorithm
with the Nelder-Mead simplex algorithm with slices in the same positions at the highest resolution,
it is not possible in the current implementation. The position and orientation of the slices depend
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(a) Nelder-Mead simplex algorithm using reslices

(b) Voxel-array based multiresolution search algorithm

Figure 5: GUI developed for testing the two approaches. Note that both versions have the
functionality for 3 DOF calibration of the orientation sensor.
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on the position and orientation of the minimum-voxels bounding reslice around the two volumes.
This can change for each dataset depending on the relative orientation of the two volumes. On the
other hand, in the Nelder-Mead simplex algorithm, the slices are always generated with respect to
the source volume and their sizes can be altered (see the position of reslices in Fig. 4). Nonetheless,
we can still compare the algorithms in terms of reliability. The preliminary results for the voxel-
array based multiresolution search for two different configurations are shown in Fig. 10. It can be
seen here that the reliability values are quite high when the slices are concentrated in the central
region (Configuration A). With configuration B, some of the in vitro datasets failed because the
slices didn’t pass through the main features located in the centre. With limited features available
in the coarse level, having more slices in the central region of the voxel-arrays also ensures that
fewer slices go out of scope (i.e. slices that overlap with null-data of the target volume) when
there are large differences in the position between the volumes. With configuration B, one of the
failures (M3 dataset) was successfully registered later by reducing the smoothing, which suggests
that smoothing may be obscuring some of the features in the data and would be better at a lower
setting. Also, one dataset (M4) has two possible positions that give a convincing alignment by
visual inspection (see Fig. 11). The Nelder-Mead simplex algorithm found each of these solutions
with equal probability, whereas the voxel-array based multiresolution search algorithm found one
solution or the other depending on the chosen configuration of the slices.
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Figure 6: The effect of the number of vertical and horizontal image reslice pairs in the
Nelder-Mead Simplex algorithm. The vertical image pairs were generated over the whole
volume up to a 10 pixel margin at either side and a 16 pixel margin at the top. The margins for
horizontal image pairs were 70 pixels at the top and 10 pixels at the bottom. The dimensions of the
image slices were therefore 183× 250 pixels (B-scan dimensions are 266× 352 pixels). The image
scale is 0.01 cm/pixel. The source volume location was initialised randomly in the range ±5mm
from the centre in all three coordinates. The Nelder-Mead Simplex algorithm was used, with the
total number of iterations set to 35. The algorithm was allowed 2 restarts by using the current
optimum as one vertex of the simplex and reinitialising the remaining vertices within ±5mm from
the centre in all coordinates. For the generation of a single data point, 160 trials were performed
on 16 datasets (thus totaling 640 trials to generate 4 data points). The labels on the data points
show the number of horizontal and vertical image pairs in each case (both numbers being equal).
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Figure 7: The effect of axial initialisation range in the Nelder-Mead Simplex algorithm.
The vertical image pairs were generated over the whole volume up to a 10 pixel margin at either
side and a 14 pixel margin at the top. The margins for horizontal image pairs were 70 pixels at the
top and 70 pixels at the bottom. The dimensions of the image slices were 130×250 pixels. For the
generation of a single data point, 160 trials were performed on 16 datasets. The label on the data
points represent the number of horizontal and vertical image pairs. The source volume location
was initialised randomly in the fixed range ±5mm from the centre in the x and z coordinates.
The initialisation range was varied in the y (axial) coordinate. The B-scan dimensions, the image
scale, and total iterations are exactly the same as mentioned in the caption to Fig. 6. However,
the algorithm was allowed only 1 restart with the same initialisation ranges. On average, the
algorithm took 8–9 seconds to converge.

4 Open issues and further work

This section discusses the current problems with the registration strategies and what needs to be
done to achieve the goal of a clinical system. A significant bottleneck in the voxel-array approach
is the 3D smoothing1. The 3D voxel-arrays are significantly larger than the 2D reslices required
in the original multiresolution algorithm [4] and therefore smoothing takes a large portion of the
total time (with total time of the algorithm somewhere between 30 seconds and 1.5 minutes). One
possible solution is to use a different, less-intensive smoothing filter such as a mean filter that
is based on the concept of an accumulation buffer, although the smoothing time would still be
significant.

