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This tutorial will cover:

� Calibration (temporal and spatial).

� Reslicing and volume rendering.

� Panoramic imaging (real time).

� Segmentation and volume estimation.

� Correcting probe pressure artefacts.
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Sequential freehand 3D ultrasound

Advantages of a freehand approach:

� Scan unlimited volume of the body.

� Use standard, commercially available ultrasound
machines.

� Comparatively cheap.

� Can be accurate.

� Combine scans from different directions.

Advantages of a sequential approach:

� More accurate visualisation (less resampling).

� Lower memory overhead.

� Real-time capabilities.

� More robust segmentation in the original B-scans.
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Temporal calibration
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How do we match the positions and images?

The incoming data streams are asynchronous. The
image stream runs at 25Hz (PAL), while the posi-
tion stream runs at 30Hz.
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Temporal calibration

The images and positions are time-stamped when
they are received by the computer and then stored
in circular buffers.
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The most recent image that lies within a certain
age range is selected: there will be two position
readings on either side of it. The image is labelled
with a position calculated by linear interpolation
between the two position readings.
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Temporal calibration
The time-stamps on the position readings are offset
by a constant amount to account for the different
latencies of the two data streams.

The user holds the probe against skin, then jerks it
off suddenly. A step change is detected in the im-
age and position streams. The offset is set so that
the two changes are observed at the same time.
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The image change is detected by comparing row
and column pixel sums over consecutive frames.
The position change is easily spotted directly from
the position readings.
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Spatial calibration
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We need to work out the transformation from the
position sensor’s receiver to the ultrasound scan
plane. It has eight parameters:
1. The � offset of the scan plane.

2. The � offset of the scan plane.

3. The � offset of the scan plane.

4. The azimuth rotation of the scan plane.

5. The elevation rotation of the scan plane.

6. The roll rotation of the scan plane.

7. The �-direction scale in the ultrasound image.

8. The �-direction scale in the ultrasound image.
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Phantom-based calibration

Scan known shape
from many angles

Record position
readings

Calculate calibration parameters
that make position readings 
consistent with known shape

� Derive non-linear equations from the position
in the images of points on the known object.
Different values of the calibration parameters
will make these points appear to be in different
places in 3D space.

� Solve the equations iteratively to find the set of
calibration parameters that places the points in
3D space in the way that is most consistent with
the known object.
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The cross-wire phantom

The most common calibration technique involves
scanning a phantom made of wires in a water bath.
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The correct calibration parameters will locate the
centre of the cross at the same point in 3D space,
whatever the scanning direction.
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Scan of the cross-wire

� The crossing point has to be located in the im-
age by hand. This severely limits the number
of images that can be used, which in turn limits
the accuracy of the resulting calibration.

� It is hard to see where the centre of the wire is.
This is because the ultrasound beam has a finite
width of anything up to 1cm. There is no way
of relating the position of the wires consistently
to the centre of the ultrasound beam. This in-
troduces further inaccuracy.
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Calibrate on a plane

Scan the base of a water bath. This is simple, easy
and cheap.
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The correct calibration parameters will reconstruct
the base as a plane in 3D space.
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Scan of the plane

The base of the water bath can be detected auto-
matically using standard edge detection techniques.
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Automatic line detection

The random sample consensus (RANSAC) algo-
rithm is used to detect the line in the image. This
is more robust than least-squares.

It is perfectly feasible to use hundreds of scans in
the calibration procedure.
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Minimal scanning sequence

64,5

1 2 3

It is important to exercise all degrees of freedom of
motion, otherwise some of the calibration parame-
ters will be unidentifiable.
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Beam thickness problem

Unfortunately, the beam thickness problem limits
the accuracy with which we can locate the plane in
the images.
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A B
centerline of beam

The first echo will come from point B, whereas we
really want to detect point A.

