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This tutorial will cover:

� Calibration (temporal and spatial).

� Reslicing and volume rendering.

� Panoramic imaging (real time).

� Segmentation and volume estimation.

� Correcting probe pressure artefacts.
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Sequential freehand 3D ultrasound

Advantages of a freehand approach:

� Scanunlimited volume of the body.

� Usestandard, commercially available ultrasound
machines.

� Comparatively cheap.

� Can be accurate.

� Combine scansfrom dif ferent dir ections.

Advantages of a sequential approach:

� Mor e accuratevisualisation (lessresampling).

� Lower memory overhead.

� Real-time capabilities.

� Mor erobust segmentation in the original B-scans.
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Temporal calibration
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How do we match the positions and images?

The incoming data streamsare asynchronous. The
image stream runs at 25Hz (PAL), while the posi-
tion stream runs at 30Hz.
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Temporal calibration

The images and positions are time-stamped when
they are received by the computer and then stored
in circular buffers.
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The most recent image that lies within a certain
age range is selected: there will be two position
readings on either side of it. The image is labelled
with a position calculated by linear interpolation
between the two position readings.
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Temporal calibration

The time-stamps on the position readingsareoffset
by a constant amount to account for the dif ferent
latenciesof the two data streams.

The user holds the probe against skin, then jerks it
off suddenly. A step change is detected in the im-
age and position streams. The offset is set so that
the two changesare observed at the sametime.
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The image change is detected by comparing row
and column pixel sums over consecutive frames.
The position changeis easily spotted dir ectly from
the position readings.
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Spatial calibration

receiver
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plane
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We need to work out the transformation from the
position sensor's receiver to the ultrasound scan
plane. It has eight parameters:

1. The � offset of the scanplane.

2. The � offset of the scanplane.

3. The � offset of the scanplane.

4. The azimuth rotation of the scanplane.

5. The elevation rotation of the scanplane.

6. The roll rotation of the scanplane.

7. The �-dir ection scalein the ultrasound image.

8. The �-dir ection scalein the ultrasound image.
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Phantom-based calibration

Scan known shape
from many angles

Record position
readings

Calculate calibration parameters
that make position readings 
consistent with known shape

� Derive non-linear equations from the position
in the images of points on the known object.
Dif ferent values of the calibration parameters
will make thesepoints appear to be in dif ferent
placesin 3D space.

� Solve the equations iteratively to �nd the set of
calibration parameters that placesthe points in
3D spacein the way that is most consistentwith
the known object.
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The cross-wire phantom

The most common calibration technique involves
scanning a phantom made of wir esin a water bath.
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The correct calibration parameters will locate the
centre of the cross at the same point in 3D space,
whatever the scanning dir ection.
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Scanof the cross-wire

� The crossing point has to be located in the im-
age by hand. This severely limits the number
of images that can be used, which in turn limits
the accuracyof the resulting calibration.

� It is hard to seewhere the centre of the wir e is.
This is becausethe ultrasound beamhasa �nite
width of anything up to 1cm. There is no way
of relating the position of the wir esconsistently
to the centre of the ultrasound beam. This in-
troduces further inaccuracy.
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Calibrate on a plane

Scanthe baseof a water bath. This is simple, easy
and cheap.
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The correct calibration parameters will reconstruct
the baseasa plane in 3D space.
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Scanof the plane

The base of the water bath can be detected auto-
matically using standard edgedetection techniques.
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Automatic line detection

The random sample consensus (RANSAC) algo-
rithm is used to detect the line in the image. This
is more robust than least-squares.

It is perfectly feasible to use hundr eds of scansin
the calibration procedure.
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Minimal scanning sequence

64,5

1 2 3

It is important to exerciseall degreesof freedom of
motion, otherwise someof the calibration parame-
ters will be unidenti�able.



Sequential 3D Diagnostic Ultrasound using the Stradx System 14

Beam thickness problem

Unfortunately , the beam thickness problem limits
the accuracywith which we can locate the plane in
the images.
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A B
centerline of beam

The �rst echo will come from point B, whereaswe
really want to detect point A.

