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ABSTRACT

A nove articulatory speech produc-
tion system whichisstochastically trained
from a pre-specified initialisation state is
presented. The target positions for a set
of pseudo-articulators and the mapping
from these to output speech spectral vec-
torsare jointly optimised using linearised
Kaman filtering and an assembly of neu-
ral networks. The techniques used to ini-
tialise and train the system are described,
and preliminary resultswhen synthesising
speech are demonstrated.

INTRODUCTION

Articulatory speech synthesisers mo-
del human speech dynamics and hence
theoretically can produce very high qual-
ity speech waveforms with explicit time-
domain modelling of co-articulation [8,
12, 15]. Two major problems confronting
such systems are:

e Specification of the sequence of articu-
lator positions or vocal tract area func-
tions corresponding to a given text.

e Provision of an accurate model of the
human vocal tract.

The former is frequently achieved
usng an “inverse’” model to map
parametrised speech, usualy in the
form of spectral vectors, into articula-
tor positions or vocal tract areas and
hence determine target positions for the
phonemes to be synthesised. We use
a Kelly-Lochbaum synthesiser [6, 12]
to generate a codebook of (articulator
vector, spectral vector) pairs [13] which
is inverted using dynamic programming
(DP) incorporating geometrical con-
straints on the articulator tragjectories, as
shown infigure 1.

The inverse mapping is non-unique, so
dissmilar articulator positions may result
in similar acoustic outputs [2, 7], hence
attempts to model the inverse transfor-
mation using acoustic error alone [1, 10]
are likely to produce discontinuous artic-
ulatory output. A continuity constraint
should therefore be applied to such tra
jectories, which may be implicit asinin-
verse filtering techniques [16], or explic-
itly imposed via arestriction to critically
damped second order transitions [14] or

the minimisation of geometrical distances
[13, 17].

In addition, the non-linearity of the
inverse mapping combined with its
non-unigueness can result in non-convex
target regions in articulator space [4],
so gradient-based algorithms which
average over a number of training vec-
tors, whether a single neural network
[1, 10, 17], Jacobian computation [5]
or unconstrained optimisation [7], may
converge to an average which does not
lie within the target class, resulting in an
incorrect inverse model. This problem
can be avoided either by subdividing the
input space into regions in which the
non-linear mapping is unique [11], or by
jointly optimising an (inverse, forward)
model pair to restrict the inverse model to
aparticular solution [3].

In our system the use of codebook
look-up guarantees that a particular in-
verse solution is chosen at each point in
time, and the DP search incorporates both
acoustic and geometric constraints to en-
sure continuity.

The second problem, that of deter-
mining an accurate vocal tract model,
is approached in our system by relax-
ing the constraint that the system exactly
mimic human physiology. Instead, we use
“pseudo-articulators’ which fulfil roles
smilar to those of human articulators but
whose positions are stochastically esti-
mated from the training data. The initial
articulator trgjectory estimates obtained
from the DP agorithm are iteratively re-
estimated using linearised Kalman filter-
ing and an assembly of neural networks
which map from articulator positions to
output speech.

SYSTEM INITIALISATION

System initialisation is shown in fig-
ure 1. Voca tract area functions are
determined from a set of five pseudo-
articulators as in [9]. Four of these,
roughly specifying tongue position, are
sampled at regular intervals to give 6321
basic vocal tract shapes. A logarithmic
guantisation is then applied to eliminate
very similar shapes; since our aim in ini-
tialisationisto determineaset of articula-
tor trajectories, time domain quantisation
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Figure 1: Systeminitialisation.

is preferable to that in the frequency do-
main as used elsawhere [13].

Quantised lip opening is then added as
a fifth parameter giving 27651 pseudo-
articulator vectors which are used to gen-
erateacorresponding set of 10-sectionvo-
ca tract area functions. These are in-
terpolated in the logarithmic domain and
re-sampled to yield an appropriate num-
ber of area sections for use in the Kelly-
Lochbaum synthesiser, which treats the
vocal tract as a variable number of fixed
cross-sectional area tubes and incorpo-
rates separate oral and nasal tracts, aswell
as modelling transmission loss. A sam-
pling frequency of 16kHz corresponding
to area sections of length ~1.1cm was
chosen, and both 15 and 16-section re-
sampled area functions were used, giving
atotal of 55302 basic shapes.

Fricative waveforms are created from
shapes with a constriction of less than
0.3cm? using arandom noise source at the
constricted point which is correlated with
the voiced excitation, if any. Nasals are
generated from the parallel combination
of a variable ord tract and a fixed nasal
tract, for three values of velum opening.
In all, 31848 voiced and unvoiced frica-
tives and 15126 nasals were included, in
addition to 55302 purely voiced wave-
forms. In each casethe speech waveforms
were parametrised by the CUED HTK
recogniser to give one 12-dimensional
liftered cepstral vector per 10msec of
speech. Finaly, 212 cepstral vectors rep-
resenting “silence” or background noise
in the training speech were added to give
atotal codebook size of 102488 vectors.

Codebook inversion

The training speech comprised 600
sentences of one adult male from the
speaker-dependent training portion of
the Defence Advanced Research Projects
Agency (DARPA) Resource Management
corpus. This speech was also coded into
12-dimensional cepstral  vectors, and

dynamic programming was used to find
a path through the lattice of possible
articulator trajectories.