There are also problems with specular reflection at
glancing angles of incidence: echos from the plane
are weak.
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The Cambridge phantom

The Cambridge phantom overcomes these problems.

wheel rotates
about top
of bar

Insert ultrasound probe
into clamp and tighten bolts

The bar traces out a virtual plane as the phantom
is moved around the base of a water bath.
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Scan of the Cambridge phantom

The reflection of the bar is strong, even when the
assembly is rotated. The reflection comes from the
centre of the ultrasound beam.
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The Cambridge phantom in use

A typical calibration procedure takes less than 10
minutes in total.

The technique is as accurate as any other technique
published in the literature.

The calibration needs to be repeated when the po-
sition sensor is re-mounted on the probe, or when
the clinician changes the pan and zoom settings on
the ultrasound machine.
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3D ultrasound acquisition summary

Freehand scanning
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The calibration processes ensure that we record ac-
curate data. We will now look at how we might
visualise the data.
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Voxel arrays

Conventional 3D ultrasound reconstruction uses a
voxel array.
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A voxel array is like a 3D picture: think of voxels
as 3D pixels.

Why voxel arrays?

� Inertia — MRI and CT use voxel array.

� Relatively easy to reslice, volume render and
segment.

� Efficient use of computer memory.
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Using voxel arrays

The voxel array can be resliced (quickly) . . .

New view

Reslice

. . . or volume rendered.

Rays

(arbitrary rotation)
Voxel array

Image plane
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Using voxel arrays

The voxel array can be segmented.

Segment

Segmentation is a prerequisite for surface render-
ing and volume measurement.

Volume = 0.856 litres
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Voxel arrays from freehand 3D ultrasound

Irregularly sampled data, so . . .

� Voxels may be empty.

� Voxels may be intersected by multiple B-scans.

Slice through voxel array

B-scans

Empy voxel

SIngle intersection

Multiple intersections

Problems

What value do we write into voxels which are in-
tersected by more than one B-scan?

What do we do about empty voxels? They cre-
ate artifacts in reslices and volume renderings, and
they make segmentation very difficult.

What size do we make the voxels?
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Some common “solutions”

� Functional interpolation. Fit basis functions to
the scattered data, then resample at the voxel
centres — very expensive.

� Many faster, ad hoc approaches can be found in
the literature — very arbitrary.

The better interpolation schemes account for the fi-
nite width of the ultrasound beam.

B-scan

Pixel centre

Interpolation kernel

Slice through voxel array

With all voxel schemes, there are many “fudge fac-
tors” to set, the reconstruction takes time and . . .

“The images are filtered beyond recognition, as is
the case with many current commercial systems.”

(Anonymous referee, March 1998)
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Sequential reslicing

Naive approach:

� Find the line of intersection of each B-scan with
the slice plane.

� Extract grey level intensities along this line.

� Paint the intensities onto the slice plane.

(a)
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slice plane

(b)

intersection

B-scan

slice plane

(c)

� The slice comprises a set of line segments.

� We need to fill the gaps.

� We can do better than standard interpolation
between the line segments.
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Sequential reslicing

The gap filling scheme should account for the finite
beam width.
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centre line of beam

Actual beam shape

The intersection of the slice plane with each “fat”
B-scan is now a polygon.

re
pe

at
ed

 B
-s

ca
n

slice plane

(a)

beam thickness

intersections

B-scan

(b) (c)

slice plane

The slice plane is tiled with a set of overlapping
polygons, all filled with grey level intensities.
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Sequential reslicing

Question: Which intensity should be displayed at
places where two or more polygons overlap?

Answer: The one sampled nearest the centre line
of the ultrasound beam.

So paint the intensities onto a wedge, not a flat
polygon.

B-scan

intersections

(a) (b) (c)

viewing direction
slice plane

slice plane

visible data

centre lines

centre lines

invisible data

Tell the graphics system to remove hidden surfaces.

The reslicing algorithm is:

� Effectively free from parameters.

� Fast — exploits standard graphics hardware (tex-
ture mapping or Gouraud shading).
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Sequential reslicing

Compare sequential slices (d)–(f) with correspond-
ing slices through a voxel array (a)–(c).

The voxel array took several minutes to construct
on a good workstation, with simple interpolation.

