A HOPFIELD NETWORK IMPLEMENTATION
OF THE VITERBI ALGORITHM FOR
HIDDEN MARKOV MODELS
S.V.B.Aiyer & F.Fallside
CUED/F-INFENG/TR 60

June 17, 1992

Cambridge University Engineering Department
Trumpington Street
Cambridge CB2 1PZ
England

Email: svb10 / fallside @dsl.eng.cam.ac.uk

Submitted to IJCNN-91-Seattle

Abstract

Treating the Viterbi algorithm as a form of combinatorial optimization, this paper shows how it can
be implemented on a Hopfield network. The implementation uses a framework developed in our previous
papers [1, 2] which ensures the network can achieve valid solutions for a much larger class of combinatorial
optimization problem than previously considered. This class includes dynamic programming problems
of the type represented by the Viterbi algorithm. The aim here is to present in detail the actual
mapping required to implement the Viterbi algorithm on the Hopfield network, together with an analysis
and justification of it. Finally, to confirm the theory, results are presented which show the Hopfield
network achieving the same solution as a standard dynamic programming based Viterbi algorithm, for
a recognition task based on a pre-trained 10 state Hidden Markov model.

Introduction and Outline

Hopfield and Tank’s 1985 paper [3] established the Hopfield network, as an important alternative method
of solving combinatorial optimization problems. Although many researchers have since proposed a
wide variety of uses for the network, most of these applications have been to solve highly artificial
combinatorial optimization problems, such as the Travelling Salesman and Graph Partitioning problems.
Even in these cases 1t has been found that the network rarely achieves valid solutions to the problem it
is being used to solve [4, 5]. This problem of reliability has been addressed in [1, 2] and a framework
for using the network with guaranteed reliability has been developed. A consequence of this framework
(see [2]) is the possibility of using the network to solve Dynamic Programming type combinatorial
optimization problems like the Viterbi algorithm [6]. This algorithm has a direct application to Hidden
Markov Models, specifically for recognition tasks such as those that occur in speech processing.

In this paper the possibility of using the Hopfield network to solve dynamic programming problems is
developed into an actual implementation of the Viterbi algorithm. The description of the implementation
is divided into three sections. The first introduces the key concepts and notation conventions relevant
to the Hidden Markov Model and the Viterbi algorithm. The second section develops and justifies the
expressions required to map the Viterbi algorithm onto the parameters of the Hopfield network. Finally
the last section presents and discusses the experimental results.

The Hidden Markov Model and Viterbi Algorithm

Let ¢ be a discrete time variable where: ¢t € {1,2,..., M}.

Let q1,q2,...,qn be the states of an HMM with N states.

Let A be the N x N matrix of interstate transition probabilities: A;; = Pr(q; at t+1|g; at t)
Let wi,ws....,wg be a set of K output symbols.

Let B be the N x K output symbol probability matrix: B;; = Pr[w; at t|¢; at ¢]

Let O be a M element vector which denotes a sequence of M output symbols: O; = k if the output
symbol at time ¢ is wy

Let p be a M element vector which denotes a sequence of M states: p; = 7 if at time ¢ the HMM is in
state ¢q;

The Viterbi algorithm seeks to find a sequence of states p which maximizes the joint likelihood that
the HMM generated O with state sequence p. Let £(O, p|A,B) denote this joint likelihood. Using this
expression the Viterbi algorithm reduces to:

argmgxﬁ(O,p|A,B)

Note that by Bayes theorem, £(O,p|A,B) = L(O|A,B,p)L(p|A,B), and that:

M

E(OlA,B)p) = HBptOt (1)
t=1
M-1

,C(p|A,B) = HAptpt+1 (2)
t=1

Mapping of the Viterbi Algorithm for HMMs onto a Hopfield Network

This mapping has two basic requirements:

(i) A vector of ones and zeros (i.e a vector that corresponds to a hypercube corner) has to be found
that can uniquely represent the state sequence p. Let this vector be denoted v(p).

