A SUBSPACE APPROACH TO SOLVING
COMBINATORIAL OPTIMIZATION
PROBLEMS WITH HOPFIELD NETWORKS
S.V.B.Aiyer & F.Fallside
CUED/F-INFENG/TR 55

January 4, 1991

Cambridge University Engineering Department
Trumpington Street
Cambridge CB2 1PZ
England

Email: svb10 / fallside @dsl.eng.cam.ac.uk

Submitted to IEEE Transactions on Neural Networks

Abstract

This paper extends and generalizes the subspace
analysis of the Hopfield Network presented in our
earlier work [1]. In [1] it was shown that the ability
of the Hopfield Network to confine a vector within a
particular subspace was essential to the network’s
ability to reach valid solutions to the Travelling
Salesman problem. Through the use of Kronecker
(Tensor) products, this paper shows how an analo-
gous subspace can be constructed for a much larger
class of combinatorial optimization problems. By
using the form of this subspace as the basis for de-
termining the elements of the network connection
matrix, convergence to a valid solution can be guar-
anteed. Further, the quality of the final solution is
significantly improved. This is confirmed by bench-
mark experiments using 30 and 50 city Travelling
Salesman problems as an illustrative example. These
indicate that the network can reliably and efficiently
achieve solutions within 2% of the global optimum.

Introduction

The Hopfield Network employs one of the simplest
possible neural network feedback architectures (see
Fig 1). Yet Hopfield and Tank demonstrated in their
1985 paper [4] that the network had significant emer-
gent computational power: specifically it could solve
NP-complete, Travelling Salesman type combinato-
rial optimization problems. In earlier work [2][3]
Hopfield had proved that the network operated so
as to minimise a Liapunov function which was a
quadratic function of the network output. The pre-
cise form of this function depended upon the free
parameters of the network i.e the matrix of connec-
tion strengths and vector of input biases. Their ap-
proach for the Travelling Salesman problem relied
upon specifying two quadratic energy functions of
the network output. The first was minimised when
the network output represented a valid problem so-
lution. The second was proportional to the ‘cost’
of this solution. The sum of both of these formed
a problem specific quadratic energy function. They
then showed it was possible to set the free param-
eters of the network so that the network Liapunov
function was identical to the problem specific energy
function. Hence the network would operate so as to
minimise the problem specific energy function and
so potentially find the minimum ‘cost’ solution.

This method of formulating the network can be char-
acterised as a top down approach, the reason be-
ing that at first the problem specific energy func-
tion is formulated, and then this is used to derive
the free parameters of the network. Unfortunately
although this approach gives the network the po-

tential to solve the TSP, it does not guarantee that
this will be the outcome. This is confirmed by the
fact that many researchers have found the network
highly unreliable. Hopfield and Tank in [4] them-
selves found difficulty in using the network to solve
30-city problems, whilst Wilson and Pawley [6] re-
ported problems even replicating the 10-city results.
The consensus seems to be that the network rarely
reaches a valid solution, and even when it does the
solution is of a poor ‘quality’.

In our previous paper [1] an intermediate approach
to formulating the free parameters of the network
was developed. This consisted of first proving the
existence of a subspace (strictly speaking a linear
manifold) which contains only those hypercube cor-
ners which represent valid solutions to the Travel-
ling Salesman problem. It was then demonstrated
that with appropriately set parameters, the network
would confine its output to this subspace, thus en-
suring convergence to a valid solution. The approach
is novel in the sense that instead of the first step be-
ing the specification of an energy function, the first
step 1s to analyse the form of the subspace within
which the network must confine its output. Once
this is done, both the energy function and the free
parameters of the network can be easily derived.

This paper seeks to take this approach one step fur-
ther, by generalising the concept of the confinement
subspace within which the network output must lie.
Through an analysis based on Kronecker products,
it is shown that such a subspace can be constructed
for a much larger class of combinatorial optimization
problems. This is used to develop a general frame-
work for deriving the free parameters of the network,
in such a way that convergence to a valid solution
is guaranteed. Two other useful results also emerge
from this analysis. Firstly it allows a modified net-
work to be proposed, which has significant speed and
reliability advantages over the original Hopfield net-
work. Secondly it allows a detailed analysis of the
conditions necessary to ensure strict convergence to
a hypercube corner. Finally, confirmation of the the-
oretical claims made in this paper is achieved in ex-
periments with 30 and 50-city Travelling salesman
problems.

QOutline

Initially there is a brief summary of the Hopfield net-
work and how its output can be used to represent the
solutions to certain types of combinatorial optimiza-
tion problems. The next section then introduces the
key properties of Kronecker products, together with
the notation conventions and standard matrices em-
ployed in the rest of this paper. This is followed by a

section which, starting from a simple 3-dimensional
example, uses the Kronecker product notation to de-
rive the general expression for the subspace within
which the network must confine its output. Using
this expression, the next section shows how the free
parameters of the network can be derived in such
a way that the resulting network Liapunov function
will ensure confinement to the correct subspace. The
section also demonstrates how the ‘cost’ term of the
problem specific energy function can be cast into the
Kronecker product notation. This has the benefit of
reducing the computational complexity of simulating
the network. Further improvements to the network
are proposed in the following section, which develops
a modified network with much greater speed and re-
liability then Hopfield network. However it is shown
that the network retains both key functional prop-
erties of the original Hopfield network together with
its ease of implementation on analogue hardware.
In addition a detailed analysis is performed of how
the modified network guarantees both convergence
to the correct subspace as well as eventual conver-
gence to a hypercube corner. By demonstrating an
equivalence with quadratic programming problems,
the next section shows that there is a trade-off be-
tween the optimality of the final solution and the
need to enforce convergence to a hypercube corner.
An algorithm for dealing with the adverse effects of
this trade-off is then proposed. Finally to confirm
the theory developed in this paper, experiments with
the modified network are performed using Hopfield
& Tank’s original 30-city [4] and Durbin & Wilshaw’s
50-city Travelling Salesman problems as illustrative
examples.

Summary of the Hopfield network

The Hopfield network is constructed by connecting a
large number of simple processing elements to each
other. In general the i*" processing element, or neu-
ron, is described by two variables: its current state
u;, and its output v;. The output is related to the
state by a simple non-decreasing monotonic output
function such that

v = g(u;)

This function operates as a threshold function to
limit the output of each neuron to the interval 0 to 1,
in order to ensure that the final state of the network
corresponds to a corner of the unit hypercube.

The output of the ** neuron is fed to the input of
the j** neuron by a connection of strength Tij. In
addition each neuron has an offset bias of i fed to
its input. The state of the ¢** neuron, u;, is updated
by a function of the total input to the neuron. The

exact nature of the form of g(u;) and the update
procedure depends upon whether the continuous or
discrete Hopfield network is being used. In the dis-
crete model g(u;) is a step function of the form,

g(u) _ { 0 u; <05
and consequently v; is a discrete variable with a
value of 0 or 1. In addition u; is updated in dis-
crete time steps by replacement with a value given
by a function of its total input. In the continuous
model, v; is a continuous variable in the interval 0

to 1 and g(u;) is a continuous function, usually a
hyperbolic tangent of the form,

g(u;) = % + %tanh(ﬁui)

In this case, so that stability can be guaranteed, u; 1s
updated continously by evaluating O%(u,-) as a func-
tion of the total input to the #** neuron.