(a) (b) (c)

(f)(e)(d)

Sequential scheme needs only one B-scan at a time
(in any order) and uses only the graphics buffers.

So it can be done in real-time, as the clinician per-
forms the scan.
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Reslice gallery
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Non-planar reslicing

Non-planar reslicing is also possible. The user spec-
ifies a developable surface, which is ‘painted’ with
the data it intersects. The painted surface is then
flattened out for display on a flat screen.

(s)c
c / (s)

/R

π

n

developable surface non-planar reslice image

unroll

rulings R

rulings

r

r

The surface is defined by a reslice plane � and a
plane curve � ��� �

drawn in �. The surface is swept
out by the set of rulings

�

of length

��� , which are
normal to � and intersect � ��� �

at their midpoints.

The non-planar reslice is constructed in a sequen-
tial framework. Care is taken to preserve distances.
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Constructing the non-planar reslice

� Calculate the pixel dimensions of the non-planar
reslice image. These can be deduced from � ��� �

,

� and the scale factor (mm/pixel) of the B-scans.

� Use the scaling again to locate in 3D space each
pixel of the non-planar reslice image.

(s)c
c / (s)

/R
through pixel centres

pixel centres in 3D space pixels in non-planar reslice image

scaling

rulings

rulings      pass

R

� Shade each pixel according to the intensity of
the nearest B-scan pixel, but do not search be-
yond a distance

�

for the nearest B-scan pixel.

� Areas of the surface which are a long way from
any recorded data are left blank, and not inter-
polated with misleading data.
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Efficient sequential implementation

� Consider each B-scan in turn.

extended
B-scan pixel Rruling

pixel centre
reslice image

d

d

x

y

z

z

B-scan n

� Each extended B-scan pixel containing one of
the reslice image pixels is a candidate for shad-
ing the reslice image pixel: it is the closest pixel
on B-scan � and lies within the distance limit

�

.

� Render the reslice image pixel with the inten-
sity of the extended B-scan pixel, at a depth

�
�

�

.

� Should a pixel in a future B-scan be closer, the
reslice image pixel will be rendered again at a
shallower depth, overwriting the old value.
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Efficient sequential implementation

� The fronto-parallel view reveals how the inter-
section tests can be performed efficiently.

x∆

∆ y

z into the page∆

(x  , y  , z  )11 1

� For each ruling in

�

, locate only the first inter-
section

�
�� � �� � ��
�

to sub-pixel accuracy, and de-
termine the increments

�
�,

�
� and

�
�.

� Then repeatedly add the increments to

�
� � � �� � ��
�

,
rounding down the � and � values to locate the
intersected B-scan pixels.
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Example: 16-week foetus’s leg

The length of the flattened leg is about 75mm.

� The slider controls the interpolation limit

�

.

� Resize the window to change the width � .
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Example: 22-week foetus’s spine

The length of the flattened spine is about 117mm.
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Volume rendering

� Volume rendering can also be performed in the
sequential framework, by blending together a
number of parallel reslices.

data volume

image

parallel reslices

blend

The blending can be performed in three ways:
� Maximum intensity compounding highlights

bright structures like bone.

� Minimum intensity compounding highlights
dark structures like blood vessels.

� Average compounding reduces the visibility of
speckle noise.
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Maximum intensity compounding

� The user sets up the volume rendering by spec-
ifying a standard reslice plane and a thickness.

� Compare the standard, thin reslice (left) with
the 14mm thick reslice (right).

� The bone structure of the foetus’s hand is much
more clearly visible in the volume rendering.

� It was not necessary to take particular care in
positioning the reslice plane.
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Average compounding

� Compare the standard, thin reslice (left) with
the 13mm thick reslice (right).

� The averaging has reduced the level of speckle
noise.

� The foetus’s spine and ribcage are much more
clearly visible.
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Non-planar volume rendering

� Volume renderings can also be constructed by
blending together non-planar reslices.

c (s)u

c(s)

c (s)d

d

(b) surfaces(a) contours and rulings (c) unrolled surfaces and volume rendering

image

blend

Example: a 16-week foetus’s skeleton unrolled.

thick planar reslice thick non-planar reslice
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Panoramas

� Similar techniques can be used for panoramas.

