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ABSTRACT

We present a novel method for generating additional pseudo-articulator trajectories suitable for
use within the framework of a stochastically trained speech production system recently developed at
CUED. The systemisinitialised by inverting a codebook of (articulator, spectral vector) pairs, and the
target positionsfor a set of pseudo-articulatorsand the mapping from these to speech spectral vectors
are then jointly optimised using linearised Kalman filtering and an assembly of neural networks. A
separate network is then used to hypothesise a new articulator trajectory as a function of the existing
articulatorsandtheoutput error of the system. Thetechniquesusedtoinitialiseandtrainthesystemare
described, and preliminary results for the generation of new pseudo-articulatoryinputs are presented.

1. Introduction

Articulatory speech synthesisfrom text requiresthe specification of aset of articulator trajectories correspondingto
atime-aligned phoneme string, together with a mapping from these trajectories to output speech. Thismapping is
frequently an explicit model of the human vocal tract [6, 8, 10], which theoretically providesthe ability to produce
very high quality speech waveformsincorporating time-domain modelling of co-articulation. In practice however,
the performance of such systemsislimited by model inaccuracies andin thispaper we propose an aternativesystem
in which a stochastically-trained model |earns the mapping from articulatory to acoustic space [1].

Wethereforerelax the constraint that the system exactly mimic human physiology and instead use a set of “pseudo-
articulators’ [7] which fulfil roles similar to those of human articulators but whose positions are iteratively re-
estimated from the training data. Initia articulator trgjectory specification is achieved using an “inverse” model
to map parametrised speech into articulator positions or vocal tract areas. We use a Kelly-Lochbaum synthesiser
[5, 8] to generate a codebook of (articulator vector, spectral vector) pairs[9] which we invert using dynamic pro-
gramming (DP) incorporating both acoustic and geometrical constraints on the articul ator trajectories.

Target positions for the pseudo-articulators for each phoneme are estimated from the initial trajectories obtained
from the DP agorithm and are used to re-construct trajectories corresponding to the training speech, incorporating
an explicitmodel of co-articulation. Thesetarget positionsaretheniteratively re-estimated using linearised Kalman
filtering and an assembly of neural networkswhich map from articulator positionsto output speech.

Since the system is not constrained to the use of physiologically plausible articulators, it is possible to improve
modelling accuracy by adding new articulators during the training process. We use anovel extension of the back-
propagation algorithmto alow an artificial neural network to learn anew input signal, which when combined with
the original pseudo-articulator inputs provides a significant reduction in training error. While several architectures
have previously been proposed for the addition of hidden layer unitsto anetwork [4], the generation of anew input
signa inthisway appearsto be novel. A brief overview of the basic speech production system will be given before
providing the details of the generation of new articulators.

2. Speech production system

Five pseudo-articulators as used in [ 7] were sampled at regular intervals and used to determine a set of vocal tract
areafunctions suitable for use in a Kelly-Lochbaum synthesi ser which incorporates a transmission loss model and
separate oral and nasal tracts. A sampling frequency of 16kHz was used and in all 102488 speech waveforms were
generated, each of which was parametrised asa 12-dimensional liftered cepstral vector to giveacodebook of 102488
(articul ator vector, spectral vector) pairs.

A training speech database comprising 600 sentences of one adult male from the speaker-dependent training por-
tion of the Defence Advanced Research Projects Agency Resource Management corpus was aso coded into 12-
dimensiona cepstral vectors, and dynamic programming was used to find the best pseudo-articulator trajectory
corresponding to each vector sequence. The cost function used incorporates both the acoustical mismatch between
the parametrised training speech vector and the codebook acoustic vectors and the geometrical mismatch between
successive articul atory vectors. To reduce the computational |oad, a sub-optimal search was used in which only the
500 codebook vectors with the best acoustic match were considered at each step.



Theresult of thisprocessisaset of pseudo-arti cul ator traj ectories corresponding to the parametri sed training speech
vector sequences. Statistics describing the observed position of each of the pseudo-articulators during the produc-
tion of each phoneme are determined by sampling the values of the pseudo-articul ator trgectories at the midpoint
of each occurrence of each phonemeto give initia estimates of target mean positionsand covariance matrices P.
Althoughtheword “target” is used here, we are in fact measuring the achieved position of each pseudo-articulator
at the phonemic midpoints; the underlying target towards which an articulator was heading may never be reached
in practice.

The pseudo-articulator trajectory corresponding to any arbitrary time-aligned phoneme string can then be deter-
mined by applying an explicit co-articulation model to the phonemic target means and using piece-wise linear in-
terpolation constrained to pass through the average of two adjacent target means at the phonemic boundary [1, 2].