There are also problems with specular re�ection at
glancing anglesof incidence: echosfrom the plane
are weak.
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The Cambridge phantom

The Cambridge phantom overcomestheseproblems.

wheel rotates
about top
of bar

Insert ultrasound probe
into clamp and tighten bolts

The bar traces out a virtual plane as the phantom
is moved around the baseof a water bath.
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Scanof the Cambridge phantom

The re�ection of the bar is strong, even when the
assembly is rotated. The re�ection comesfrom the
centre of the ultrasound beam.
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The Cambridge phantom in use

A typical calibration procedure takes less than 10
minutes in total.

The technique is asaccurateasany other technique
published in the literatur e.

The calibration needsto be repeatedwhen the po-
sition sensor is re-mounted on the probe, or when
the clinician changesthe pan and zoom settings on
the ultrasound machine.
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3D ultrasound acquisition summary

Freehand scanning
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The calibration processesensure that we record ac-
curate data. We will now look at how we might
visualise the data.
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Voxel arrays

Conventional 3D ultrasound reconstruction usesa
voxel array.
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A voxel array is like a 3D pictur e: think of voxels
as3D pixels.

Why voxel arrays?

� Inertia — MRI and CT use voxel array.

� Relatively easy to reslice, volume render and
segment.

� Ef�cient use of computer memory.
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Using voxel arrays

The voxel array can be resliced (quickly) . . .

New view

Reslice

. . .or volume rendered.

Rays

(arbitrary rotation)
Voxel array

Image plane
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Using voxel arrays

The voxel array can be segmented.

Segment

Segmentation is a prerequisite for surface render-
ing and volume measurement.

Volume = 0.856 litres
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Voxel arrays from freehand 3D ultrasound

Irr egularly sampled data, so . . .

� Voxels may be empty.

� Voxels may be intersected by multiple B-scans.

Slice through voxel array

B-scans

Empy voxel

SIngle intersection

Multiple intersections

Problems

What value do we write into voxels which are in-
tersectedby more than one B-scan?

What do we do about empty voxels? They cre-
ateartifacts in reslicesand volume renderings, and
they make segmentation very dif �cult.

What size do we make the voxels?
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Some common “solutions”

� Functional interpolation. Fit basis functions to
the scattered data, then resample at the voxel
centres— very expensive.

� Many faster, adhocapproachescan be found in
the literatur e — very arbitrary .

The better interpolation schemesaccount for the �-
nite width of the ultrasound beam.

B-scan

Pixel centre

Interpolation kernel

Slice through voxel array

With all voxel schemes,there are many “fudge fac-
tors” to set, the reconstruction takes time and . . .

“The images are �lter ed beyond recognition, as is
the casewith many current commercial systems.”

(Anonymous referee,March 1998)
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Sequential reslicing

Naive approach:

� Find the line of intersection of eachB-scanwith
the slice plane.

� Extract grey level intensities along this line.

� Paint the intensities onto the slice plane.

(a)

B
-s
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slice plane

(b)

intersection

B-scan

slice plane

(c)

� The slice comprises a set of line segments.

� We need to �ll the gaps.

� We can do better than standard interpolation
between the line segments.
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Sequential reslicing

The gap �lling schemeshould account for the �nite
beam width.
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centre line of beam

Actual beam shape

The intersection of the slice plane with each “fat”
B-scanis now a polygon.
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The slice plane is tiled with a set of overlapping
polygons, all �lled with grey level intensities.
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Sequential reslicing

Question: Which intensity should be displayed at
placeswhere two or more polygons overlap?

Answer: The one sampled nearest the centre line
of the ultrasound beam.

So paint the intensities onto a wedge, not a �at
polygon.

B-scan

intersections

(a) (b) (c)

viewing direction
slice plane

slice plane

visible data

centre lines

centre lines

invisible data

Tell the graphics systemto removehidden surfaces.

The reslicing algorithm is:

� Effectively freefrom parameters.

� Fast— exploits standard graphics hardwar e(tex-
ture mapping or Gouraud shading).
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Sequential reslicing

Compare sequential slices(d)–(f) with correspond-
ing slicesthrough a voxel array (a)–(c).

The voxel array took several minutes to construct
on a good workstation, with simple interpolation.

