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Summary

The past 15 years have seen dramatic improvements in the performance of computer algo-
rithms which attempt to recognise human speech. The falling error rates achieved by the
best speech recognition systems on limited tasks have recently enabled the development
of a diverse range of applications which promise to have a significant impact on many as-
pects of society. Examples of these range from dictation systems for personal computers to
automated over-the-telephone enquiry services and interactive voice-controlled computing
and mobility aids for disabled users.

Engineering research into the recognition of acoustic signals has focused on the de-
velopment of efficient, trainable models which are adapted to specific recognition tasks.
While the acoustic signal parameterisations employed are usually chosen to crudely model
the behaviour of the human auditory system, little or no use is typically made of knowledge
regarding the mechanisms of speech production.

Physical and inertial constraints on the movement of articulators in the vocal tract
cause variations in the acoustic realisations of sounds according to their phonetic contexts.
The difficulty of accurately modelling these contextual variations in the frequency domain
represents a fundamental limitation on the performance of existing recognition systems.

This dissertation describes the design and implementation of a self-organising articula-
tory speech production model which attempts to incorporate production-based knowledge
into the recognition framework. By using an explicit time-domain articulatory model
of the mechanisms of co-articulation, it is hoped to obtain a more accurate model of
contextual effects in the acoustic signal, while using fewer parameters than traditional
acoustically-driven approaches.

Separate articulatory and acoustic models are provided, and in each case the param-
eters of the models are automatically optimised over a training data set. A predictive
statistically-based model of co-articulation is described, and found to yield improved ar-
ticulatory modelling accuracy compared with X-ray articulatory traces. Parameterised
acoustic vectors are synthesised by a set of artificial neural networks, and the resulting
acoustic representations are used to re-score N-best recognition hypothesis lists produced
by an HMM-based recogniser. The system is evaluated on two test databases, one including
speaker-specific X-ray training data and the other acoustic data alone, and improvements
in word recognition accuracy are obtained in each case.
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Phonetician: Knock knock.

Engineer: Who’s there ?
Phonetician:  Thgrdjicksdorn.
Engineer: Thordiscorn 7!

Phonetician:  No, no, “Thgrdjicksdorn”. The second alveolar
plosive is ingressive. [Grinning] Try again.

The role of phonetics in engineering models of speech recognition.
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Chapter 1

Introduction

The past 15 years have seen dramatic improvements in the performance of computer algo-
rithms which attempt to recognise human speech. The falling error rates achieved by the
best speech recognition systems on limited tasks have recently enabled the development
of a diverse range of applications which promise to have a significant impact on many as-
pects of society. Examples of these range from dictation systems for personal computers to
automated over-the-telephone enquiry services and interactive voice-controlled computing
and mobility aids for disabled users.

These performance improvements have been due in part to the rapidly increasing speed
of the microprocessors available to implement the algorithms. Despite the considerable ad-
vances made in hardware technology to date however, the prodigious ability of the human
brain to perform complex visual and auditory pattern recognition tasks still far exceeds
that achieved by machines. Furthermore, it is unlikely that increased computational power
alone will be sufficient to close this gap, since computer-based pattern recognition algo-
rithms are typically limited not only by their speed, but also by an inability to reliably
discriminate between all of the patterns available in their input spaces.

Since a complete biological model of the human auditory and visual systems is yet
to be developed, engineering research into the recognition of acoustic signals and visual
scenes has focused on the development of efficient, trainable models which are adapted
to specific recognition tasks. In the case of speech recognition for example, a state-of-
the-art research system which uses such a task-specific data-driven approach to model
continuous speaker-independent speech from a 64,000 word vocabulary has achieved a
word recognition error rate of less than 8%. This is accomplished by restricting the syntax
of the task grammar, recording in a noise-free environment and operating many times
slower than real time [174].

