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ABSTRACT

We describe a self-organising pseudo-articulatory speech produc-
tion model (SPM) trained on an X-ray microbeam database, and
present results when using the SPM within a speech recognition
framework. Given a time-aligned phonemic string, the system uses
an explicit statistical model of co-articulation to generate pseudo-
articulator trajectories. From these, parametrised speech vectors are
synthesised using a set of artificial neural networks (ANNs). We
present an analysis of the articulatory information in the database
used, and demonstrate the improvements in articulatory modelling
accuracy obtained using our co-articulation system. Finally, we give
results when using the SPM to re-score N-best utterance transcrip-
tion lists as produced by the CUED HTK Hidden Markov Model
(HMM) speech recognition system. Relative reductions of 18% in
the phoneme error rate and 15% in the word error rate are achieved.

1. INTRODUCTION
A framework for the use of our speech production model for im-
proving speech recognition results is illustrated in Figure 1.
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Figure 1: Recognition framework overview.

The HMM recogniser provides an ordered list of N hypothesised
transcriptions of an utterance, and from each of these parameterised
speech is synthesised by the SPM. The N-best list is then re-ordered
according to the errors between the synthesised and original speech.
Since one of the limiting factors in the performance of HMM sys-
tems is their ability to model contextual variation in the speech sig-
nal, we hope to provide more accurate acoustic modelling in the
SPM by using an explicit time-domain model of co-articulation.

In previous papers we described a SPM trained on articulator traces
synthesised from the Resource Management (RM) corpus. A Kelly-
Lochbaum synthesiser was used to generate a codebook of (pseudo-
articulator vector, acoustic vector) pairs, and dynamic programming

was used to invert this codebook to obtain pseudo-articulatory traces
corresponding to speech utterances [2]. The model was then used
to re-score N-best word-level transcriptions of these utterances as
provided by HTK [3]. Since the system automatically extracts its
parameters during training, the achievable modelling accuracy is
highly dependent upon the quality of the training data set. In this
case, the mis-match between the Kelly-Lochbaum synthesiser and
the vocal tract of the speaker, as well as the quantisation error in the
codebook lead to significant modelling inaccuracies.

We now present a SPM which was trained on data from the Univer-
sity of Wisconsin (UW) X-ray microbeam (XRMB) speech produc-
tion database [5], and which incorporates significant improvements
in both the articulatory and acoustic models. The system is capa-
ble of accurately predicting articulator movements, and when used
to re-score N-best utterance transcriptions results in a reduction in
recognition error rates over the standard HMM system.

2. DATABASE PRE-PROCESSING
The UW XRMB database contains articulator position traces along
with synchronously recorded speech waveforms for 57 speakers of
American English, comprising 32 females and 25 males. The cor-
pus contains sentences (40%), citation words and sound sequences
(33%), prose passages (13%), oral motor tasks (8%) as well as
counting and sequences of number names (6%). For each of these,
nominal word-level transcriptions are provided which we hand-
edited to correspond to the actual text spoken, including nonsense
transcriptions at the ends of some utterances which were truncated.

2.1. Acoustic Data
The speech signal was recorded using a directional microphone in
the presence of machine noise at a sampling period of 46 � s (ap-
proximately 21739 Hz). A fixed recording period was used for
each task, which occasionally resulted in truncated recordings for
slower speakers. In addition, a short tone was played at the start of
each task, and background comments such as “good” and “rep” are
present at the end of many utterances.

We filtered this raw acoustic signal using a notch filter to re-
move background noise at 5435Hz, and down-sampled the result-
ing signal to 16kHz. The 16kHz speech was then parameterised
into 24-dimensional Mel-frequency log spectral coefficients and 12-



dimensional Mel-frequency cepstral (MFCC) coefficients. In both
cases a Hamming window of length 25ms was applied to the acous-
tic signal before computing the Fourier transform, and a step size of
10ms was used between adjacent parameterised speech frames.