(a) (b) (c)

(f)(e)(d)

Sequential schemeneedsonly one B-scanat a time
(in any order) and usesonly the graphics buffers.

So it can be done in real-time, as the clinician per-
forms the scan.
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Reslice gallery
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Non-planar reslicing

Non-planar reslicing is alsopossible. The user spec-
i�es a developable surface,which is `painted' with
the data it intersects. The painted surface is then
�attened out for display on a �at screen.

(s)c
c / (s)

/R

p

n

developable surface non-planar reslice image

unroll

rulings R

rulings

r

r

The surface is de�ned by a reslice plane � and a
plane curve �

��� �

drawn in �. The surface is swept
out by the set of rulings

�

of length

���

, which are
normal to � and intersect �

��� �

at their midpoints.

The non-planar reslice is constructed in a sequen-
tial framework. Care is taken to preservedistances.
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Constructing the non-planar reslice

� Calculate the pixel dimensions of the non-planar
reslice image. Thesecan be deduced from �

��� �

,

� and the scalefactor (mm/pixel) of the B-scans.

� Use the scaling again to locate in 3D spaceeach
pixel of the non-planar resliceimage.

(s)c
c / (s)

/R
through pixel centres

pixel centres in 3D space pixels in non-planar reslice image

scaling

rulings

rulings      pass

R

� Shade each pixel according to the intensity of
the nearest B-scanpixel, but do not search be-
yond a distance

�

for the nearest B-scanpixel.

� Ar easof the surfacewhich are a long way from
any recorded data are left blank, and not inter-
polated with misleading data.
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Ef�cient sequential implementation

� Consider eachB-scanin turn.

extended
B-scan pixel Rruling

pixel centre
reslice image

d

d

x

y

z

z

B-scan n

� Each extended B-scan pixel containing one of
the reslice image pixels is a candidate for shad-
ing the resliceimage pixel: it is the closestpixel
on B-scan � and lies within the distance limit

�

.

� Render the reslice image pixel with the inten-
sity of the extended B-scanpixel, at adepth

�

�

�

.

� Should a pixel in a futur e B-scanbe closer, the
reslice image pixel will be rendered again at a
shallower depth, overwriting the old value.
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Ef�cient sequential implementation

� The fronto-parallel view revealshow the inter-
section testscan be performed ef�ciently .

xD

Dy

z into the pageD

(x  , y  , z  )11 1

� For eachruling in

�

, locate only the �rst inter-
section
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�
�

�
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to sub-pixel accuracy, and de-
termine the increments

�

�,

�

� and

�

�.

� Then repeatedly add the incrementsto

�

�

�

�

�

�

�

�

�

�

,
rounding down the � and � values to locate the
intersected B-scanpixels.
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Example: 16-week foetus' s leg

The length of the �attened leg is about 75mm.

� The slider controls the interpolation limit

�

.

� Resizethe window to changethe width � .
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Example: 22-week foetus' s spine

The length of the �attened spine is about 117mm.
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Volume rendering

� Volume rendering can also be performed in the
sequential framework, by blending together a
number of parallel reslices.

data volume

image

parallel reslices

blend

The blending can be performed in threeways:

� Maximum intensity compounding highlights
bright structureslike bone.

� Minimum intensity compounding highlights
dark structureslike blood vessels.

� Average compounding reducesthe visibility of
specklenoise.
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Maximum intensity compounding

� The user setsup the volume rendering by spec-
ifying a standard resliceplane and a thickness.

� Compare the standard, thin reslice (left) with
the 14mm thick reslice(right).

� The bone structure of the foetus's hand is much
more clearly visible in the volume rendering.

� It was not necessaryto take particular care in
positioning the resliceplane.
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Average compounding

� Compare the standard, thin reslice (left) with
the 13mm thick reslice(right).

� The averaging has reduced the level of speckle
noise.

� The foetus's spine and ribcage are much more
clearly visible.
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Non-planar volume rendering

� Volume renderings can also be constructed by
blending together non-planarreslices.

c (s)u

c (s)

c (s)d

d

(b) surfaces(a) contours and rulings (c) unrolled surfaces and volume rendering

image

blend

Example: a 16-week foetus's skeleton unrolled.

thick planar reslice thick non-planar reslice
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Panoramas

� Similar techniques can be used for panoramas.