At each step of the DP algorithm,
both the acoustical mismatch between the
parametrised training speech vector and
the codebook acoustic vectors and the ge-
ometrical mismatch between successive
articulatory vectors are combined into a
weighted score when evaluating paths.
To reduce the computational load, a sub-
optimal search wasused in which only the
500 codebook vectorswith the best acous-
tic match were considered at each step.
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Figure 2. Pseudo-articulator trajectory
for * displacement” .

Pseudo-articulator trajectories such as
that in figure 2 were generated in thisway
for al 600 sentences. This figure shows
the trgjectory of one pseudo-articulator
during the word “displacement”, where
phoneme boundaries taken from the
HTK-produced label file are marked
as vertica lines. The phone labels are
taken from the DARPA transcription
of the speech, and in most cases the
pseudo-articulator is steady between
boundaries.

Target statistics are thus determined
from the values of the articulators at
the midpoint of each occurrence of each
phoneme to give initia target means and
covariance matrices for each of the five
basic articulators for the 47 phonemes in
the data set.



TRAINING

A separate neural network is used
to learn the mapping from the pseudo-
articulator trajectories of each phoneme
to output speech. The trgectories are
piecewise linear interpolations of the
phoneme target means, constrained to
pass through the average of two adjacent
target means at the phonemic boundary.
The training set output vectors were
24-dimensional mel-scaled log spectral
coefficients; while this is a less efficient
representation than the cepstral coeffi-
cients used previoudy, their use resultsin
amore easily learned non-linear function.

The purpose of the neural networksis
to approximate this mapping from artic-
ulatory to acoustic space, so that the lin-
earised Jacobian matrix can be used to
re-estimate the phonemic targets;, hence
their performance and architecture are
not crucia to the training process. We
trained feed-forward multi-layer percep-
trons with 12 inputs, 30 hidden units,
24 outputs and sigmoid non-linearities
at the hidden units using resilient back-
propagation (rprop) for 1000 batch update
epochs, giving mean errors in estimated
spectral coefficients of around 10%.

The global error covariance matrix for
each network mapping is estimated from
its performance on an unseen test set, and
the Jacobian matrix isfound by extending
the usual error back-propagationformul ae
to evaluate the derivative of each output
with respect to each input:

Oyg
ayk- = Z(w,;jwjkyj<1 - yj))

J

wherey;, y;, y; arethe outputs of nodesin
theinput, hidden and output | ayersrespec-
tively and w;;, w;; are the input-hidden
and hidden-output weights respectively.

If the initial estimate of a phoneme’s
articulatory target mean vector is denoted
%, with associated initial covariance ma

trix P, and if the neural mapping is de-
noted A () with Jacobian matrix H at the
target estimate, output z and output error
covariance matrix R, thetarget vector can
be re-estimated using linearised Kalman
filtering as:

x =%+ PHT(HPHT + R)™"(z — h(%))

Thisgives are-estimated target vector for
each occurrence of each phoneme, from
which new target mean and covariance
statistics are computed. Updated pseudo-
articulator trajectories are then derived

and the networks re-trained. This pro-
cess is iterated until the optimum set of
phoneme targets is obtained, from which
speech is synthesised.

RESULTS

Figure 3 shows original and synthetic
smoothed 24-dimensional mel-scaled fil-
ter bank vectorsfor the phrase “clear win-
dows’. The phonemealignment produced
by HTK has resulted in small timing er-
rorsat phoneme boundary positions, how-
ever the gross spectral characteristics of
the two plots correlate well.

Formant transitions are generally well
defined, although the co-articulation from
the stop /d/ to the following vowel /ow/ in
“windows’ has been missed by the syn-
thesiser. The use of a separate neural net-
work for each phoneme results in some
discontinuities at phoneme boundaries,
for exampleimmediately preceding thefi-
na fricated /z/ in “windows’, however
the formants themselves are well-defined
across boundaries, and high-frequency
frication is successfully modelled.

Futurework

The system is still under development,
and many features have yet to be im-
plemented. In particular, improved co-
articulation modelling could be provided
via the explicit modification of the target
means according to their context. Since
we have statistics for target means and
variances for each phoneme, this should
permit statistically-based co-articulation
effectsto be modelled.

In addition, the use of pseudo-
articulators which are not constrained
to human physiology provides the pos-
shility of adding additional articulators
during the training phase, thus potentially
increasing the amount of information
available to the neural mappings.

Finally, a method for smoothly com-
bining the outputs of the neural networks
across phoneme boundaries should reduce
errors due to discontinuities.

CONCLUSIONS

This paper has presented a novel
pseudo-articulatory speech production
model, which is initialised by generating
a codebook of (acoustic vector, spec-
tral vector) pairs using a conventional
Kelly-Lochbaum articulatory synthesiser
which is inverted using sub-optimal
dynamic programming search combining
acoustic and geometric cost functions.
The means and covariance matrices of
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Figure 3: (i) original and (ii) synthesised filter bank output for phrase “ clear windows” .

the articulator targets for each phoneme
are then estimated over 600 sentences of
one speaker, and articulator trgectories
corresponding to the training speech are
constructed using constrained piecewise
linear interpol ation between the means.

An individua neura network is then
trained to learn the mapping from ar-
ticulators to parametrised speech vectors
for each of 47 phonemes, and the target
means are re-estimated using these map-
pings and alinearised Kalman filter. This
processisiterated to find the optimum set
of target means from which output speech
is synthesised.

While articulatory synthesisers still do
not produce speech comparable to that of
the best rule-based synthesisers, we have
attempted to show that the inability to ex-
actly model the human speech produc-
tion mechanism need not limit their via-
bility, and have demonstrated a prelimi-
nary stochastically-trained system which
yields promising results.
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