2.2. Articulatory Data
Articulator positions in the UW system are determined using a nar-
row X-ray beam to track the movements of gold pellets glued to
the tongue, jaw and lips of a subject while reading from the set cor-
pus. Three reference pellets were attached to the subject’s head, and
eight articulator pellets were tracked relative to these, with the sub-
ject’s head viewed in profile by the apparatus: ��� (upper lip), ���
(lower lip), ��� to ��� , (tongue positions 1 to 4 where 1 is closest to
the tip), 	�

� (mandible incisor), and 	�

	 (mandible molar).

The � and � positions of each pellet were recorded at sample rates
which varied according to the accelerations of the articulators, and
were then interpolated and re-sampled at a uniform sampling period
of 6.866ms ( � 146 Hz) before inclusion in the database.

We then re-interpolated the articulator waveforms, and re-sampled
them at intervals of 10ms starting from 12.5ms to give values corre-
sponding to the centres of the parameterised speech frames.

2.3. Generation of Alignments
A phonetic dictionary for the 440 words in the XRMB database us-
ing the RM phone set was constructed by merging and editing rele-
vant entries from the RM and LIMSI-ICSI dictionaries, and adding
entries corresponding to truncated utterance endings.

A set of monophone HMMs with two emitting states for stops and
diphthongs and three for other phonemes was trained using HTK
on MFCC parameterised speech from the RM speaker-independent
corpus. In the case of stop phonemes the two states align to the
occlusion and burst, where the burst state is optional; in the case
of diphthongs these align to the initial and final voiced sections. In
both instances each state is treated as a separate phoneme, giving an
expanded set of 60 “phonemes”.

Separate three-state monophone HMMs corresponding to the tone
played at the start of each utterance and the “good” and “rep” back-
ground comments found after many utterances were trained on pa-
rameterised speech vectors extracted by hand from 21, 16 and 5
examples of each sound respectively.

These model sets were combined and used with the hand-edited
transcriptions and dictionaries to train a set of speaker-dependent
5-mixture monophone HMMs on the speech of one speaker (jw18).
Sentences, citation words, number sequences and prose passages
were used, with one quarter of the data ( � 1500 phonemes) set
aside as a test set. A state-level forced Viterbi alignment of the
data to the transcriptions was performed, to yield a data set labelled
at the sub-phoneme level.

3. ARTICULATORY MODEL
Using these alignments the articulator traces were sampled at the
midpoints of each phoneme, and the resulting positional variations

were modelled by single Gaussian distributions, where deviations
from the mean positions are due both to random positional varia-
tions, and to anticipatory and carryover co-articulation [4].

Thus, to synthesise pseudo-articulator trajectories, we must predict
co-articulatory movements away from these mean positions from a
knowledge of the time-aligned phonemic string alone. We found
that variation in articulator midpoint position is strongly correlated
with the curvature of the trajectory at the point concerned, com-
puted as the difference between the gradients leading out of and
into the midpoint when linear interpolation is used between succes-
sive phonemic means. Relatively high and low curvatures tend to
give undershoot and overshoot of the mean position respectively.

We therefore computed this curvature measure for each instance of
each phoneme, again modelling the variations with single Gaus-
sians. The position and curvature statistics describing articulator
behaviour during the production of a given phoneme now form a
bi-normal distribution, and by computing the correlations between
curvature and position we can predict an articulator’s deviation from
the mean using a knowledge of the phonemic sequence alone. Fig-
ure 2 shows an example of the correlation coefficients for the � and
� co-ordinates of the 8 articulators for the phoneme /s/.
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Figure 2: Correlation coefficients for phoneme /s/.

The relatively low correlation coefficients for lower lip, jaw and
tongue tip positions reflect the fact that these articulators are highly
constrained in position for the production of /s/, whereas the tongue
back and upper lip are relatively free to move to positions dictated
by neighbouring phonemes, as evidenced by the larger correlations
for ��� and ��� to ��� .