� Like SiemensSiescape,but cheaper!
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probe m
otion

strip from centre
of B-scan

construct panorama

� Move the probe in the plane of the B-scans.

� Extract a narrow strip from centre of B-scan.

� Stitch together to make a seamlesscomposite.

� Useposition sensorreadings to registerB-scans.

� Siemensuse image-basedcorrelation.
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Panoramas

For each pair of B-scans,�nd

�

and

�
�

���

�

�

�

. Con-
catenateto refer back to �rst B-scan.

q

centerline of B-scan n+1 projected
into the plane of B-scan n

centerline of B-scan n centre of B-scan n+1

centre of B-scan n

Use wedges to deal with overlaps.

B-scan

strip
vertical

scan
each
from

centerline

(a) (b) (c)

centerline

viewing direction

visible data

plane of panorama

panorama

Can set strip width automatically for no gaps.

Sono parameters, no memory � real-time.
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Panorama gallery
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Volume measurement

Objectives:

� To measure the way structures change in size
during the progressionof a disease.

� To assessresponseto treatment through changes
in the volumes of structures.

� To provide accuratevolumes for calculating drug
dosageand planning treatment.

Current clinical practice often involves the use of
formulae basedon the volume of an ellipsoid, mod-
i�ed by various fudge factors. Theseestimatescan
be in error by over 20%in somecases.

Sequential 3D ultrasound offers the possibility of
a more accurate technique, fast enough to be com-
pleted while the patient is presentat the clinic.

Before a volume can be estimated, it is �rst neces-
sary to segment the structure of interest. This is by
far the trickiest and most time-consuming step.
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Manual segmentation

Segmentationcanbeperformed by drawing around
the structures of interest in the original B-scans.
This is slow, but reliable.
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Manual segmentation

After several B-scanshave been segmented, it is
possible to estimate the volume using one of two
techniques: cubic planimetry and shape-basedin-
terpolation .

Sequential 3D Diagnostic Ultrasound using the Stradx System 47

Volume measurement overview

triangulated surface
and volume estimate

shape-based
interpolation

Segmentation Multi-planar contours

volume estimate

cubic planimetry
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Cubic planimetry

linear interpolation
(area gives volume estimate)

cubic interpolation
(area gives volume estimate)

contours 2D representation
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Shape-based interpolation

interpolation
directions

interpolated
distance field

triangulate
zero crossings

shade surface

calculate enclosed volume

contours distance field maximal discs
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Shape-based interpolation

Here's the hepatic systemreconstructed using shape-
basedinterpolation. In-vivo experiments have shown
the volume estimate to be accurateto within 5%of
the true value. Only a sparseset of cross-sections
is required.
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Shape-based interpolation

� Another example of shape-basedinterpolation.

Head and torso B-scan Head, torso and limbs B-scan

`Outline' window `Surface'window
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Segmenting large structures

� Crosssectionsof large structures(like the liver)
do not �t in a single B-scan.

� Multiple sweeps of the probe are required to
scanlarge structuresin their entirety.

Threesweeps Two dividing planes

� Spacecan be partitioned using dividing planes.
In the example above, we have threepartitions
and two dividing planes.

� Eachof the threepartitions is associatedwith a
particular sweep.
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Segmenting large structures

� The B-scansare segmented by hand as before,
exceptnow only part of a cross-sectionis visible
in eachB-scan.

� The user therefore traces opencurves in the B-
scans.

Segmentation in partition 1 Segmentation in partition 2

� The shaded areascorrespond to another parti-
tion which is bestsegmentedin another sweep.

� It is only necessaryto trace the boundary in the
unshaded areas.
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Segmenting large structures

� Each sweep yields a segmentation for one par-
tition of space.

� Cubic planimetry can be used to provide a vol-
ume for eachpartition, then summed to �nd the
total volume (below left).

Combined contours Combined surfaces

� Shape-basedinterpolation can be used to �t a
surface in eachpartition.

� The surfacesare then combined to visualise the
entire structure (above right).
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Visualising large structures

� Dividing planes can also help when reslicing
large structures.

