
Learning New Articulator Trajectories for a Speech Production Model
using Artificial Neural Networks

C. S. Blackburn and S. J. Young
Cambridge University Engineering Department (CUED), England

email: csb@eng.cam.ac.uk

ABSTRACT

We present a novel method for generating additional pseudo-articulator trajectories suitable for
use within the framework of a stochastically trained speech production system recently developed at
CUED. The system is initialised by inverting a codebook of (articulator, spectral vector) pairs, and the
target positions for a set of pseudo-articulators and the mapping from these to speech spectral vectors
are then jointly optimised using linearised Kalman filtering and an assembly of neural networks. A
separate network is then used to hypothesise a new articulator trajectory as a function of the existing
articulatorsand the outputerror of the system. The techniques used to initialiseand train the system are
described, and preliminary results for the generation of new pseudo-articulatory inputs are presented.

1. Introduction
Articulatory speech synthesis from text requires the specification of a set of articulator trajectories corresponding to
a time-aligned phoneme string, together with a mapping from these trajectories to output speech. This mapping is
frequently an explicit model of the human vocal tract [6, 8, 10], which theoretically provides the ability to produce
very high quality speech waveforms incorporating time-domain modelling of co-articulation. In practice however,
the performance of such systems is limited by model inaccuracies and in this paper we propose an alternative system
in which a stochastically-trained model learns the mapping from articulatory to acoustic space [1].

We therefore relax the constraint that the system exactly mimic human physiology and instead use a set of “pseudo-
articulators” [7] which fulfil roles similar to those of human articulators but whose positions are iteratively re-
estimated from the training data. Initial articulator trajectory specification is achieved using an “inverse” model
to map parametrised speech into articulator positions or vocal tract areas. We use a Kelly-Lochbaum synthesiser
[5, 8] to generate a codebook of (articulator vector, spectral vector) pairs [9] which we invert using dynamic pro-
gramming (DP) incorporating both acoustic and geometrical constraints on the articulator trajectories.

Target positions for the pseudo-articulators for each phoneme are estimated from the initial trajectories obtained
from the DP algorithm and are used to re-construct trajectories corresponding to the training speech, incorporating
an explicit model of co-articulation. These target positions are then iteratively re-estimated using linearised Kalman
filtering and an assembly of neural networks which map from articulator positions to output speech.

Since the system is not constrained to the use of physiologically plausible articulators, it is possible to improve
modelling accuracy by adding new articulators during the training process. We use a novel extension of the back-
propagation algorithm to allow an artificial neural network to learn a new input signal, which when combined with
the original pseudo-articulator inputs provides a significant reduction in training error. While several architectures
have previously been proposed for the addition of hidden layer units to a network [4], the generation of a new input
signal in this way appears to be novel. A brief overview of the basic speech production system will be given before
providing the details of the generation of new articulators.

2. Speech production system
Five pseudo-articulators as used in [7] were sampled at regular intervals and used to determine a set of vocal tract
area functions suitable for use in a Kelly-Lochbaum synthesiser which incorporates a transmission loss model and
separate oral and nasal tracts. A sampling frequency of 16kHz was used and in all 102488 speech waveforms were
generated, each of which was parametrised as a 12-dimensional liftered cepstral vector to give a codebook of 102488
(articulator vector, spectral vector) pairs.

A training speech database comprising 600 sentences of one adult male from the speaker-dependent training por-
tion of the Defence Advanced Research Projects Agency Resource Management corpus was also coded into 12-
dimensional cepstral vectors, and dynamic programming was used to find the best pseudo-articulator trajectory
corresponding to each vector sequence. The cost function used incorporates both the acoustical mismatch between
the parametrised training speech vector and the codebook acoustic vectors and the geometrical mismatch between
successive articulatory vectors. To reduce the computational load, a sub-optimal search was used in which only the
500 codebook vectors with the best acoustic match were considered at each step.

The result of this process is a set of pseudo-articulator trajectories corresponding to the parametrised training speech
vector sequences. Statistics describing the observed position of each of the pseudo-articulators during the produc-
tion of each phoneme are determined by sampling the values of the pseudo-articulator trajectories at the midpoint
of each occurrence of each phoneme to give initial estimates of target mean positions and covariance matrices

��
.