2.1. System training
The system istrained using the following iterative re-estimation process:

Repeat:
e Trainaseparate neural network to approximatethefunction from the pseudo-articul ator trajectories
of each phoneme to the output speech.
¢ Re-egtimate the position of each pseudo-articulator at the phonemic midpointsusing the linearised
Jacobian matrices of the networks and linearised Kalman filtering.
o Compute the statistics of the new articulator positionsfor each phoneme and generate new articu-
lator trajectories corresponding to the training speech from these new statistics.

The performance and architecture of the networks used are not crucial to the training process since their purpose
is only to approximate the function from articulatory to acoustic space so that the linearised Jacobian matrix H
can be used to re-estimate the phonemic targets; once the re-estimation is completed however, their performanceis
optimised as far as possible.

We trained feed-forward multi-layer perceptrons (MLPs) with 5 inputs, 30 hidden units, 24 outputs and sigmoid
non-linearitiesat the hidden units using resilient back-propagation (RPROP) for 1000 batch update epochs, giving
mean errorsin estimated spectra coefficients of around 10%. The training set output vectors were 24-dimensional
mel-scaled log spectral coefficients.

The global error covariance matrix R for each network mapping is estimated from its performance on an unseen
test set, and the Jacobian matrix H isfound by extending the usual error back-propagation formulaeto evaluate the
derivative of each output with respect to each input:
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where y;, y;, yr are the outputs of nodes in the input, hidden and output layers respectively and w;;, w;j are the
input-hidden and hidden-output wel ghtsrespectively. If theinitia estimate of aphoneme sarticulatory target mean
vector is denoted %, with associated covariance matrix P and corresponding parametrised speech vector z, and if
the neural mapping isdenoted A () with Jacobian matrix H at the target estimate and output error covariance matrix
R, thetarget vector can be re-estimated using linearised Kaman filtering as:

x=x+PHT(HPHT + R)~'(z — h(x))

This gives a re-estimated target vector for each occurrence of each phoneme, from which new target mean and
covariance statistics are computed. Updated pseudo-articulator tragjectories are then derived and the networks re-
trained. This processisiterated to obtain an optimum set of phoneme targets from which speech is synthesised.

3. Generation of new inputs

In the speech production model described above, a partitioning of theinput space into a discrete set of sub-spaces
corresponding to 47 different phoneme classes isknown a priori, alowing usto divide the problem of determining
the mapping from articulator space to acoustic space into 47 sub-tasks, each of which isapproximated by a separate
neura network. We shall show that this knowledge of a partitioning of the input space can also be exploited to
generate new input trajectories for the networkswhich lead to an overall increase in model accuracy.

If aneural network istrained using mean squared error (MSE) as a cost function to approximate a mapping from
smooth functionsat itsinputsto smooth functionsat itsoutputs, we expect theerror at each output to be roughly zero



mean over the entiretraining set. Wetrained a singlenetwork to approximate the mapping from pseudo-arti cul ator
tragjectories to output speech vectorsfor all phonemes, and atypical plot of the output error signals during asingle
sentence is shown in Figure 1, where phonemic boundaries are marked as vertical lines.
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Figure 1: Variationin error at each of 24 network outputs over the course of the sentence “ clear windows’ .

Themean error for each output over the course of the sentenceis approximately zero, however within each phoneme
thereare clearly systematic variationsintheerror signal. It shouldtherefore be possibleto deriveanew input for the
network which is correlated with these systematic variations, in which case we would expect the overdl network
training error to decrease if we re-train the network on a data set augmented by thisinput.

By examining many error plotssuch asthe abovewe find that different instances of the same phoneme have similar
error signals — for example the the two occurrences of /ih/ in Figure 1 — which are in general not constant over
the duration of aphoneme, but follow trajectorieswhich are affected by the context in which the phoneme occurs.
Therefore, while some reduction in the error magnitude could be achieved either by subtracting the mean error for
each phoneme from the output signal according to the phonemic class of the current input!, or by providing an
additiona input which identifies this phonemic class, a preferable solution would be to generate a new trajectory
which incorporatesthis contextua variation.

If asuitable set of means for such an input were determined for each phoneme, a context-sensitivetrgectory could
be defined using piece-wise linear interpol ation as described above, alowing anew input trgjectory to be generated
for an arbitrary input phoneme string. We use a single neural network trained on all the speech data to learn this
new input since to do so with 47 different networks would result in a highly discontinuous solution.

3.1. System architecture

The architecture shown in Figure 2 was used, in which a conventional feed-forward MLP represented by the solid
nodes and connecting links is trained to approximate a mapping between the known inputs and the outputs. The
parameters of this network (weights and biases) are then frozen, and the additional structure indicated by hollow
node symbolsand dashed linesisadded. A number of new hidden nodes are provided, which are connected to both
the original inputsand the single new input, as well as to the output nodes of the origina network.