� Like Siemens Siescape, but cheaper!

of first B-scan
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probe m
otion

strip from centre
of B-scan

construct panorama

� Move the probe in the plane of the B-scans.

� Extract a narrow strip from centre of B-scan.

� Stitch together to make a seamless composite.

� Use position sensor readings to register B-scans.

� Siemens use image-based correlation.
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Panoramas

For each pair of B-scans, find

�

and

��
��
�

�
�
�

. Con-
catenate to refer back to first B-scan.

θ

centerline of B-scan n+1 projected
into the plane of B-scan n

centerline of B-scan n centre of B-scan n+1

centre of B-scan n

Use wedges to deal with overlaps.

B-scan

strip
vertical

scan
each
from

centerline

(a) (b) (c)

centerline

viewing direction

visible data

plane of panorama

panorama

Can set strip width automatically for no gaps.

So no parameters, no memory � real-time.
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Panorama gallery
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Volume measurement

Objectives:

� To measure the way structures change in size
during the progression of a disease.

� To assess response to treatment through changes
in the volumes of structures.

� To provide accurate volumes for calculating drug
dosage and planning treatment.

Current clinical practice often involves the use of
formulae based on the volume of an ellipsoid, mod-
ified by various fudge factors. These estimates can
be in error by over 20% in some cases.

Sequential 3D ultrasound offers the possibility of
a more accurate technique, fast enough to be com-
pleted while the patient is present at the clinic.

Before a volume can be estimated, it is first neces-
sary to segment the structure of interest. This is by
far the trickiest and most time-consuming step.
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Manual segmentation

Segmentation can be performed by drawing around
the structures of interest in the original B-scans.
This is slow, but reliable.
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Manual segmentation

After several B-scans have been segmented, it is
possible to estimate the volume using one of two
techniques: cubic planimetry and shape-based in-
terpolation.
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Volume measurement overview

triangulated surface
and volume estimate

shape-based
interpolation

Segmentation Multi-planar contours

volume estimate

cubic planimetry
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Cubic planimetry

linear interpolation
(area gives volume estimate)

cubic interpolation
(area gives volume estimate)

contours 2D representation
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Shape-based interpolation

interpolation
directions

interpolated
distance field

triangulate
zero crossings

shade surface

calculate enclosed volume

contours distance field maximal discs
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Shape-based interpolation

Here’s the hepatic system reconstructed using shape-
based interpolation. In-vivo experiments have shown
the volume estimate to be accurate to within 5% of
the true value. Only a sparse set of cross-sections
is required.
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Shape-based interpolation

� Another example of shape-based interpolation.

Head and torso B-scan Head, torso and limbs B-scan

‘Outline’ window ‘Surface’ window
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Segmenting large structures

� Cross sections of large structures (like the liver)
do not fit in a single B-scan.

� Multiple sweeps of the probe are required to
scan large structures in their entirety.

Three sweeps Two dividing planes

� Space can be partitioned using dividing planes.
In the example above, we have three partitions
and two dividing planes.

� Each of the three partitions is associated with a
particular sweep.
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Segmenting large structures

� The B-scans are segmented by hand as before,
except now only part of a cross-section is visible
in each B-scan.

� The user therefore traces open curves in the B-
scans.

Segmentation in partition 1 Segmentation in partition 2

� The shaded areas correspond to another parti-
tion which is best segmented in another sweep.

� It is only necessary to trace the boundary in the
unshaded areas.
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Segmenting large structures

� Each sweep yields a segmentation for one par-
tition of space.

� Cubic planimetry can be used to provide a vol-
ume for each partition, then summed to find the
total volume (below left).

Combined contours Combined surfaces

� Shape-based interpolation can be used to fit a
surface in each partition.

� The surfaces are then combined to visualise the
entire structure (above right).
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Visualising large structures

� Dividing planes can also help when reslicing
large structures.