Although the word “target” is used here, we are in fact measuring the achieved position of each pseudo-articulator
at the phonemic midpoints; the underlying target towards which an articulator was heading may never be reached
in practice.

The pseudo-articulator trajectory corresponding to any arbitrary time-aligned phoneme string can then be deter-
mined by applying an explicit co-articulation model to the phonemic target means and using piece-wise linear in-
terpolation constrained to pass through the average of two adjacent target means at the phonemic boundary [1, 2].

2.1. System training
The system is trained using the following iterative re-estimation process:

Repeat:�
Train a separate neural network to approximate the function from the pseudo-articulator trajectories
of each phoneme to the output speech.�
Re-estimate the position of each pseudo-articulator at the phonemic midpoints using the linearised
Jacobian matrices of the networks and linearised Kalman filtering.�
Compute the statistics of the new articulator positions for each phoneme and generate new articu-
lator trajectories corresponding to the training speech from these new statistics.

The performance and architecture of the networks used are not crucial to the training process since their purpose
is only to approximate the function from articulatory to acoustic space so that the linearised Jacobian matrix �
can be used to re-estimate the phonemic targets; once the re-estimation is completed however, their performance is
optimised as far as possible.

We trained feed-forward multi-layer perceptrons (MLPs) with 5 inputs, 30 hidden units, 24 outputs and sigmoid
non-linearities at the hidden units using resilient back-propagation (RPROP) for 1000 batch update epochs, giving
mean errors in estimated spectral coefficients of around 10%. The training set output vectors were 24-dimensional
mel-scaled log spectral coefficients.

The global error covariance matrix � for each network mapping is estimated from its performance on an unseen
test set, and the Jacobian matrix � is found by extending the usual error back-propagation formulae to evaluate the
derivative of each output with respect to each input:���	��
�	�
���	����� � � � � ��� � ����� � �����

where
� ��� � � � �	�

are the outputs of nodes in the input, hidden and output layers respectively and � � � � � � � are the
input-hidden and hidden-output weights respectively. If the initial estimate of a phoneme’s articulatory target mean
vector is denoted

�� , with associated covariance matrix
��

and corresponding parametrised speech vector � , and if
the neural mapping is denoted � � with Jacobian matrix � at the target estimate and output error covariance matrix� , the target vector can be re-estimated using linearised Kalman filtering as:

� � ��"! �� �$# � � �� �$# ! � �&%(' � � � � �� ���
This gives a re-estimated target vector for each occurrence of each phoneme, from which new target mean and
covariance statistics are computed. Updated pseudo-articulator trajectories are then derived and the networks re-
trained. This process is iterated to obtain an optimum set of phoneme targets from which speech is synthesised.

3. Generation of new inputs
In the speech production model described above, a partitioning of the input space into a discrete set of sub-spaces
corresponding to 47 different phoneme classes is known a priori, allowing us to divide the problem of determining
the mapping from articulator space to acoustic space into 47 sub-tasks, each of which is approximated by a separate
neural network. We shall show that this knowledge of a partitioning of the input space can also be exploited to
generate new input trajectories for the networks which lead to an overall increase in model accuracy.

If a neural network is trained using mean squared error (MSE) as a cost function to approximate a mapping from
smooth functions at its inputs to smooth functions at its outputs, we expect the error at each output to be roughlyzero

mean over the entire training set. We trained a single network to approximate the mapping from pseudo-articulator
trajectories to output speech vectors for all phonemes, and a typical plot of the output error signals during a single
sentence is shown in Figure 1, where phonemic boundaries are marked as vertical lines.

0 10 20 30 40 50 60 70 80 90 100

−2

0

2

4

Speech frame index (10msec units)

E
rr

or
 m

ag
ni

tu
de

k l ih r w ih n d ow z

Figure 1: Variation in error at each of 24 network outputs over the course of the sentence “clear windows”.

The mean error for each output over the course of the sentence is approximately zero, however within each phoneme
there are clearly systematic variations in the error signal. It should therefore be possible to derive a new input for the
network which is correlated with these systematic variations, in which case we would expect the overall network
training error to decrease if we re-train the network on a data set augmented by this input.