Complete articulator trajectories were then generated by linear
interpolation between successive co-articulated time-aligned mid-
phonemic positions. To enhance the system’s robustness to unusual
contexts given the small size of the training data set, a low-order
low pass filter was applied to the resulting trajectories to remove
very sharp articulator movements which are otherwise observed in
approximately 0.3% of phonemes.

Synthetic trajectories were constructed both with and without co-
articulation from time-aligned phonemic strings produced by forced
alignment of the transcriptions to the training and test data sets. The
errors between the synthetic and X-ray trajectories were computed
at all points, and the use of co-articulation gave a reduction in error
for all training and test sentences.



The mean error for each articulator over the training and test sets
was computed, and scaled using positional means and standard de-
viations. Once again, each articulator’s error decreased with co-
articulation in both cases. The results for the test set are shown in
Figure 3, where the errors in tongue position are generally less than
for lip and jaw position, with the � position of the upper lip and the
front and back of the jaw being most poorly modelled.
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Figure 3: Test set errors by articulator.

This is as expected since the extension of these articulators has rela-
tively little effect on the acoustic signal, and we expect much of the
variation in this articulator to be random movement, as evidenced
by low correlation coefficients and correspondingly low impact of
the co-articulation model on the articulators.

An example of the effects of co-articulation on a synthetic pseudo-
articulator trajectory is given in Figure 4, for the articulator most
affected by the co-articulation model, ��� � .
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Figure 4: Movement in height of tongue back ( ��� � ) for utterance:
“problem, children, dormer”.

As expected, the back of the tongue is relatively high during the
phoneme /l/ and relatively low during /r/, and the co-articulation
model has resulted in a closer approximation to the X-ray trajectory.

4. ACOUSTIC MODEL
The non-linear mapping from pseudo-articulator trajectories to pa-
rameterised speech vectors was approximated by a separate ANN
for each phoneme, pre-scaling the inputs by the mean and standard
deviation of each articulator computed over the training set.

The target vectors were chosen as log spectral vectors as these result
in a less compact but simpler acoustic mapping than do MFCC pa-

rameters, due to the absence of the cosine transform. To provide en-
ergy normalisation, the mean of each vector was subtracted before
training the networks. As a result, the outputs of the ANNs do not
represent actual log spectral vectors, but rather spectral “shapes”,
which are independent of the amplitude of the acoustic signal. The
mean and standard deviation of the energy in each log spectral pa-
rameter for each phoneme were also computed over the entire train-
ing set to provide a separate model of spectral energy levels.

In all cases the networks were trained using resilient back-
propagation (RPROP), where the number of hidden nodes was var-
ied to give optimum results, and in all cases cross-validation was
used to prevent over-training. The variance of the network output
predictions due to noise in the target data was computed over the
training set and used as a measure of confidence in the values pre-
dicted by the networks [1].

Our acoustic model therefore consists of a set of mean and variance
statistics describing the log spectral energy levels of each parameter
of each phoneme, along with a separate ANN mapping for each
phoneme which can be used to predict spectral shapes (along with
associated error variances) from articulator positions.

5. SCORING N-BEST TRANSCRIPTIONS
We generated N=100 word-level transcriptions for each test set ut-
terance using HTK with the speaker-dependent 5-mixture mono-
phone HMMs estimated on the training data. No language model
was used, since our aim was to compare the acoustic modelling
accuracy of HTK and the SPM. For each of these transcriptions a
state-level alignment to the acoustic data was performed, and from
these alignments synthetic pseudo-articulator trajectories and spec-
tral shape vectors were synthesised.

Since the shape and energy of the spectral vectors are modelled sep-
arately, when comparing a sequence of synthetic speech vectors
with the corresponding original vectors, two separate error mea-
sures are computed.