Output nodes
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Figure 2: Network architecture for the generation of a new input.

The parameters of the new structurearethen initialised to small random values, with the connectionsfrom the origi-
nal inputsto the new hidden nodes setting an initial operating point inthe weight space of the new hidden layer. The
error signal at the output of the original (fixed) network isthen back-propagated through the new network structure

'An effect implicitly achieved when using 47 separate networks.



to the new input v ues, which areinitialisedto zero for al training frames. The partia derivative of the error with
respect to the input node value is derived in a similar way to the expression for the derivative of each output with
respect to each input, and is:
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wherey;, y;, yr aretheoutputsof nodesin the input, hidden and output layers respectively, w;;, w;; aretheinput-
hidden and hidden-output wei ghtsrespectively, F isthe sum squared error at the outputsand ¢, isthetarget output.
The new inputs are then updated using:
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where  isanalogousto thelearning rate used in standard error back-propagation. Once anew input val ue has been
computed inthisway for every training frame, the parameters of the new network structureare optimisedto produce
asignal at theoutput nodeswhich approximatesthe negative of theorigina error £. After somenumber of iterations
of this optimisation, the new (reduced) output error is once again back-propagated through to the new network
inputs, which are updated once again. This process, similar to the Expectation-Maximisation (EM) agorithm [3],
is continued until an optimum set of new input val ues has been determined. Due to the noisy nature of most output
error signals, thisnew input will itself in general be noisy, so that some smoothing is required before extracting its
systematic characteristics for use in generating the new input signal for new data.

Unlike standard back-propagation, thistechniqueis not sensitive to changesintheva ue of  —which smply affects
themagnitudeof thenew input signal —but issensitiveto the number of epochs of parameter optimisation performed
per input update. After each update of the input values, the parameters of the new network structure are optimised
toreduce the output error. If thisoptimisationisallowed to continuefor alarge number of iterationsthe parameters
become highly tuned to the current input values, so that when the input values are next updated there islikely to be
alarge mis-match between these and the highly optimised parameters.

The solutiontothisproblem for difficult | earning tasksisto use only asmall number of optimisationepochsper input
update so that the new input values and the parameters of the new network structure jointly converge to a solution
in a smooth sense, a process anal ogous to generalised EM. The new input learned will in genera be a non-linear
function of both the output signals of the original network and the original network inputs.

3.2. Examplefor an artificial system
To investigate the properties of the algorithm just described, an artificial data set was generated by taking two non-
linear combinations of three basic functions:

vy =13 za=t+1, z3=0.2sin(10¢)
for values of ¢ ranging from —1 to 1 in steps of size 0.01; the two non-linear functions used were:
fi=ziz9+ 23, fr=3—21— 0.5;13% — 0.5e%t x4

to which we added zero-mean white noise of maximum absolute value 0.2. An MLP with 2 inputs, 4 hidden nodes
and two outputswastrained using RPROP for 1000 batch update epochs on adata set consisting of thetwo inputsz ¢
and z- and thenoisy outputs f; and f,. Theinput z3 was chosen to be a sinusoidto produce systematic variationsin
theerror signal, and was not supplied to the network. Two outputsfunctionswere used since training with asingle
output resultsin thetrivial solution of the error signal being reproduced as the new input.

The technique described above was used to generate a new input for the network by using 3 new hidden nodes,
alearning rate of 1.0 and training for 50 input re-estimation iterations, each of which incorporated 100 epochs of
parameter optimisation for the new network. The noisy new input signal generated was then smoothed using a
third order butterworth low-passfilter with cutoff frequency one tenth of the Nyquist frequency. A separate neural
network was then re-trained using the two original inputsz, and x5 and the new input, again with 4 hidden nodes
and the two output targets f; and fs.

Due to its extra input node, the latter network has more parameters than the original system: 3 inputs, 4 hidden
nodesand 2 outputsgives 26 parameters, whereas (2,4,2) givesonly 22. Hence wetrained an additional network for
comparison onthetwoinputsz; and z, thistimewith 5 hidden nodes, wherea(2,5,2) structuregives 27 parameters
whichisonemorethan the network with 3 inputs. Table 1 showstheresultsfor thetwo networks, wherethe network
incorporating the new input has resulted in areduction in M SE of approximately 56%.