By examining many error plots such as the above we find that different instances of the same phoneme have similar
error signals – for example the the two occurrences of /ih/ in Figure 1 – which are in general not constant over
the duration of a phoneme, but follow trajectories which are affected by the context in which the phoneme occurs.
Therefore, while some reduction in the error magnitude could be achieved either by subtracting the mean error for
each phoneme from the output signal according to the phonemic class of the current input

'
, or by providing an

additional input which identifies this phonemic class, a preferable solution would be to generate a new trajectory
which incorporates this contextual variation.

If a suitable set of means for such an input were determined for each phoneme, a context-sensitive trajectory could
be defined using piece-wise linear interpolation as described above, allowing a new input trajectory to be generated
for an arbitrary input phoneme string. We use a single neural network trained on all the speech data to learn this
new input since to do so with 47 different networks would result in a highly discontinuous solution.

3.1. System architecture
The architecture shown in Figure 2 was used, in which a conventional feed-forward MLP represented by the solid
nodes and connecting links is trained to approximate a mapping between the known inputs and the outputs. The
parameters of this network (weights and biases) are then frozen, and the additional structure indicated by hollow
node symbols and dashed lines is added. A number of new hidden nodes are provided, which are connected to both
the original inputs and the single new input, as well as to the output nodes of the original network.

New
hidden
nodes

Original
hidden
nodes

. . .

.

. . .

. . .

New network inputOriginal network inputs

Output nodes

Figure 2: Network architecture for the generation of a new input.

The parameters of the new structure are then initialised to small random values, with the connections from the origi-
nal inputs to the new hidden nodes setting an initial operating point in the weight space of the new hidden layer. The
error signal at the output of the original (fixed) network is then back-propagated through the new network structure

�

An effect implicitly achieved when using 47 separate networks.

to the new input values, which are initialised to zero for all training frames. The partial derivative of the error with
respect to the input node value is derived in a similar way to the expression for the derivative of each output with
respect to each input, and is: ����
�	� � � � ��� � � � � ����� � ��� � � � � � � � �	� ��� � �����

where
�	� � � � � � �

are the outputs of nodes in the input, hidden and output layers respectively, � � � � � � � are the input-
hidden and hidden-output weights respectively,

�
is the sum squared error at the outputs and � � is the target output.

The new inputs are then updated using: � � � ����� ������	�
where � is analogous to the learning rate used in standard error back-propagation. Once a new input value has been
computed in this way for every training frame, the parameters of the new network structure are optimised to produce
a signal at the outputnodes which approximates the negative of the original error

�
. After some number of iterations

of this optimisation, the new (reduced) output error is once again back-propagated through to the new network
inputs, which are updated once again. This process, similar to the Expectation-Maximisation (EM) algorithm [3],
is continued until an optimum set of new input values has been determined. Due to the noisy nature of most output
error signals, this new input will itself in general be noisy, so that some smoothing is required before extracting its
systematic characteristics for use in generating the new input signal for new data.

Unlike standard back-propagation, this technique is not sensitive to changes in the value of � – which simply affects
the magnitude of the new input signal – but is sensitive to the number of epochs of parameter optimisationperformed
per input update. After each update of the input values, the parameters of the new network structure are optimised
to reduce the output error. If this optimisation is allowed to continue for a large number of iterations the parameters
become highly tuned to the current input values, so that when the input values are next updated there is likely to be
a large mis-match between these and the highly optimised parameters.

The solution to this problem for difficult learning tasks is to use only a small number of optimisationepochs per input
update so that the new input values and the parameters of the new network structure jointly converge to a solution
in a smooth sense, a process analogous to generalised EM. The new input learned will in general be a non-linear
function of both the output signals of the original network and the original network inputs.

3.2. Example for an artificial system
To investigate the properties of the algorithm just described, an artificial data set was generated by taking two non-
linear combinations of three basic functions:

� ' �	��
 � �

 ��� ! � � ��
 ������������� ������� �

for values of � ranging from � � to � in steps of size ����� � ; the two non-linear functions used were:
� ' � � ' �

!	��
 � �

 ��� � � ' ��� ��! �

 �"����!�#�
%$ �

to which we added zero-mean white noise of maximum absolute value 0.2. An MLP with 2 inputs, 4 hidden nodes
and two outputs was trained using RPROP for 1000 batch update epochs on a data set consisting of the two inputs � '
and �
 and the noisy outputs

� ' and
�

 . The input �
 was chosen to be a sinusoid to produce systematic variations in

the error signal, and was not supplied to the network. Two outputs functions were used since training with a single
output results in the trivial solution of the error signal being reproduced as the new input.