This paper only uses the continuous network with
synchronous update. The reason for these choices
is that the continuous network is much better at
avoiding sub-optimal local minima than the discrete
network and synchronous update is much faster and
more reliable than asynchronous update. Also in this
paper, the states of the neurons will be collectively
denoted by the vector u, the outputs by the vector
v , the connection strengths by the matrix T and
the offset biases by the vector i®.

A schematic diagram of the continuous Hopfield Net-
work and the operation of its dynamic equation is
shown in Fig 1.

The operation of the continuous Hopfield Network
as formulated in [4] is governed by the following dy-
namic update/differential equation:

ﬁ:_E+Tv+ib where v = g(u) (1)
r

Hopfield proves stability for this network by showing
that with this dynamic equation the network output
v evolves so as to minimise the Liapunov function:

E= —%VTTV —({i"'v+ 71_2/01) g (a)da (2)

N.B. For the rest of this paper the —% and
LS 5 g7 (a)da terms will be ignored, since by
making |T| or 7 arbitrarily large they can be made
negligible.

Mapping combinatorial optimization
problems

A key property of combinatorial optimization prob-
lems is that there is a finite set of solutions, hence

b

@
R
f)u H: ?v
(b) *(%H— Tv
—
i

(a) Non-linear threshold functions constraining
v to the unit hypercube

(b) The change in u is specified by the differ-
ential equation (1). However in a computer
simulation a discrete approximation has to
be used, where time is split up into a series
of discrete time steps At and the change in
u is given by,

Au=Atd(u)= At(—g +Tv+i%)

Figure 1: Schematic diagram of continuous Hopfield
network

it is possible to represent each solution by an inte-
ger or even a set of integers. Consequently if the
output vector of a Hopfield network is to represent
such a solution, it must be discrete. The usual way
of imposing this constraint is to confine the output
of the network to the unit hypercube, and to ensure
that the network dynamics will eventually force the
output into a corner of the unit hypercube. At these
corners the network output vector, v, will have ele-
ments which are either 0 or 1. The problem of map-
ping a particular combinatorial optimization prob-
lem therefore reduces to,

(i) Finding a way of using a vector of zeros and ones
to represent the solutions of the problem.

(ii) Finding a way of measuring the ‘cost’ of the
solution, in such a way that minimising the
quadratic Liapunov function (2) will select a
minimum ‘cost’ solution. Ultimately it is this
feature that allows the Hopfield network to solve
combinatorial optimization problems.

This paper is concerned with combinatorial opti-
mization problems which have solutions that can be
represented by a fixed length vector of integers, each
of which is within a certain range. Although this
condition is quite restrictive, there are a large class
of problems that satisfy 1t. This class includes the
Travelling Salesman problem (TSP), the Graph Par-
titioning problem (GPP) ! 2 and even certain types
of Dynamic Programming problems.

Let the vector which represents a solution be de-
noted by p and be of length N. Further let its ele-
ments be integers in the range {1,---, M}. Thus,

me{l,"',M} where mE{l,,N} (3)

As a specific example consider the Travelling Sales-
man problem. For a N-city problem the final solu-
tion must represent a possible tour which visits each
city once and only once. This can be done by let-
ting p,, be the position of city m in the tour. For
example, in a 4-city TSP if the final tour order is:

city 4; city 1; city 3; city 2; city 4

then the vector representing this would be given by,

pT = [23 43 33 1]

1A GPP for a graph with N nodes and M partitions, is
concerned with partitioning the N nodes into M partitions
of equal size, in such a way that the number of edges linking
nodes in different partitions is minimised.

2Where possible, the analysis developed in this paper will
be illustrated with TSP and GPP examples. This does not
mean that the analysis cannot be applied to other types of
combinatorial problems: it is just that for conciseness other
examples are not included.

For a Graph Partitioning problem with N nodes and
M partitions, p,, represents the partition to which
node m belongs to. Note that in the case of Trav-
elling Salesman problems there are two extra con-
straints on p. These are that N = M and that the
elements of p must be unique, since each city can
only be visited once.

The next task is to find a way of representing p by
a vector v which is the output of the network and
which lies at a hypercube corner: i.e. it is a vector
of ones and zeros. This can be done as follows:

Let 8”(N) be the N dimensional co-ordinate vector
given by,

[67(N)]; = {(1) i Z;g pe{l,---, N}

= by (4)

In effect 87 (N) is the p'* column of the N x N
identity matrix.

N.B. The (N) part of the vector §”(N), spec-
ifies the number of elements of this vector and
the range of p. If this is obvious from the con-
text of use, then it will be omitted, leaving just

&%

Let v(p) be the NM dimensional vector represent-
ing the form of the final network output vector,
v, which corresponds to the problem solution
denoted by p. This is defined as follows:

67 (M)

82 (M

vip)= | 7T 5)
6pN(M)

An alternative way of representing p is by a

N x M matrix. Let such a matrix be denoted
V(p), and be defined by:

871 (M)T
vip) = | 7O ()
&N (M)T
or in component form
[V(p)lij = [6"(M)];
For the TSP tour:
city 4; city 1; city 3; city 2; city 4

given above, where p? = [2,4,3,1], the vector
v(p) and matrix V(p) would expand as follows,

+ [0100 0001 0010

1000]
v(p)' = [6p1T 5T &psT

6P4T]

V(p) =

_ o O O
o O O =
O = O O
OO = O

Kronecker product notation and other
definitions

This section introduces some alternative notation,
based on the use of Kronecker products [9] (also
known as tensor products). By using these prod-
ucts it is possible to avoid the double indexing and
triple summations common with the notation em-
ployed by Hopfield and Tank [4]. In addition defi-
nitions are given for all other vectors and matrices
which are used later in this paper.

Let u” denote the transpose of u.

Let (P ® Q) denote the Kronecker product of two
matrices. Thus if P is an N x N matrix, and Q
is an M x M matrix, then (P® Q) isa NM x
N M matrix given by,

PnQ P1Q PinQ
PoQ) = f[.’2.1Q .1':.'2.2Q .P.2.NQ
Pny1Q Pn2Q PnnQ

(7)
Ifp=M(z—1)+7and ¢ = M(y—1)+j where,

T,y E{laaN}
i:j E{laaM}

then (7) can be written in component form as,

[(P ® Q)]pq = PryQyj (8)

In Hopfield’s notation [(P®Q)],, would be writ-
ten as [(P ® Q)lwiyj-

Similarly if w is a N-element vector and h a M-
element vector, then (w ® h) is a N M-element
vector given by,

U)lh
w2h (9)

th

(w@h)=

The following properties of the Kronecker prod-
ucts (P ® Q) and (w @ h) are utilised later (for
the proofs refer to [9]).