(i1) A quadratic Liapunov function of the network output vector v has to be found, which is of the form
E°?(v) = —%vTT"pv — 1Ty, The matrix T°? and vector i’ must be such that E°?(v(p)) is a
monotonic function of —£(O,p|A,B). In other words

if £(O,p!|A,B)> £(0,p?|A,B) then E°(v(pl)) < E?(v(p?))

Assuming TP is symmetric, it can be shown that the Hopfield network will gradually change v so
as to minimize E°P(v). Further, using the technique of valid subspace confinement developed in our
previous paper [2], it can also be ensured that whenever a final solution is reached, v is of the form v(p).
Minimizing E°?(v) subject to v = v(p) is equivalent to maximizing £(O,p|A, B) over p, hence it is
possible for the Hopfield network to perform the same optimization operation as the Viterbi algorithm.

A general expression for v(p)

Let 6”(N) be the N dimensional co-ordinate vector given by,

POl=6i={ o it 130 pella.) 3)

In effect 6”(N) is the p'” column of the N x N identity matrix. N.B. The (N) part of the vector
87(N), specifies the number of elements in this vector and the range of p. If this is obvious from the
context of use, then it will be omitted, leaving just &”.

The NM dimensional vector v(p), which corresponds to the state sequence denoted by p, can now

be defined as follows:
6291 (N)
82 (N
vip)= | &7 (1)
8PV (N)
An alternative way of representing p is by a N x M matrix. Let such a matrix be denoted V(p),
and be defined by:

V(p)=[8(N) 67(N) - M(N)] or [V(p)li; = [6"(N)]i (5)

For a 4 state HMM, with the sequence of states ¢1¢2¢3¢3¢4qa4, the vectors p and v(p) plus the matrix
V(p) would expand as follows,

p’ v(p)” V(p)
1 0 0 0 0 O
193344 [LO0OO 0100 0010 0010 0001 0001] 010 0 0 0
[1,2,3,3,4,4] [6p1T §P=T §rsT §P<T §PsT 61’4T] 0 01 1 00
000 0 11

The function vec() (see [7]), which concatenates the columns of a matrix into one vector, can be used
to map the N x M matrix V to a NM element vector v:

v =vec(V) = vy = V;; where k = N(j—1)+1

From the definitions of v(p) and V(p) given in (4)(5), it can be seen that v(p) = vec(V(p)).

Expressions for T°? and i°

The expressions for T and i rely on the use of the Kronecker product notation developed in [2] (see
[7] for detailed definitions and proofs of the Kronecker product identities), with T°" being given by an
expression of the form:

P11Q PQ - PiyQ
T = BL+ TP + TP7 where TM = (P ® Q) = leQ PzzQ ‘P‘Z.MQ
PMlQ PMZQ o PymQ

and where P is a M x M matrix ,Q is a N x N matrix.
Let the NM element vector u and the N x M matrix U be related by: u = vec(U). From the identity

(see [7]):
(P ® Q)v = vec(QVPT) where v = vec(V) (6)

it follows that if U= QV(p)P? then u = (P @ Q)v(p) since v(p) = vec(V(p)). Hence:

NM N M
v(p) T?v(p) = v(p) u =Y [v(P)liuli= Y Y [V(P)i U (7)
Consider the value of EP? = %v(p)Tquv(p) for the case where:
. 1 ifi—j3=1 ..
Fii = { 0 otherwise hi€il2,..., M} (8)
Quy = log(Azy) z,ye{l,2,...,N} (9)

Using (5) and (3) allows U = QV(p)P7 to be written in component form:

N M M
Upi = ZZQ’”[(P)i; P = ZZlog Ari)ép,i Py = ZIOg(A’“Pi)P’f

i=1 j=1 i=1 j=1 ji=1

Since Pj = 1 only if j =141 and P;; = 0 otherwise: Uy, = { BOg(Akp”fl) g g z }W M1