The first of these compares the energy levels of an actual speech
vector with the statistics describing the expected energy levels for
the phoneme to which it is hypothesised to correspond. The sec-
ond measure computes the difference between the spectral shape of
each original speech vector and the spectral shape predicted for the
corresponding synthetic vector by the ANN concerned. These two
error measures are then combined to give an overall error:� � ������
	���
�� ��� ���� ��������� ��� �! #"%$��& ��(' ������ $
�*)+ �
,�- . /1032� � �� �����5476 ��� �! 8$
�+ � ,�- .:9 0<;
where for each vector = is the phoneme aligned to it in the transcrip-
tion, � ��� � is the spectral shape coefficient synthesised by the ANN
corresponding to phoneme = with error standard deviation + � ,>- . ,

$
�
is the actual (target) log spectral coefficient, 6 ��� � is the mean energy
coefficient for phoneme = , with standard deviation + �
,�- . computed
over the entire training set, and ? is the spectral vector’s dimension.



The constants

� � and

� � are weighting factors on the error terms,
where

� ��� � � since the shape error is more accurately deter-
mined due to the larger number of parameters used in its estimation.
The error is also weighted according to the depth of the transcrip-
tion in the N-best list, to reflect the decreasing prior probability of
finding a correct transcription with increasing depth in the list.

Due to small errors in the alignment of the phoneme sequences to
the acoustic data, both the shape and energy error terms are dom-
inated by errors within one frame of phoneme boundaries. This
problem is particularly pronounced in the case of stops and nasals,
where the acoustic signal either has low energy, is rapidly chang-
ing, or both. To alleviate this problem during the computation of
the error measure above, boundaries delimiting stops and nasals are
re-aligned by one frame if this results in a reduction in the error.

6. RESULTS
Results for both phoneme and word recognition over 50 test utter-
ances with

� � ��� � � are given in Figures 5 and 6, up to a depth of
N=25. Phoneme recognition results are provided since although the
N-best transcriptions were produced at the word level, word-level
results can be misleading when assessing acoustic accuracy, since a
homonym word error will introduce no phoneme errors.
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Figure 5: Phoneme recognition results.
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Figure 6: Word recognition results.

The “best possible” curve represents hand-selecting the best tran-
scription available up to a given depth; this curve therefore shows
the maximum achievable results when re-scoring the N-best lists.
The “HTK” curve represents the baseline performance achieved by
always selecting the N=1 transcription, and the “SPM” curve shows
results when rescoring the transcriptions up to a given depth with
our speech production model. The “SPM” curve becomes flat for

large N, as the prior probability of finding a correct transcription
becomes very small. Results for large N are summarised in Table 1.

Type HTK error SPM error Improvement
Phoneme 10.02 8.19 18.3%

Word 23.04 19.51 15.3%

Table 1: Recognition results.

7. CONCLUSIONS
We described a speech production model which automatically ex-
tracts its parameters from articulatory and acoustic data from the
University of Wisconsin X-ray microbeam database.

The articulator traces in the database were aligned and sampled at
points corresponding to phonemic midpoints, and trajectory curva-
tures were estimated at these points. We found significant corre-
lations between positional and curvature variations, and used these
as the basis for a statistical model of co-articulation. By applying
this model to a set of synthetic pseudo-articulator traces we demon-
strated an improvement in articulatory modelling accuracy, as com-
pared with the original X-ray traces.

The HTK speech recognition system was used to generate N=100
ordered hypotheses as to the correct transcription of each of a set
of 50 test utterances. From each of these transcriptions pseudo-
articulator traces were synthesised, and from these speech spectral
vectors were predicted using a set of artificial neural networks opti-
mised using cross-validation on the training data set.

By comparing the synthetic and actual speech spectral vectors for
each transcription of each test set utterance, the entries in the N-best
list were re-ordered, yielding an 18% decrease in phoneme error
rates, and a 15% reduction in word error rates relative to HTK.
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