Let

Let

Let

Let

(Aw®+9h) = Ay(weh) (10)
(woh)f(xog) = (w'x)(h'g) (11)
PoQ)(woh) = (PweQh) (12)
(P2Q)E®F) (PE® QF) (13)

I" and I"™ be respectively the N x N and N M x
N M identity matrices, i.e,
and I*™ I"eI™) (14)

o” and 0" be respectively the N element and
NM element vectors of ones, i.e,
and o™™ (0" ® o™) (15)
0" and O™ be respectively the N x N and
NM x NM matrices of ones, i.e,
o 14,j5e{l,---,N}
and O"™ (0" 0™) (16)
R” be the N x N matrix given by,
R"=I"- Llo"o"" =1~ LOo" (17)
or in component form,
R =6j— (18)
If x 1s an arbitrary N dimensional vector, then
X if 0"Tx =0
R'x=<¢ 0 if x=o" (19)
X — %O”x otherwise
Also,
= Y
1
I' - 50"
= R"R" R" (20)

Thus R is a projection matrix which removes
the 0" component from x, so that if x is or-
thogonal to o” it is left unchanged. Also note
that if y = R"”x then

N N

Zyk = Z[x—%onx]k

k=1 k=1
= o"’[x— +0"x]
= o"Tx-— %(OHTOHOHT)X
— oTx—o"Tx

:>Zyk Z[Rnx]kzo

k=1 k

(21)

In terms of eigenvalues this corresponds to R"
having a degenerate eigenvalue of 1 for all vec-

tors orthogonal to 0" and an eigenvalue of 0 for
n

o".
Let U, be a M-element vector corresponding to the
q'* column of the M x N matrix U. i.e,
Urq
U, = Q?? (22)
Ung
Let vec(U) be the function which maps the M x N

matrix U to the NM-element vector v. This
function is defined by,

U,
v =vee(U) = | U (23)
Un
Thus,
N M
vo= YD Uki(6 26
e=1i=1
Uy = (806) v (24)
Note also that if v is a valid solution then
v =v(p) = vec(V(p)") (25)

Convergence to Valid Solutions

A valid solution is a form of the network output, v,
which represents a possible solution of a combinato-
rial optimization problem. For the class of problems
considered in this paper, at such a solution, v must
be of the form v(p). This section analyses how it is
possible to ensure that the network output, starting
from a random state, will always converge to a hy-
percube corner of the form v(p). The key to this is
to confine v to a subspace which contains only those
hypercube corners which are of the form v(p). Let
this subspace be termed the valid subspace. 3

Analysis of Valid Subspace
A simple 3-dimensional example

Fig 2 shows a simplified illustration of the key prin-
ciple of this analysis: that a subspace can be con-
structed which contains only those hypercube cor-
ners which correspond to a valid solution. Let the

38trictly speaking this should be the valid affine subspace
or valid linear manifold, since as later analysis reveals, it does
not pass through the origin.

valid solutions for the 3-dimensional network output
shown in Fig 2, be either the set,

{(1,0,0), (0,1,0), (0,0,1)}

or the set

{(1,1,0), (1,0,1), (0,1,1)}

The lighter shaded plane is in effect a 2-dimensional
valid subspace which only contains cube corners
from the first set, while the darker shaded plane only
contains cube corners from the second set.

Let

)
3

S = E Vi
k=1

Another way of viewing the lighter shaded plane is
that it is the plane where S = 1 and the darker
shaded plane is where S = 2. Clearly if S =1 and v
is a cube corner then v must belong to the first set
of valid solutions, likewise if S = 2, v must belong
to the second set.

Recalling the definitions of R and o” (see equations
(17) and (15)), let v satisfy the equation,

v= %03 + R3v (26)
Since from (21),

YR = 0

k=1

it can be seen that if v satisfies (26) then it also
satisfies S = 1. Therefore (26) is the equation of the
valid subspace for the first set of valid solution cube
corners. Essentially the R3v term of equation (26) is
just a projection of v onto the subspace orthogonal
to 03, i.e the plane where S = 0, hence it is the
%03 term of (26) that controls the value of S. Thus
changing this term to %03 ensures that S = 2 and
hence

v = %03 +R3v (27)

is the equation of the valid subspace for the second
set of valid solution cube corners.

Generalization to N M-dimensional valid solu-
tions represented by v(p)

The following analysis is based upon the properties
of the N x M matrix V which is related to the NM
element network output vector v by the expression:

v = Vec(VT)

(0,0,2) (0,1,2)

101 (1,11)

(0,00) 0,10

(1,0,0) \ (1,10
(@ (b)

(a) the plane or 2D valid subspace where,
Zzzl vy = 1 which contains the cube cor-
ners

{(1,0,0), (0,1,0), (0,0,1)}

(b) the plane or 2D valid subspace where,
Zi:l vy = 2 which contains the cube cor-
ners

{(1,1,0), (1,0,1), (0,1,1)}

Figure 2: A Simplified 3D illustration of the valid
subspace

The properties of interest are the row and column
sums of V. Let these be defined as follows:

Let ¢(7), where i € {1,---, M}, be the sum of the 7"
column of V. i.e,

(i) => Vi (28)

Let r(z), where # € {1,---, N}, be the sum of the
zt? row of V. i.e,

r(z) = Z Vi (29)

From (25) is can be seen that if v is a valid solution
v(p), then
vV =V(p)

Hence if v is a valid solution then the row and col-
umn sums of V are given by the row and column
sums of V(p). These have the following properties
for TSPs and GPPs:

For the case of N-city Travelling Salesman type op-
timization problems, M = N and p is a permu-
tation vector where the elements of p are drawn
from the set {1,---, N}. With these conditions
on p it can be seen from the definition of V(p)
given in (6), that V must be a permutation ma-
trix. Hence for this class of problems, given that
v = vec(V7T) is a hypercube corner, the condi-

tion

e(iy=r(z)=1 (30)
is sufficient to guarantee that v is of the form
v(p).

For the case of N-node Graph Partitioning Problems
with M partitions, p, where z € {1,---, N} rep-
resents which partition node x belongs to. Node
z can only belong to one partition, thus assum-
ing v is a hypercube corner, this means

rzy=12z€e{l,--- N} (31)

The column sums, ¢(7), now represent the num-
ber of nodes in the i** partition. For certain
GPPs it is desirable to have partitions of equal
size. In this case ¢(¢) will be given by

cliy=N/M ie{l,--- M} (32)

It is however possible to set ¢(i) to any value
as long as the sum of the column sums, i.e

Zgl ¢(i) is equal to N.