Another problem with the voxel-array based approach is that as the relative orientation of the
two volumes changes, the size of the voxel-array increases because it has to cover both volumes.
Currently, we are using a sweep angle of 10 degrees and if this increases, the voxel-arrays will be

1For example, with a faster implementation of a Gaussian blur, convolving a 31 point kernel with a 256x256x256
voxel-array takes 4.3 seconds, a 31 point kernel with a 512x256x256 voxel-array takes 8 seconds, and a 5 point
kernel with a 512x256x256 voxel-array takes 2 seconds. As an alternative, we have also used a Fast Gaussian Blur
http://www.geometrictools.com/Documentation/FastGaussianBlur.pdf which is based on solving an initial value
problem for a particular partial differential equation (heat equation) and is based on a finite difference scheme.
For a larger value of standard deviation ¾, the finite difference scheme has to be iterated. This implementation of
the Gaussian filter might be fast for applications that require a higher level of smoothing (higher ¾-scales) but is
quite slow compared to the conventional Gaussian filter with smaller ¾. After using this smoothing algorithm in
the multiresolution search algorithm and testing it for multiple sigma values, we rejected it as it is still slower than
the Gaussian filter currently in use.
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Figure 8: Behaviour of normalised mutual information in R2 dataset under rigid trans-
lation of the volumes. Our experience is that most in vivo data contains mainly horizontal
features from layers of tissue. The similarity measure therefore has a sharper peak in the axial
direction compared with the lateral and elevation directions. Also, the similarity measure has
smaller peaks on either side of the correct peak in the axial direction. This causes the failures of
the Nelder-Mead simplex algorithm which can get trapped in suboptimal local peaks.

even larger and therefore registration will be slower. Increase in size won’t affect the Nelder-Mead
simplex algorithm as the size of the reslices are independent of the underlying data and can always
be fixed. Currently, the multiresolution algorithm works on 4 levels. There is a speed disadvantage
between the 1st and 2nd level where the downsampling changes by 4, giving an increased search
range at level 2. Inserting another level will require the generation of another pair of smoothed
and downsampled voxel-arrays and will therefore not necessarily be faster. This is something that
needs to be tried once the smoothing is optimised.

A possibility for making the system easier to use is to allow some limited manual intervention
at appropriate points in the process. For example, when registering a sequence of volumes, one
could allow the clinician to specify which pairs have failed. In the current system (see Fig. 12),
when there are more than two volumes, volumes are compared in subsequent pairs, and when one
pair fails, the whole dataset needs to be reregistered. Instead, we could ask the clinician to do a
quick manual registration of failed volumes. This may be more convenient for the clinician than
repeatedly telling the algorithm to try again using the automatic methods. In the clinical system,
we do not necessarily have to choose one of the algorithms to use. Instead, we can use the faster
algorithm most of the time but have the other available as a backup if the first fails. Alternatively,
the backup could be to run the same algorithm again but with different settings. If we follow
the manual intervention approach, we will need to be very careful to make the interface as simple
as possible, and we will need to think further about how to do this. Feedback from the clinician
would be very helpful in this. We can develop a clinical system that at this point requires a lot of
human interaction (for instance, choosing the algorithm, reslice planes, similarity measures, etc.)
and as we get experience of using it in clinical settings, we can finalise some of the settings. There
will be valuable information in the clinical feedback which will ensure that we develop a system

10



(a) 4 horizontal and vertical reslice pairs (b) 10 horizontal and vertical reslicepairs

Figure 9: Examples of reslice plane configurations used for experimental analysis in Figs. 6 and 7.

which is clinically useful.
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Figure 10: The effect of the number of image reslice pairs in the voxel-array based
multiresolution search algorithm. Here, the same number of slices are considered in all three
directions. At L4, L3, and L2, the voxel arrays are smoothed by convolution with 3D Gaussian
kernels of 48, 12, and 6 points and downsampled by a factor of 16, 4, and 2, respectively. L1 employs
no downsampling (i.e. resxy is 1 pixel, and resz is 0.01 cm) but is smoothed with a 3D Gaussian
kernel of 3 points. L4 performs an exhaustive search in the range (−(3/4)n, (3/4)n)(where n is the
dimension of the voxel array in each coordinate) and subsequent levels of the algorithm are limited
to a narrower range (±1 step in all dimensions centred on the optimum location obtained in the
previous level). There are two configurations shown for the generation of reslices. In configuration
A, the reslices are created within voxel margins of 4 voxels at either side concentrating in the
central region, and in configuration B, voxel margins at either side of 1 voxel. Configuration A
improves the reliability as the majority of the in vitro datasets have features that are concentrated
in the centre. For the generation of a single data point, 16 trials were performed on 16 datasets.
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Figure 11: Two frequent alignments for M4 dataset. The left column shows the alignment
at the global optimum whereas the right column shows the alignment at a local minimum. The
Nelder-Mead simplex algorithm converges to both configurations whereas the voxel-array based
multiresolution search algorithm converges to the local minimum only. On visual inspection both
alignments seem to be correct.
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(a)

(b)

Figure 12: Registration results using the Nelder-Mead simplex algorithm on datasets
containing more than two volumes. The slice across the region is represented by a green
outline and is shown on the right side with blue lines representing the dividing planes. The data
on either side of each dividing plane comes from different volumes.
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