But from (7) EP! = ZZ (p)]ijUij, hence since [V(p)]ij = 6pi:

i=1j=1

N M oo
v _ 1 [V(p)i; log(Asp .+1) fj=1...M-1

EM = QZZ{O T itj=M
i=1j=1
N M-1 M-1

= %Z 6?1 log(ZpJ+1) - ; Z IOg PJPJ-H)

i=1 j=1 i=1

From (2) £L(p|A,B) =[5 A

=1 PtPt41

hence EP? = Llog(£(p|A,B)). This means:
sv() TPv(p) = v(p)' (FI+ T + TP)v(p)
= $8v(p)l+ 5v(p) TMv(p) + 5(v(p) TMv(p))"

= Blv(p)| + 5log(L(p|A,B))+ 5 log(L(p|A,B))

= 5v(p)" Tv(p) = BM + log(L(p|A,B)) (10)

Now let the NM element vector i% be related to the N x M matrix I°? by: i’ = vec(I°?). Further let:
[I7)ij = log(Bio,) (11)

Noting from (1) that £(O|A,B,p) = H]Nil By .0, it can now be seen that:

i7" v(p) = vee(I) vec(V(p)) = 3 3" log(Bio, oy, = Y 108(By,0,) = log(L(O|A, B,p)) (12)

Putting (10) and (12) together:

E®(v(p)) = —%v(p)T"pv(p) — iOpTv(p) = —%BM —log(L(p|A,B)) — log(L(0]A, B, p))
= E?(v(p)) = —%,BM —log(L(0O,p|A,B))

Thus, as required, E°?(v(p)) is a monotonic function of —£(O,p|A,B). (N.B. The §# parameter is
used to ensure convergence to hypercube corner. For a discussion of its role see [2])

Enforcement of v = v(p) by confinement to the valid subspace

Following the analysis developed in [2], the enforcement of v = v(p) is achieved by confining the network
output v to a subspace - the valid subspace - such that if v is a hypercube corner that lies in the valid
subspace, then it must be of the form v(p).

The general equation of the valid subspace is:

v=s+T*v with T*° = (I@R)

where s is a constant vector and T?* is a projection matrix, which projects v onto the zerosum subspace,
Iis the M x M identity matrix and R is a N x N matrix given by: R;; = 6;; — %

Let v** = T#*v = vec(V?*®) and s = vec(S) where V** and S are N x M matrices. Using the identity
(6) it can be seen that:

v** = vec(V**) = vec(RV)

Multiplication by R has the effect of setting the column sums of a matrix to zero (for proof see [2]),
hence the column sums of V?* are always zero. Now let S be given by S;; = % If v.=s4v* then
V = S + V?** hence if v satisfies the valid subspace equation then V must have column sums equal to
Ef\il Si; = 1. Clearly if v is a hypercube corner (i.e a vector of ones and zeros) and V has a column
sum of one, then V must be of the form V(p) and hence v = v(p).

Implementation on a Hopfield network and Results of a Simple Experiment

The simplest method of implementation is to set the connection matrix T and input bias i® of the
network as proposed in [3] according to equations (40) and (43) of [2]. Thus:

T =0(T?* —I)+ T and i’ =0s+i where 0 is variable positive parameter (13)

However, for reasons of efficiency it is better to use the modified network proposed in [2] and shown in
Fig 2. This was the case for the simple experiment that was performed to confirm the theory behind
the mapping of the Viterbi algorithm.

The actual experiment consisted of finding the optimum state sequence for a 10 state left to right
HMM (shown in Fig 1) to generate a sequence of 20 output symbols.

As a simplification, the total number of possible output symbols was restricted to 20 and the output
sequence was assumed to be wyws - - -wyo: hence O = [1,2,...,20]7. The transition matrix A is shown
in Fig 1 and the output probability matrix B was generated randomly subject to the constraint that
the sum of each row was one (i.e the total output probability per state was one). In addition, to ensure
that the HMM started in state ¢; and ended in state ¢;q, all the elements of the first and last rows and
columns of B were set to zero, except for the element By; and By which where set to one. Fig 3
shows the evolution of the network output from an initial random state to the final solution.