The Zerosum Subspace

In order to define the valid subspace it first necessary
to define the zerosum subspace (zs). This has the
property that if v lies in the zerosum subspace, then
V, where v = vec(V7T), has row and column sums
equal to zero.

Let v*° be the vector given by,

v =T v (33)
where T?? is given by,

T** = (R” @ R") (34)

It will now be shown that T?#® is a projection matrix
which projects v onto the zerosum subspace, giving
v#% 1.e. the component of v in the zerosum subspace.

This will be done by evaluating the row and column
sums of V** where

v = Vec(V“T)
First note that from (24),

Voi = (6 @ 6)Tv

Using the fact that,
N Mo
Z =o Z § =o™
r=1 i=1
allows (28) and (29) to be rewritten as follows,
T ® 62)T (

n ® 6i)TV

x®62 v =(6" ®0m)Tv

~

—~
S

~—
(l

N
> (s
o
Z 6
Thus if »**(z) and

sums of V?* then:

czs(i) — (On ®6i)Tvzs
rzs(x) — (650 ®Om)Tvzs

¢?*(i) are the row and column

But v** = (R® ® R™)v and from (19), R"o" = 0,

hence,

() = ("@8)(R"OR")v

= [R"@Rm) (o™ ®62)]
= (0 ® Rm62)
and,
() = (8"® om)T(R” R™)v
= [RreR™I(6" @o™)] v
= (R"§"20)v
= 0

General expression for the Valid Subspace

Let v satisfy the equation

v=s+v*®=s54+T*" v (35)
where s =(a®o0™m)+ (0" ®Db)
TZS — (Rn ® Rm)
a is an arbitrary N-element vector
b is an arbitrary M-element vector

The space spanned by all vectors, v, that satisfy (35)
is the definition of the valid subspace.

The key property of this subspace is that the row
and column sums of V are a purely a function of s.

To see this, consider the row and column sums of V
assuming v satisfies (35):

(0" @ 6")Tv
(0" ®62-) s+ ¢ (1)

- (0" @8 [(a® o™ +(o" © b))
(" @b)]
(

o™)+ (0" 0" 8" b)

0" @6)(a®o™) + (o

T =T
o" a®é

= | ¢(i) = o"Ta+ Nb; (36)

(6" @o0™)v

(6% ®0m)Ts—|—r“(:L‘)

= (& ®om)T[<a®o) + (0" @ b)]
(6" @ 0™ ")[(a®0™) + (0" @ b)]
(6xTa®OmT o™) + (6:cT0n ®Ome)

= Ma, +0™"'b (37)

=|r(z)

Equations (36) and (37) show that the values e(7)
and r(z) are completely independent of v and can be
set to almost arbitrary values by carefully choosing
the vectors a and b.

Thus:

For a N-city TSP, if|

a =0
b = %0"
then,
c(i) =oMa+ Nb; =1

r(z) = May +o0™Th =1
Hence if v is a hypercube corner and v satisfies,

v=3(0"®0")+(R"®@R")v (38)

then v must represent a valid-solution of a N-
city TSP.

For a N-nodes GPP if|

a =0

o Tb=Y b =1
then,

e(4) =o"Ta+ N, = Nb;
r(z) = May +o0mTh =1

Hence, assuming 0”7 b = 1, if v is a hypercube
corner and v satisfies,

v=(0"®b)+(R'®@R™)v (39

then v must represent the valid-solution of a
N-nodes GPP with M partitions, where the "
partition has exactly Nb; nodes.

A framework for deriving the free pa-
rameters of the network

In the light of the subspace analysis, the Hopfield
network, in solving combinatorial optimization prob-
lems, should ideally operate as follows:

(i) The network is initialized to a random state such
that v is both within the unit hypercube and v
is on the valid subspace.

(i1) The minimisation of E should then cause v to
be moved towards the bounds of the unit hy-
percube, whilst being confined to the valid sub-
space.

(iii) As v approaches the bounds of the unit hy-
percube, the interaction between the minimisa-
tion of E and the non-linear output threshold
functions should force v into a hypercube cor-
ner that is both a valid solution and a solution
of optimum ‘cost’.

The continuous Hopfield network as proposed in [4]
and shown in Fig 1, operates so as to minimise (by
a sort of Gradient Descent) the Liapunov equation

(2):
, 1 v
1T T i -1
E=—-5v'Tv (1)v+7_g/0g

Assuming the % term is negligible (this can be en-
sured by making 7 very large), this equation can be
reduced to:

E=-IvTTv-({i")"v

The aim in this section is to derive T and i’ in such a
way that in minimising the above Liapunov function
the network follows steps (i),(ii) and (iii). An inter-
mediate approach is employed, in which the form of
the valid subspace is used as the basis for developing
analytic expressions for T and i’. It is then shown
that these expressions result in a Liapunov function
which ensures that steps (i),(ii) and (iii) are followed.

Let E be split up into a confinement (cn) and op-
timization (op) term, such that in minimizing E"
the network confines v to the valid subspace, and

in minimising E°" the network moves v towards an
optimum ‘cost’ solution. This can be achieved by
splitting T and i’ so that,

T =T 4 TP

T (10)
Thus the Liapunov function splits into,
E = ET"+E?
where E" = —%VTTCH'V —@(i™7Tv (41)

and E° _LyTrery — (i7)y (42)

Expressions for T and i”

If T°® and i°" are then set according to,
T = 6(T* -1"™) (43)
i" = fs (44)

where 6 1is an arbitrary positive constant

then it can be shown that if v minimises E°" it must
satisfy the valid subspace equation (35), i.e,

v=s+T* v

The proof of this is as follows:

Let the subspace orthogonal to the zerosum subspace
be termed the nonzero subspace (nz). Any N M-
dimensional vector can be decomposed into its com-
ponents in each of these subspaces, i.e,

. T
v=v" 4+v* with v¥'v** =0

Clearly s is in the nonzero subspace, since,
VZSTS — vT T?5g
= vI(R"@R")[(a®0™) + (0" @ b)]
= vI[(R"a®@ R™0™) + (R"0" @ R™b)]
0

Substituting the decomposition of v in (41), rewrit-

ing T with (43) and i°” with (44), leads to,

Ecn — _%H(vnz + vZS)T(TZS _ Inm)(vnz + vzs)
—HST (vnz + vzs)

But T#% is a projection matrix (by definition sym-
metric),

TZSTZSV — v.ZS

vTTstzs — vst

hence T?**v** =

and vstTzs

Also,

vnzTTzs — OT and T?*Sv™ =0

Thus,
B = LTy _ysTyrs _ynaTyne)
Ty
_ %B[Vnvanz 2T v™]
= E" = %€|v”z —s]? - %9|s|2 (45)

Therefore, since s is fixed, £ is minimised when
v =s

which corresponds to v satisfying the valid subspace
equation,
v=s+4+v* =s+ T v

Expressions for T’ and i’

Solving a combinatorial optimization problem also
involves finding a valid solution which is in some
sense of optimum ‘cost’. Since the network oper-
ates by minimising a quadratic energy function, this
reduces to finding some matrix T and vector 1%
such that E°P monotonically corresponds to the cost
of valid solution v(p).