The technique described above was used to generate a new input for the network by using 3 new hidden nodes,
a learning rate of 1.0 and training for 50 input re-estimation iterations, each of which incorporated 100 epochs of
parameter optimisation for the new network. The noisy new input signal generated was then smoothed using a
third order butterworth low-pass filter with cutoff frequency one tenth of the Nyquist frequency. A separate neural
network was then re-trained using the two original inputs � ' and �

 and the new input, again with 4 hidden nodes
and the two output targets

� ' and
�

 .

Due to its extra input node, the latter network has more parameters than the original system: 3 inputs, 4 hidden
nodes and 2 outputs gives 26 parameters, whereas (2,4,2) gives only 22. Hence we trained an additional network for
comparison on the two inputs � ' and �
 , this time with 5 hidden nodes, where a (2,5,2) structure gives 27 parameters
which is one more than the network with 3 inputs. Table 1 shows the results for the two networks, where the network
incorporating the new input has resulted in a reduction in MSE of approximately 56%.

These results are shown graphically in Figure 3. The first sub-figure shows the target output functions before and
after adding noise, while the second shows both noisy and smoothed generated network inputs together with the

Network structure Number of parameters MSE improvement (%)
(2,5,2) 27 0.0119 -
(3,4,2) 26 0.00526 55.8

Table 1: Performance of networks on artificial data.

original missing input (dashed), where a strong correlation can be seen between the two. The final sub-figure shows
the target and actual network outputs. The dotted plot is the noisy target output, while the dashed plot corresponds to
the original 2-input network, and the solid plot to the new 3-input network. Clearly the 3-input network has learned
a greatly superior mapping despite having one less parameter.

noisy target
smooth target

0 100 200

0

1

2

3

(i) Training vector index

O
ut

pu
t f

un
ct

io
n

m
ag

ni
tu

de

f1

f2

0 100 200

−0.4

−0.2

0

0.2

0.4

original

new

(ii) Training vector index

In
pu

t m
ag

ni
tu

de
target o/p
new o/p

0 100 200

0

1

2

3

(iii) Training vector index

O
ut

pu
t f

un
ct

io
n

m
ag

ni
tu

de

−−old o/p

Figure 3: (i) Two network target outputs, both before and after adding zero mean white noise (ii) The new (learned)
network input signal both before (dotted) and after (solid) smoothing, and original missing input �
 (dashed) (iii)
Noisy network target outputs, and outputs of both the original network and that trained with the new input.

3.3. Application to speech production
In applying the input generation technique to our speech production system, we need to show not only that it is
possible to generate a new input which results in a reduction in the training error as in the previous example, but
also that this new input can be characterised in a general way such that it can be generated for any arbitrary vector
of ordinary network inputs, given the information as to the input phoneme class at any point in time.

An MLP with 5 inputs, 30 hidden nodes and 24 outputs was trained, once again using 1000 batch update epochs of
the RPROP algorithm, to learn the mapping from co-articulated pseudo-articulator trajectories to speech spectral
vectors for 400 sentences of training data comprising a total of 122102 vectors. We then added 10 new hidden
nodes and trained the new network structure to learn a new input for this system. During this stage of the training
the constant � was set to 1.0 and 100 re-estimation iterations were performed, with 1 epoch of RPROP optimisation
of the new network parameters for each update of the input values.

This minimal amount of parameter optimisationper iteration was necessary to ensure smooth convergence to an op-
timal set of input values, and the MSE decreased during training from 1.5007 to 0.5497. The new input trajectory
obtained was smoothed in individual sections corresponding to input training sentences using a third order butter-
worth low-pass filter with cutoff frequency one fifth of the Nyquist frequency, and then sampled at the phoneme
midpoints to obtain statistics for the mean position of the new input for each phoneme.

New input trajectories were constructed from these means using the same piece-wise continuous interpolation used
for the original inputs, and the new trajectory so formed was added to the original data set. A network with 6 inputs,
31 hidden nodes and 24 outputs was then trained using 1000 batch update epochs of the RPROP algorithm, to learn
the mapping from the augmented input set to the original outputs. This (6,31,24) network has 985 parameters, so
to ensure a fair comparison a separate network with 32 hidden nodes was trained on the original input set, giving a
(5,32,24) structure comprising 984 parameters.