� If reslicedin the usual way, mis-registration arte-
facts are apparent where one sweep overlaps
another.

� Also, the black background of one sweep inter-
fereswith the ultrasound data in another.

Without dividing planes With dividing planes

� With dividing planes, only one sweep is used
in eachpartition.

� The mis-registration is still apparent, but the
resliceis certainly intelligible.
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3D Doppler ultrasound

Stradx can also record colour Doppler data using
only one byte per pixel. The pixels are coded on-
the-�y using luma and chroma thresholds to clas-
sify pixels ascoloured or greyscale.

The thresholds are cor-
rect when the image in
Stradx's preview win-
dow matchesthe image
on the ultrasound ma-
chine's screen.
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Visualising colour data

Colour data canbevisualised in precisely the same
way asgreyscaledata. This includes reslicing . . .

. . .and panoramas . . .
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Visualising colour data

. . .and volume renderings . . .

� The `Outline' window (left) shows a set of seg-
mentation contours around the blood vessels,
and the limits of the 20mm volume rendering.

� The volume rendering itself is on the right: note
the bifur cations in the artery (red), and the vein
(blue) hidden behind the artery.

� The stripple artefact is caused by the Doppler
region-of-inter est displayed on the ultrasound
machine's screen.
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Segmentation by thresholding

3D Doppler ultrasound data setsarerelatively easy
to segment by thresholding.

The user interactively selectsthe range of colours
to besegmented,which arehighlighted in magenta
in all Stradx data windows.

In this example, the
user has selectedall the
red pixels in the B-scan.
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Semi-automatic segmentation

Someinput is still required by the user, to:

� Indicate which structuresare to be segmented.

� Smooth over any noise or Doppler drop-out.

The user just clicks on eachblob to be segmented.
A “grass�r e” algorithm is used to �t a contour to
the edge of the blob. The user can control how far
the �r e can jump (to cope with noise) and can edit
the contours by hand if necessary(rare).

This segmentation re-
quir ed only four mouse
clicks. Note how the
grass�r e algorithm has
dealt with the signal
drop-out, by jumping
over small clusters of
grey pixels.
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Pulsatile motion and gating

The user should segment B-scansfrom the same
point in the cardiac cycle to copewith the pulsatile
motion of the blood vessels.

Stradx provides a facility to estimate the ECG sig-
nal (by counting coloured pixels) and automatically
segment all thresholded pixels at systole.
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Pulsatile motion and gating

Here are the segmentedvesselsin the outline win-
dow. They are really tiny: the segmented volume
is less than 0.7ml. The systole segmentation was
entirely automatic.
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Pulsatile motion and gating

Here's a surface rendering of the segmented ves-
sel,generatedusing shape-basedinterpolation. The
rendering and both volume estimatesare available
within oneminuteof completingthescan.



Sequential 3D Diagnostic Ultrasound using the Stradx System 64

Body-centered visualisation

Stradx candisplay the data superimposed on a ren-
dering of the human body, sotherecanbeno doubt
where the data camefrom.
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Correcting probe pressure artefacts

� Varying the probe pressure during the scandy-
namically deforms the anatomy, leading to re-
construction artefacts.

� Theseareparticularly pronounced with high res-
olution scans.Here are some typical reslices:

� Stradx's image correlation algorithms can com-
pensate for varying probe pressure by reposi-
tioning and warping the B-scans:
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Correcting probe pressure artefacts

The compensation canalso beapplied to panormic
data sets.Here's a thyr oid beforecompensation . . .

. . . and after compensation . . .
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Conclusions

Stradx version 6.2offers:

� 3D ultrasound acquisition (greyscaleor Doppler).

� State-of-the-art (and easy)calibration.

� Instant reviewing, reslicing, volume rendering
and panoramas.

� Manual and semi-automatic segmentation.

� State-of-the-art volume measurement and sur-
face�tting tools.

� Probe pressure artefact removal.

� Body-centered visualisation facilities.

You'll need an ultrasound machine, a Linux PC or
an SGIworkstation, and a position sensor(Polaris,
Polhemus or Bird). Download for freefrom:
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