Naturally the form of E°P is highly problem specific.
Consider as examples the TSP and GPP.

Let

bl

TP
i

i, VR (46)
Owhere TP = (P ® Q)

For a TSP with N cities let:

P be the N x N matrix of intercity distances
given by

P, = distance between city x and city y
(47)
Q be the N x N matrix given by
Qij =0j_1,+6j_1,-2 (48)
where 7,5 € {1,---,N}

and where all the subscripts of 6 in (48)
are given modulo N.

If N =5 then Q would be given by,

O

(
—_—0 O = O
O O =D =
O = O = O
—_0 = OO
O = OO =

For a GPP with N nodes let:

P be the N x N matrix of edge weights given

by
weight of edge between node z
Ppy =
and node y
(49)
Q be minus the M x M identity matrix, i.e,
Q=-1" (50)

Now consider the value of EP? = Lv(p)” (P2Q)v(p)
with the above settings for P and Q:

For the TSP case, if v(p) is a TSP valid-solution
with a corresponding tour length {(p) then,
I(p) = 3v(p)" (P ©® Q)v(p) = £

Hence EP? is a monotonic function of the ‘cost’
of p i.e. the corresponding tour length.

the GPP case, let,

5S4 be the sum of the weights of all edges.
5% be the sum of the weights of all edges linking

nodes in the same partition.

SP be the sum of the weights of all edges link-
ing nodes in different partitions, i.e. the
edges which are cut by a partition.

If v(p) is a GPP valid-solution then,
- 57 = 3v(p)' (P@ Q)v(p) = £

The object in a GPP is to minimise the number
of cut edges which corresponds to minimising
SP . Note that,

§4=15%+5°

(51)

For

(52)

Hence, since S4 is constant, P9 is a monotonic
function of the ‘cost’ of p, i.e. SP.

Thus

E%(v(p)) —3v(p)' Tv(p) — ()" v(p)

EPY ﬁv(p)TI”mv(p)
EP! — Blv(p)[?

But |v(p)|? is constant for both TSPs and GPPs,
hence E°P must also be a monotonic function of the
‘cost’ of v(p).

Setting 8 = 0 makes the formulation of T for the
TSP identical to the formulation used for T¢ by Hop-
field and Tank in [4]. The reason for including the 3
term is that it allows a constant to be added to all
the eigenvalues of TP without affecting the proper-
ties of F°P. The value of 3, as will be shown later,
plays a crucial role in enforcing convergence to a hy-
percube corner.

10

A Modified network with increased ef-
ficiency

If T7¢" and " are set according to (43) and (44), it
can be seen that the network as proposed by Hop-
field and Tank in [4] does indeed roughly follow steps
(i)- - -(ii1). This is because the minimisation of E"
should always ensure that v is on the valid subspace,
while the minimisation of £°P should move v out to-
wards a hypercube corner that is of minimum ‘cost’.

However a more detailed analysis of how the net-
work follows steps (i)- - -(iii) reveals that it does this
in an inefficient and unreliable way. This is due to
the fact that the minimisation of E°P interferes with
the minimisation of E". Consequently @ in (43) has
to be made large enough to ensure that £°* is suffi-
ciently dominant to enforce confinement to the valid
subspace.

In computer simulations of the Hopfield network, a
discrete approximation to the continuous differential
equation (1) has to be used in which,

Av
Au

g(u+ Au) — g(u)

where —AtVE = —AtV(E" + EP)

The need to ensure E°" dominates over E°P, means
that most of the change in v caused by Av (via
Au) will be concerned with the minimisation of E"
and very little with the minimisation of E°. This
makes the simulation very inefficient, since most of
the time will be spent enforcing the valid subspace
confinement. In order to overcome this problem we
propose the network implementation shown in Fig
3.

The key advantage of the modified network, is that
it confines v to the valid subspace directly by the
projection operation (1), rather than by the indirect
minimisation of E*. The nonlinear operation (2)
then ensures v is kept within the unit hypercube, by
applying a ‘symmetric ramp’ threshold function to
each of the elements of v. i.e,

vg = g(vg)
1 if vy, >1
where g(v,) = v, if 0<v, <1
0 if v, <0

The minimisation of E° is achieved by operation
(3). This computes the change in v as:

Av = Ati

V)

where

d

i (53)

(v):V:TOpv—l—iOp

V [—
i €) &)
e ™ e
+ = v=stT®v [=]: Y,
- - / &
| @®)
Av V=TPy+{%® [=—
N——

(1) Projection of v onto valid subspace

v=s+T*v
where s= (a®o™)+ (0" ®Db)
and T = (R*®R™)

(2) Nonlinear ‘symmetric ramp’ threshold func-
tions constraining v to the unit hypercube.

(3) Change in v given by the gradient of the op-
timization energy term E°P, with

d
Av = Atﬁ(v) = Atv = At(TOpv + iOp)

Figure 3: Schematic diagram of modified network
implementation

Recalling from (42) that,
E? = —%VTTOPV —@{i")T'v
it can be seen that,

Av
= AvIVE°P

—AtVE®
0

<

Hence the network will always change v in a way
that minimises F°P. In contrast to the Hopfield net-
work, Av is exclusively ‘concerned’ with the min-
imisation of E°P, and consequently computer simu-
lations of the modified network converge in far fewer
iterations than equivalent simulations of the Hop-
field network. Typically, for 30-city TSPs, simula-
tions of the modified network converge in ~ 2000
iterations as opposed to ~ 20000 iterations for the
Hopfield network.

The modified network has the further important ad-
vantage of having just one parameter, At 4. This

4In itself the value of At is a very significant factor in the
overall efficiency of the network simulation, and even with
the modified network, finding the best value is somewhat of
a black art. A description of the algorithm used for 30 and
50-city TSPs is given in Appendix B.

11

compares with at worst five parameters (A, B, C', D
and At) for the network as formulated by Hopfield
and Tank in their 1985 paper [4] and at best two
parameters (0 and At) for the Hopfield network as
formulated in the previous subsection.

Finally the basic operations of the modified network
- multiplication by a matrix followed by addition of
a fixed vector - are identical to those of the origi-
nal Hopfield network. Hence the modified network
shares the same properties in terms of parallel ana-
logue hardware implementation as the original Hop-
field network.

Confinement to the valid subspace and the
unit hypercube

The assumption that the repeated application of op-
erations (1) and (2) will confine v both to the valid
subspace and the unit hypercube is crucial to the
viability of the modified network. This subsection is
concerned with the proof of this assumption.

First assume that v at time ¢ satisfies both these
constraints. The value of v at time ¢+ At is given by
v + Av where Av is given by the dynamic equation
(53),

Av = Atv = At[TPv +i7]

If v+ Av is to remain both within the valid subspace
and the unmit hypercube, then Av must satisfy the
following conditions:

(c1) Av is such that v + Av remains within the
unit hypercube.