These results are shown graphically in Figure 3. The first sub-figure shows the target output functions before and
after adding noise, while the second shows both noisy and smoothed generated network inputs together with the



Network structure | Number of parameters | MSE | improvement (%)
(2,5,2) 27 0.0119 -
(34,2 26 0.00526 55.8

Table 1: Performance of networks on artificial data.

original missing input (dashed), where astrong correlation can be seen between thetwo. Thefinal sub-figure shows
thetarget and actua network outputs. The dotted plotisthe noisy target output, whilethedashed plot correspondsto
theoriginal 2-input network, and the solid plot to the new 3-input network. Clearly the 3-input network has learned
agreatly superior mapping despite having one less parameter.
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Figure 3: (i) Two network target outputs, both before and after adding zero mean white noise (ii) The new (lear ned)
network input signal both before (dotted) and after (solid) smoothing, and original missing input z 3 (dashed) (iii)
Noisy network target outputs, and outputs of both the original network and that trained with the new input.

3.3. Application to speech production

In applying the input generation technique to our speech production system, we need to show not only that it is
possible to generate a new input which resultsin a reduction in the training error as in the previous example, but
also that this new input can be characterised in a genera way such that it can be generated for any arbitrary vector
of ordinary network inputs, given the information as to the input phoneme class a any point in time.

An MLP with 5 inputs, 30 hidden nodes and 24 outputswas trained, once again using 1000 batch update epochs of
the RPROP agorithm, to learn the mapping from co-articulated pseudo-articulator tragjectories to speech spectral
vectors for 400 sentences of training data comprising a total of 122102 vectors. We then added 10 new hidden
nodes and trained the new network structure to learn a new input for this system. During this stage of the training
the constant  was set to 1.0 and 100 re-estimation iterationswere performed, with 1 epoch of RPROP optimisation
of the new network parameters for each update of the input values.

Thisminimal amount of parameter opti misation per iteration was necessary to ensure smooth convergence to an op-
timal set of input values, and the M SE decreased during training from 1.5007 to 0.5497. The new input trgjectory
obtai ned was smoothed in individual sections corresponding to input training sentences using a third order butter-
worth low-pass filter with cutoff frequency one fifth of the Nyquist frequency, and then sampled at the phoneme
midpointsto obtain statistics for the mean position of the new input for each phoneme.

New input trajectories were constructed from these means using the same piece-wi se continuousinterpol ation used
for the origind inputs, and the new trajectory so formed was added tothe original dataset. A network with 6 inputs,
31 hidden nodes and 24 outputswas then trained using 1000 batch update epochs of the RPROP a gorithm, to learn
the mapping from the augmented input set to the origina outputs. This (6,31,24) network has 985 parameters, so
to ensure afair comparison a separate network with 32 hidden nodes was trained on the origina input set, giving a
(5,32,24) structure comprising 984 parameters.

Network structure | Number of parameters | MSE | improvement (%)
(5,32,24) 984 1.524 -
(6,31,24) 985 1.275 16.3

Table 2: Performance of networks on speech data.

The results are given in Table 2, where we see that with a comparable number of parameters the system which
uses the new input has 16.3% less M SE than the system trained on the original inputs. We emphasi se that the new
input trgjectory used was not that learned directly by the augmented network structure, but was generated from
the statistics of this trgjectory. Hence a new input trgjectory such as this can be generated for an arbitrary input
phoneme segquence. Figure 4 shows the MSE for both the (5,32,24) network trained on the origind data and the



(6,31,24) network trained on the augmented data set. The plots exclude the first 10 epochs of training to provide
reasonable scaling in the y-axis.

2.5H

MSE

(5,32,24) network
1.5 7
6,31,24) network

0 200 400 600 800 1000
Training epochs

Figure 4: Network error curves for original and augmented data sets.
4. Conclusions

This paper has presented a novel technique for generating a new input for an artificial neura network which has
been trained to learn the mapping from a set of smooth input functions to a corresponding set of smooth output
functions, under the condition that a subdivision of the input space into distinct classes is known a priori a each
time step. If the error of such a system shows systematic variations which are correlated with changes in the input
class and dependent upon theinput context, statistics describing the form of the new input can be computed which
allow such an input to be generated given any set of origind trgjectories.

The technique has been demonstrated on both an artificial system and in the context of a pseudo-articulatory speech
production model recently developed at CUED, and in both cases was seen to provide a significant reduction in
output error.

Other fieldswherethi stechnique may have applicationsincludes owly parameter-varying control systems, inwhich
an interpolation is performed between a number of linear model s which approximate a non-linear mapping. If the
output error of the system has systemati ¢ variationswhich are correl ated with the particul ar linear model being used,
anew signal could be derived as afunction of the output error and the slowly-varying parameter so asto reduce the
overall system error.

Thissystem is still under devel opment, and many questions have yet to be resolved. The convergence and stability
criteriaof the re-estimation technique for generating new inputs need to be investigated, as does the sensitivity of
the system to the initidisation conditions. The viability of the model as applied to our speech production system
seems excellent however, and theinitial results obtained are extremely encouraging.
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