05 05 0 0

0 05 05 --- 0
A=1]0 0 05 --- 0
0 0 0 0.5

Figure 1: Diagram of left to right 10 state HMM with a 10 x 10 state transition matrix A

Discussion and Conclusion

The output shown in Figure 3 clearly shows the network achieving a valid solution. Further the state
sequence represented by this solution, ¢192¢394959646969696979798989999999999¢10 1s 1n fact the optimum,
since a standard dynamic programming based Viterbi algorithm gives exactly the same state sequence.
This experiment provides a useful illustration of some of the features intrinsic to the Hopfield network
approach. One of these is the ability of the network to keep active more than one solution. For example,
at iteration 200 it can be seen that two partial solutions are active simultaneously, of which one eventually
dominates. In addition, from (12) and (10) it can be seen that the mapping used neatly splits up the
joint likelihood function into an output sequence part, £(O|A,B, p), which is handled by the input bias
term i°?, and a state sequence part £(p|A,B) which is handled by the quadratic term v(p)T°?v(p).
Since the input bias term is an external input to the network, it is highly appropriate that it carries
all the information about the external output sequence which the HMM is trying to recognise. Overall,
these features, together with the obvious advantage of the network‘s inherent parallel structure, make
this mapping of the Viterbi algorithm onto the Hopfield network not just a curiosity but a serious
application with significant potential.

References

[1] Aiyer,S.V.B, Niranjan,M, Fallside,F, A Theoretical Investigation into the performance of the Hop-
field Model IEEE Trans. Neural Networks, Vol NN-1, Issue 2, p204-215, 1990.

[2] Aiyer,S.V.B, Niranjan,M, Fallside,F, A Subspace Approach to Solving Combinatorial Optimization
Problems using Hopfield Networks Cambridge Univ. Engineering Dept. Tech. Report CUED/F-
INFENG/TR-55 1990

[3] Hopfield,J.J, Tank,D.W, Neural Computation of Decisions in Optimization Problems Biological
Cybernetics. 52, 1-25, 1985.

[4] Wilson,V, Pawley,G.S On the Stability of the TSP Problem Algorithm of Hopfield and Tank Bio-
logical Cybernetics 58, p63-70 1988.

[6] Kahng,A, Traveling Salesman Heuristics and Embedding Dimension in the Hopfield Model Proc.
IJCNN 89, Vol I, p513-520, 1989.

[6] Levinson,S, Structural Methods in Automatic Speech Recognition Proc. IEEE, Vol. 73, No. 11, Nov.
1985.

[7] Graham,A, Kronecker Products and Matriz Calculus: with Applications Ellis Horwood Ltd, Chich-
ester 1981.

(1)
v=s+T*v

@

(©)

Y

AV V=ToPy+icp

Hg,v

N—

(1) Projection of v onto valid subspace
v =5+ T?°v where T** = (I® R)

(2) Nonlinear ‘symmetric ramp’ threshold func-
tions constraining v to the unit hypercube.

(3) Change in v given by the gradient of the opti-
mization energy term E°P with Av = Atv

Figure 2: Schematic diagram of modified network implementation

N

A

R
t{»‘\v L

N)
M

(
VL
‘4»“2\\ “\“ i

i

state 10 »
Tteration 10 - E°? = 188.5

t=

«\!‘\\\t“

state 1

i

uuananeing
e 0

)

state 10
t=

Iteration 350 - £°? = 81.9

Tteration 800 - F°P = 48.1

Figure 3: 3D Mesh Plots showing the evolution of V (the matrix representation of the network
output vector v, where vec(V) = v) in a simulation of the modified network implementing the
Viterbi algorithm for a 10 state HMM and sequence of 20 output symbols. The final solution
at iteration 800 is identical to the solution obtained by dynamic programming, i.e. it is the
global optimum. (N.B. The vertical axis scale changes for each mesh plot.)