(c2) Av lies wholly in the zerosum subspace.

Unfortunately it is very unlikely that Av will satisfy
both (cl) and (¢2). However there will always be a
component of Av, say Av, which does satisfy both
these conditions.

It is shown in Appendix A that there exists a pro-
jection matrix T such that,

Av = TAv (54)
and that repeated application of operations (1) and
(2) on v+ Av, is equivalent to the multiplication of

Av by T. i.e,

(D) (1)(2) v+ TAV = v + AV

v+ Av
Since v + Av satisfies (c¢1) and (c2) it follows that
repeated application of operations (1) and (2) does
indeed confine v to both the valid subspace and the
unit hypercube, regardless of the change in v effected
by Av.

Convergence to a hypercube corner

So far it has been assumed that by confining v to
the valid subspace the network will eventually con-
verge to a hypercube corner. There is, however, no
guarantee that this will be the outcome. The aim
of this subsection is to show how by choosing an ap-
propriate value for 3 in (46) that convergence to a
hypercube corner can indeed be guaranteed.

If v is confined to the valid subspace and v must
remain within the unit hypercube, then it can be
shown that |v| is maximised when v is a valid so-
lution hypercube corner, i.e. v = v(p). Hence a
sufficient condition that will ensure the network con-
verges to a valid solution hypercube corner is that
the change in v at each time step At should always
increase |v|. Equation (54) gives this change, Av,
in a form that accounts for the confining effects of
operations (1) and (2). Thus if the addition of Av
is to increase the magnitude of |v| then,

vIiAvV >0 (55)
=0 < vITAv
=0 < VTTAt(TOPV +1i)
=0 < vITT?v +vITi? (56)

Substituting (46) in the condition for convergence
to a valid solution hypercube corner given by (56),
leads to,

0 < vT'i‘(—qu + /I)v + vITior
=0 < —vI'TTv +vITi%? 4+ v Tv
=0 < —vITTPv +vITi% 4 8]V (57)

The B|v|? term in (57) is always positive, so there
exists some value of 4 which will guarantee that the
condition specified by (57) is satisfied.

Hence by choosing a large enough positive value for
[it 1s possible to ensure that the modified network
will always converge to a valid solution hypercube
corner.

Isomorphism with Quadratic Program-
ming Problems

The operation of the modified network can be sum-
marised as follows:

minimise E? = —%VTTOPV —jrTy
subject to v** = s
and 0< v, <1 ge{l---NM}

(58)

12

= (I" - T)v (59)
Equation (59) is equivalent to a set of equality con-
ditions on v, while the conditions specified by,

0<v, <1 qe{l.--NM}

are simply a set of inequality conditions on v, hence
(58) is exactly the form of a Quadratic Programming
Problem [7, ch10].

N.B. If T = 0 then the function being minimised
in (58) is simply —i°”v. This is linear and hence (58)
reduces to exactly the form of a linear programming
problem.

Non-convexity: Global Minimum versus Lo-
cal Minima

If the function to be minimised in a Quadratic Pro-
gramming problem is convex, then the problem re-
duces to a Convex Programming Problem and has a
single global minimum [7, ch9.4]. This is always the
case if |T°?| = 0 and the problem is of the Linear
Programming class. For this reason, if the network
is used to solve problems of the Linear Programming
class, it should always achieve the global optimum
solution.

On the other hand Quadratic Programming prob-
lems of the form (58) only reduce to Convex Pro-
gramming problems if TP is negative semi-definite.
If this is not the case, and T is indefinite, then
instead of one global minimum there will be many
local minima: the number of which increases until
T°P is positive definite, in which case it is possible
that all the hypercube corners in the valid subspace
are local minima.

Recall from (46) that,
TP — P4 + ﬂInm

Clearly whatever the form of T?¢, the value of § can
be used to control whether TP is negative definite
or positive definite.

Unfortunately, as shown previously, to ensure the
network converges to a valid solution hypercube cor-
ner, 3 has to made large enough to ensure (57) is
satisfied, which is likely to make T°P positive defi-
nite.

Consequently there is a conflict between the need to
ensure that the network converges to a valid solution

hypercube corner and the desirability of keeping the
number of local minima small. This will severely
degrade the performance of the network in solving
optimization problems, since it is very likely the net-
work will converge to a sub-optimal local minimum.

Matrix Graduated Non-Convexity

Matrix Graduated Non-Convexity, or MGNC, is a
way of overcoming the conflict between the need to
ensure that the network converges to a valid solution
hypercube corner and the desirability of keeping the
number of local minima small. Tt is based on the
concept of Graduated Non-Convexity developed in
[8] and also on the ideas of [10].

The principle behind MGNC is that initially keeping
E°P as convex as possible reduces the overall likeli-
hood that the network will fall into a sub-optimal
local minimum. As v grows towards the bounds of
the unit hypercube it becomes necessary to gradually
increase 3 to ensure that condition (57) is satisfied.
Increasing # makes E°P ‘more non-convex’ and hence
increases the chance of falling into a sub-optimal lo-
cal minima. However, by this time v should lie in
a region of space well away from these sub-optimal
local minima, and so v should eventually converge
to an optimal or near optimal valid solution.

The effect of changing 3 on the convexity of E°P can
be seen by expressing E° in terms of the eigenvec-
tors and eigenvalues of TP,

Let ?, be an eigenvalue of T?? with a corresponding
normalised eigenvector x”. It can be seen that x? is
also an eigenvector of T°” with an eigenvalue of ¢y,
since,

T%xP = (_qu +61nm)xp
= (—vp+B)x*
= TPxF = ¢pxF
with ¢, = —d,+08 pe{l,---,NM)

Now assume the eigenvalues of TP? are labelled in
order of decreasing magnitude, i.e,

Yy >Pe > > YNy

Let P be the set of all positive eigenvalues of T
in other words:

P={g:6,20}={q:%,<B} (60)

Since TP is symmetric, its normalised eigenvectors
form an orthogonal set which fully spans NM di-
mensional space. Hence v and E° can be expressed

13

in terms of the xP, with,

NM
v = E apxf’ where ap:vTxp

p=1

(61)

E°P —%vTTOPV —vTior

— %(Z apxp)TT"p(Z a x?) — vTior
P q

NM
= _% Z ¢p(ap)2 —vhir (62)
p=1
(62) can be rewritten as follows,
EP? = EY4+ET—vTi%
where ET = -1 Z ép(ap)? (63)
PE€P
and B~ = =13 ¢,(ay)’ (64)
q€EP

From the definition of E* in (63) it follows that E+
is a positive definite (i.e. convex) function over a
NM — |P| dimensional subspace of v. Similarly £~
is a negative definite (i.e. concave) function over a
|P| dimensional subspace of v. The size of P, (i.e.
|P]) is determined by the value of 3. For example
if B> 4 then P = {1,--- ,NM} and if 8 < ¥ym
then P = (. Thus by modifying 3 the dimension-
ality of the subspaces over which E°P is convex and
concave can be varied. It is in this sense that varying
[changes the convexity of E°P hence the term Ma-
trix Graduated Non-Convexity, since the convexity
of E°P is altered by changing the matrix T .