Network structure Number of parameters MSE improvement (%)
(5,32,24) 984 1.524 -
(6,31,24) 985 1.275 16.3

Table 2: Performance of networks on speech data.

The results are given in Table 2, where we see that with a comparable number of parameters the system which
uses the new input has 16.3% less MSE than the system trained on the original inputs. We emphasise that the new
input trajectory used was not that learned directly by the augmented network structure, but was generated from
the statistics of this trajectory. Hence a new input trajectory such as this can be generated for an arbitrary input
phoneme sequence. Figure 4 shows the MSE for both the (5,32,24) network trained on the original data and the

(6,31,24) network trained on the augmented data set. The plots exclude the first 10 epochs of training to provide
reasonable scaling in the y-axis.

0 200 400 600 800 1000

1.5

2

2.5

Training epochs

M
S

E

(5,32,24) network

(6,31,24) network

Figure 4: Network error curves for original and augmented data sets.

4. Conclusions
This paper has presented a novel technique for generating a new input for an artificial neural network which has
been trained to learn the mapping from a set of smooth input functions to a corresponding set of smooth output
functions, under the condition that a subdivision of the input space into distinct classes is known a priori at each
time step. If the error of such a system shows systematic variations which are correlated with changes in the input
class and dependent upon the input context, statistics describing the form of the new input can be computed which
allow such an input to be generated given any set of original trajectories.

The technique has been demonstrated on both an artificial system and in the context of a pseudo-articulatory speech
production model recently developed at CUED, and in both cases was seen to provide a significant reduction in
output error.

Other fields where this technique may have applications include slowly parameter-varying control systems, in which
an interpolation is performed between a number of linear models which approximate a non-linear mapping. If the
output error of the system has systematic variations which are correlated with the particular linear model being used,
a new signal could be derived as a function of the output error and the slowly-varying parameter so as to reduce the
overall system error.

This system is still under development, and many questions have yet to be resolved. The convergence and stability
criteria of the re-estimation technique for generating new inputs need to be investigated, as does the sensitivity of
the system to the initialisation conditions. The viability of the model as applied to our speech production system
seems excellent however, and the initial results obtained are extremely encouraging.

5. References
[1] C. S. Blackburn and S. J. Young. “A novel self-organising speech productionsystem usingpseudo-articulators”.
Int. Congr. Phon. Sc., 1995. Accepted for publication.
[2] C. S. Blackburn and S. J. Young. “Towards improved speech recognition using a speech production model”.
Europ. Conf. Sp. Comm. Tech., 1995. Accepted for publication.
[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood from incomplete data via the EM algo-
rithm”. J. Roy. Stat. Soc., 39(B1):1–38, 1977.
[4] S. E. Fahlman and C. Lebiere. “The Cascade-Correlation learning architecture”. Technical Report CMU-CS-
90-100, Carnegie Mellon University, 1990.
[5] J. L. Kelly Jr. and C. Lochbaum. “Speech synthesis”. In Sp. Comm. Sem., Stockholm, 1962.
[6] P. Mermelstein. “Articulatory model for the study of speech production”. J. Acoust. Soc. Am., 53(4):1070–
1082, 1973.
[7] P. Meyer, R. Wilhelms, and H. W. Strube. “A quasiarticulatory speech synthesizer for German language run-
ning in real time”. J. Acoust. Soc. Am., 86(2):523–539, 1989.
[8] P. Rubin, T. Baer, and P. Mermelstein. “An articulatory synthesizer for perceptual research”. J. Acoust. Soc.
Am., 70(2):321–328, Aug. 1981.
[9] J. Schroeter and M. M. Sondhi. “Techniques for Estimating Vocal-Tract Shapes from the Speech Signal”. IEEE
Trans. Sp. Aud. Proc., 2(1):133–150, Jan. 1994.
[10] M. M. Sondhi and J. Schroeter. “A hybrid time-frequency domain articulatory speech synthesizer”. IEEE
Trans. Acoust. Sp. Sig. Proc., ASSP-35(7):955–967, July 1987.