� If resliced in the usual way, mis-registration arte-
facts are apparent where one sweep overlaps
another.

� Also, the black background of one sweep inter-
feres with the ultrasound data in another.

Without dividing planes With dividing planes

� With dividing planes, only one sweep is used
in each partition.

� The mis-registration is still apparent, but the
reslice is certainly intelligible.
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3D Doppler ultrasound

Stradx can also record colour Doppler data using
only one byte per pixel. The pixels are coded on-
the-fly using luma and chroma thresholds to clas-
sify pixels as coloured or greyscale.

The thresholds are cor-
rect when the image in
Stradx’s preview win-
dow matches the image
on the ultrasound ma-
chine’s screen.
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Visualising colour data

Colour data can be visualised in precisely the same
way as greyscale data. This includes reslicing . . .

. . . and panoramas . . .
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Visualising colour data

. . . and volume renderings . . .

� The ‘Outline’ window (left) shows a set of seg-
mentation contours around the blood vessels,
and the limits of the 20mm volume rendering.

� The volume rendering itself is on the right: note
the bifurcations in the artery (red), and the vein
(blue) hidden behind the artery.

� The stripple artefact is caused by the Doppler
region-of-interest displayed on the ultrasound
machine’s screen.
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Segmentation by thresholding

3D Doppler ultrasound data sets are relatively easy
to segment by thresholding.

The user interactively selects the range of colours
to be segmented, which are highlighted in magenta
in all Stradx data windows.

In this example, the
user has selected all the
red pixels in the B-scan.
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Semi-automatic segmentation

Some input is still required by the user, to:

� Indicate which structures are to be segmented.

� Smooth over any noise or Doppler drop-out.

The user just clicks on each blob to be segmented.
A “grassfire” algorithm is used to fit a contour to
the edge of the blob. The user can control how far
the fire can jump (to cope with noise) and can edit
the contours by hand if necessary (rare).

This segmentation re-
quired only four mouse
clicks. Note how the
grassfire algorithm has
dealt with the signal
drop-out, by jumping
over small clusters of
grey pixels.
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Pulsatile motion and gating

The user should segment B-scans from the same
point in the cardiac cycle to cope with the pulsatile
motion of the blood vessels.

Stradx provides a facility to estimate the ECG sig-
nal (by counting coloured pixels) and automatically
segment all thresholded pixels at systole.
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Pulsatile motion and gating

Here are the segmented vessels in the outline win-
dow. They are really tiny: the segmented volume
is less than 0.7ml. The systole segmentation was
entirely automatic.
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Pulsatile motion and gating

Here’s a surface rendering of the segmented ves-
sel, generated using shape-based interpolation. The
rendering and both volume estimates are available
within one minute of completing the scan.
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Body-centered visualisation

Stradx can display the data superimposed on a ren-
dering of the human body, so there can be no doubt
where the data came from.
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Correcting probe pressure artefacts

� Varying the probe pressure during the scan dy-
namically deforms the anatomy, leading to re-
construction artefacts.

� These are particularly pronounced with high res-
olution scans. Here are some typical reslices:

� Stradx’s image correlation algorithms can com-
pensate for varying probe pressure by reposi-
tioning and warping the B-scans:
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Correcting probe pressure artefacts

The compensation can also be applied to panormic
data sets. Here’s a thyroid before compensation . . .

. . . and after compensation . . .

Sequential 3D Diagnostic Ultrasound using the Stradx System 67

Conclusions

Stradx version 6.2 offers:

� 3D ultrasound acquisition (greyscale or Doppler).

� State-of-the-art (and easy) calibration.

� Instant reviewing, reslicing, volume rendering
and panoramas.

� Manual and semi-automatic segmentation.

� State-of-the-art volume measurement and sur-
face fitting tools.

� Probe pressure artefact removal.

� Body-centered visualisation facilities.

You’ll need an ultrasound machine, a Linux PC or
an SGI workstation, and a position sensor (Polaris,
Polhemus or Bird). Download for free from:
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