Implementation of MGNC 5 on the Modified
Network

(i) The modified network is initialised with a v
which is both within the unit hypercube and
the valid subspace. Ideally

v(0) = s+ T**v™e

where v'"?¢ is a randomly generated vector of

small magnitude (|v™"4¢| ~ 1076). Also 3 is set

to a value such that ¥ a1 > 8 > ¢¥nar. In this
case P has one element and E°P will be almost

a convex function.

51t is possible to view the MGNC algorithm as a type of
annealing, and in a sense varying 3 corresponds to varying
the temperature (or neural gain) in Mean Field Annealing
networks as proposed in [11] and [12]. However the way in
which MGNC varies the convexity of £ is very different to
the variation produced by the annealing of temperature (or
neural gain) in Mean Field Annealing networks.

(i1) The network is allowed to run until |v| starts
to decrease (or increase very slowly). This cor-
responds to condition (57) no longer being sat-
isfied. To correct this 3 is increased to a value
just large enough to ensure (57) is satisfied and
the network continues to increase |v|.

(iii) (ii) is repeated until the network converges to
a valid solution.

Results of simulations using the mod-
ified network to solve 30 and 50-city
TSPs

The aim in presenting these results is to provide an
overall confirmation of the theory developed in this
paper. A detailed study, together with a theoretical
analysis of how the MGNC algorithm ensures near
optimal solutions, will be presented in a future pa-
per. The results are based on computer simulations
of the modified network being used to solve 30-city
and 50-city TSPs, and are shown in Figs 4,5,6 and
7.

In Fig 4, the evolution of the output of a 30-city TSP
network is presented as a set of 3D mesh plots of the
maftrix representation V of the network output v,
where,

v = Vec(VT)

The co-ordinates of the cities are identical to the
ones used by Hopfield and Tank for the 30-city TSP
in [4], and hence act as a useful benchmark test.
As an illustration of the effect of confinement to the
valid subspace, Fig b shows the evolution of the val-
ues of a single row of V. It can be seen that, as
predicted theoretically, the sum across the row is
always fixed at 1, regardless of the values of the
individual elements of V. Further, as the number
of iterations increases, the number of non-zero ele-
ments in the row decreases, until a final solution is
achieved. The tour corresponding to the final solu-
tion achieved by the network is shown in Fig 6. The
results for the 30-city tour are summarised in Fig 7
along with some results on 50-city T'SPs based on
Durbin and Wilshaw’s co-ordinates [5]. For details
of the computer simulation implementation, see Ap-
pendix B.

Overall the results show the network achieving solu-
tions within 2% of the (experimentally determined)
optimum. This is of comparable quality to both
Durbin and Wilshaw’s elastic net [5] and to sim-
ulated annealing (based on the values given in [5]),
whilst being significantly better than both the simple
nearest neighbour heuristic and the results obtained
by Hopfield and Tank in [4].

14

Conclusions

A general expression has been developed for the
valid subspace, which is applicable to a large class
of combinatorial optimization problems. This class
includes the Travelling Salesman problem and the
Graph Partitioning problem. It also includes many
other combinatorial optimization problems, such as
certain types of Dynamic Programming problems,
which have so far not been mapped onto the Hopfield
model. A new approach has then been described,
which uses this expression as the basis for deriving
the form of the network connection matrix and in-
put bias vector. Unlike the traditional approaches
based on first deriving the network energy function,
this approach ensures confinement to the valid sub-
space and hence eventual convergence to a valid so-
lution. Further this approach allows a much clearer
picture to be developed of how the Hopfield network
solves combinatorial optimization problems. A con-
sequence of this is the proposal of a modified net-
work and the Matrix Graduated Non-convexity algo-
rithm. Finally the main theoretical findings of this
paper are confirmed in computer simulations of a
modified network using the Matrix Graduated Non-
convexity algorithm. These show the modified net-
work efficiently achieving solutions within 2% of the
global optimum for 30 and 50-city Travelling Sales-
man problems.

References

[1] Aiyer,S.V.B, Niranjan,M, Fallside,F, A Theo-
retical Investigation into the performance of the
Hopfield Model IEEE Trans. Neural Networks,
Vol NN-1, Issue 2, p204-215, 1990.

Hopfield,J.J, Neural networks and physical sys-
tems with emergent collective computational
abilities Proc.Natl.Acad.Sci. USA 79, 2554-
2558, 1982.

Hopfield,J.J, Neurons with graded response have
collective computational properties like those of
two-state neurons Proc.Natl.Acad.Sci. USA 81,
3088-3092, 1984.

Hopfield,J.J, Tank,D.W, Neural Computation
of Decistons in Optimization Problems Biologi-
cal Cybernetics. 52, 1-25, 1985.

Durbin,R, Wilshaw, D An Analogue Approach
to the Travelling Salesman Problem Using an
FElastic Net Method Nature 326(6114) p689-691,
April 1987.

max v_xi = 0.03397

\'\x‘\#“ "“ \
SOV A
J “'ﬂ)’ . "‘.‘ A’}

i it
i

|
-

=\

it

N

=

N
y=RVINIUN
N

il

—

_—x

city 30
Iteration 0 - 3 = —1.7

T
PR mmme
SERE

b

‘\\ / "\“-!?/'

Wi
D =-I= 4

Ny i I\
()%4“"-!' W)
74

5 \«i
\

\ \
Sy P
)

city 30

city 30

Iteration 400 - § = —1.51

I
| Y
e \i

Y

T\

(R
P,
[T\ Y
R Rt

city 30
Iteration 3500 - § = +2.143

Figure 4: 3D Mesh Plots showing the evolution of V (the matrix representation of the network output vector
v, where vec(VT) = v) in a simulation of the modified network solving Hopfield and Tank’s 30 city TSP.
N.B. The value of 7 shown here does not correspond exactly to the description given in the paper; for the

exact description see Appendix B.

15

5 10 15 20 25 30

Iteration 60

o

5 10 15 20 25 30

Tteration 120

o9l 4
os| 4
0.7 i
0.6 4
0.5 =
0.4 -
0.3 =
0.2 =
0.1} =

o 5 10 15 20 25 30

Iteration 400

1
0.9 o =
0.8 =
0.7 =
0.6 R
os| 4
0.4l i
0.3 -
0.2 =
0.1 =

. [|

5 10 15 20 25 30

Iteration 3500

Figure 5: Plot of the 27 row of V, for the 30-city
TSP shown in Fig 5, showing how the size of the
group of non-zero elements decreases with the num-
ber of iterations, while the total sum across the row
remains constant at 1.

0.9

0.81-

0.7

0.61-

0.5

0.4

0.3

0.2r

0.1r

Figure 6: Plots of the final tour achieved by the mod-
ified network for Hopfield and Tank’s 30-city TSP.
The tour length is 4.34. This compares with 4.26 for
the optimal tour, which follows the order of the city

numbers.

Hopfield | Durbin & | Durbin &
& Tank | Wilshaw | Wilshaw
30 city 50a city 50c¢ city
TSP TSP TSP

SUN IV 2 mins 10 mins 10 mins

CPU time

Modified 4.34 5.92 5.67

Net. best

Hopfield & | 5.07

Tank’s best

Elastic 4.26 5.97 5.74

Net. best

Simulated 5.88 5.65

Annealing

Nearest 4.75 6.58 6.28

Neighbour

Expt. Det. | 4.26 5.84 5.57

Optimum

Figure 7: Table summarising the results achieved by

the modified network on 30 and 50-city TSPs.

[6] Wilson,V, Pawley,G.S On the Stability of the
TSP Problem Algorithm of Hopfield and Tank
Biological Cybernetics 58, p63-70 1988.

[7] Fletcher,R, Practical Methods of Optimization

Wiley-Interscience Publications, John Wiley &

Sons 1987.

Blake,A, Zisserman,A, Visual Reconstruction
The MIT Press series in artificial intelligence,
London 1987.

Graham,A, Kronecker Products and Matriz
Calculus: with Applications Ellis Horwood Ltd,
Chichester 1981.

Styblinski,M.A, Tang,T.-S, FEzperiments n
Non-Conver Optimization: Stochastic Ap-
proxzimation with Function Smoothing and
Simulated-Annealing Neural Networks, Vol 3,
No. 4, p467-483, Pergamon Press 1990.

[11] Van den Bout, D.E, Miller II1,T.K, Graph Par-
titioning Using Annealed Networks IEEE Trans.
Neural Networks, Vol NN-1, Issue 2, p192-203,
1990.

Peterson,C, Soderberg,B, A new method for
mapping optimization problems onto neural net-
works Int. Journal Neural Systems, Vol 1, No.
1, 1989.

Appendix A

Proof of the equivalence of operations (1) and
(2) of the modified network with the multi-

plcation of Av by T

Let A° denote the set of elements of v for which the
inequality constraint 0 < v, is active i.e. v, = 0 and
Av, < 0. The set A° is defined formally by,

A’ ={g:v,=0and Av, <0} ¢g€{l,---,NM}
(65)
Let A" denote the set of elements of v for which the

inequality constraint 1 > v, is active i.e. v, = 1 and
Avgy > 0. The set Al is defined formally by,

Alz{q:quland Av, >0} ge{l,.---,NM}

(66)
Let A denote the set given by the union of .A° and
Al e,

A=AuAl (67)
It can be seen that if,
Av, =0 Vged (68)

17

and |Av| is small enough to ensure that,

0<v,+A0, <1 forallpg A (69)
then Av satisfies (cl).
Let T?* be a NM x NM matrix where,
, 0 ifp#g
[T, =4 0 ifp=¢g andpe A (70)
1 ifp=q andpg A
It can be seen T?® is a projection matrix since,
TiaTia _ Tia
Further if Av satisfies (68) then,
Av = T Av (71)

Similarly if Av satisfies (¢2) (i.e. Av lies in the

zerosum subspace) then,

Av =T*Av (72)
Let the subspace spanned by all vectors u which
satisfy u = T*®u be termed the inactive subspace.
It can be seen that T is simply the matrix which
projects v into the subspace which is the intersection
of the zerosum subspace and the inactive subspace.
Hence T satisfies,

T =TT
. o 73
T =TT (73)
Now assuming Av(®) = Av, let,
Av™ = Av 4+ u™
where,
(n=1) " if n is odd
(n) TfsAv ifniso
Av { TieAv(®=D if n is even
B AV 4+ T#u*=D if n is odd
o Av + Ta(=D if n is even
zs53(n=1) if n is odd
n) _ T. u ifniso
—u { Teu=1 if n is even (74)
Since T?* and T?® are projection matrices,
|Tzsu(n—1)| < |u(n—1)|
and |Ti“u("_1)| < |u(”_1)|
Hence
[a™] < Y] (75)

Multiplying by T#* corresponds to operation (1)
while multiplying by T?® corresponds to operation
(2). From equation (75) it is clear that as n — oo,
Av(®) — Av. Hence the repeated application of op-
erations (1) and (2) is equivalent to the projection
performed on Av by multiplication with T. (N.B.
This proof assumes that (74) does not affect the set
of active inequality constraints, .4, and hence T?® re-
mains the same for all n. Assuming (69) holds, this
can be proved, although for conciseness the proof is
not given here.)

Appendix B

Details of implementation for computer sim-
ulations using the Modified Network with
MGNC to solve the Travelling Salesman
Problem

Essentially the modified network was implemented
exactly as shown in Fig 3 with P, Q and s set ac-
cording to (47), (48) and (38).

The main details of the implementation for 30 and
50-city TSPs are:

o Instead of setting TP according to (46), the
following formulation of TP was used.

T? = -TM-3PeI")
= T —(Pe[Q+pT"]) (76)
with TP4 (P®Q)

The reason for using (76) is that the properties
of the eigenvalues of P for the TSP are such
that varying £ in (76) varies the convexity of E
in a very similar way to varying £ in (46). How-
ever because of the properties of Q for the TSP,
using (76) with the MGNC algorithm results in
a better final solution. A detailed analysis and
justification of this will be presented in a future

paper.

e For each traversal of the bottom loop in Fig
3 it is necessary to make several traversals of
the top loop in order to ensure that operations
(1) and (2) are applied enough times to enforce
confinement within the valid subspace and unit
hypercube. Rigid enforcement of these confine-
ment conditions would in theory require an infi-
nite number of loops, however in practise it was
found sufficient to go round the top loop enough
times to ensure that,

N2
> v, N|<0.IN (77)
p=1

18

e The time step size At was dynamically com-

puted so that

d -~
Sv
4 lAt: 0.06
[v=?]
An exact calculation of éi—t\? is very difficult,

hence an estimate was obtained by applying op-
erations (1) and (2) to v+ ;—tv and subtracting
v from the result.

All the matrix multiplications in Fig 3 are of
the form

u=(PoQ)v
Assuming u = vec(UT), v = vec(VT), the fol-
lowing Kronecker product identity can be ap-

plied (see [9]):

u = (PoQ)v
= Vec(UT) = Vec(QTVTP)
=U PIvQ

Hence operation (1) becomes,
V =S+ R"VR" where s = vec(S”)
and operation (3) becomes,

AV = —AtPTV(Q + pT1")

The MGNC was implemented by starting § at
—1.7 and incrementing it by 0.002 each time
that,

AvTvy

lve*|

< 0.001