Recent advances in the performance of systems such as this have resulted more from
increases in the size, efficiency and robustness of existing paradigms than from the devel-
opment of new recognition algorithms, and a great many problems remain unsolved [20,
34, 46, 111]. This dissertation describes the design and implementation of a self-organising
articulatory speech production model (SPM), which attempts to address some of the fun-
damental limitations of existing recognisers [12, 14, 15, 16]. Specifically, by using an
explicit time-domain articulatory model of the mechanisms of co-articulation, it is hoped
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to obtain a more accurate model of contextual effects in the acoustic signal, while using
fewer parameters than traditional acoustically-driven approaches.

This chapter describes the motivation for this research by identifying some of the
failings of existing speech recognition algorithms, before presenting a brief overview of
the new model. It concludes by providing a structural outline of the remainder of the
dissertation.

1.1 Computer Speech Recognition

The recognition of human speech by computers implies the correct association of a symbolic
(usually textual) representation of an utterance with all or part of its acoustic signal
(usually a digitised representation of a sound wave). This is separate from the task of
speaker verification, which involves the establishment of a speaker’s identity and not that
of the utterance spoken, and from speech understanding, which involves the semantic
interpretation of the transcription. A wide variety of task characteristics fall within the
scope of this definition of recognition, including:

o Size and type of the unit recognised:
Sub-word recognition; isolated word recognition; recognition of keywords

embedded in continuous speech; word-level recognition of continuous speech.

Speaker set:
Single speaker (“speaker-dependent”) recognition; multiple-speaker recog-

nition; unlimited speaker (“speaker-independent”) recognition.

Acoustic signal:
Noise-free speech; speech with stationary or time-varying noise; distorted

speech; accented speech.

Speech pattern:
Read speech; spontaneous speech.

Language:
Speech from a single language or dialect; multi-lingual speech.

Vocabulary and Grammar:
Limited vocabulary size and constrained syntax; unconstrained speech.

Modelling strategy:
Rule-based systems; data-driven approaches.

Within any given application both high speed and high accuracy are usually desirable,
and practical implementations typically involve a trade-off between these two charac-
teristics. This dissertation is primarily concerned with data-driven word-level speaker-
dependent recognition of continuous, low-noise read speech. The two databases used con-
tain American English speech recorded from speakers with broadly identifiable regional
accents, or “dialect bases”. The databases have limited vocabulary sizes of approximately
500 and 1000 words respectively, and since the goal is to assess acoustic modelling accuracy
no syntactic constraints are applied during recognition.
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1.2 Acoustically-Driven Recognition Systems

In this section a brief introduction to several existing approaches to computer speech recog-
nition is presented. These typically comprise very large statistical models—the CUED!
large-vocabulary HTK system has more than ten million parameters [174]—which are
trained on many hours of read speech, and which attempt to transcribe utterances by
using data-driven learning to automatically identify discriminatory acoustic features® in
the input speech signals3.

In each case some of the perceived failings of the systems are identified, with particular
emphasis on their strategies for modelling the different sounds, or phonemes*, of a language
in each of the contexts in which they occur. Since the production of human speech involves
the co-ordinated movement of a set of articulators®, each sound has a different acoustic
realisation according to its context. This effect is known as co-articulation, and currently
represents a significant performance-limiting factor in engineering models of both speech
production and recognition.

1.2.1 Template Matching

Early attempts at data-driven isolated word recognition matched acoustic inputs against
stored word templates using dynamic time warping [131]. In this approach, each word
in the recognition vocabulary is converted to a parametric representation, for example by
using temporal duration and formant frequency motion rules [84]. The resulting templates
comprise sequences of acoustic feature vectors, and the template providing the best match
to an utterance fragment is selected as the hypothesised transcription. This approach is
therefore only suited to the recognition of speech consisting of sequences of words separated
by silences.

Contextual Modelling

The advantage of such a model is that it accounts for word-internal contextual effects by
definition, since the different sounds are only modelled in context. The drawback is that a
separate, complex model must be learned for each word in the vocabulary, and in order to
model the variations observed across multiple instances of each word uttered by a variety
of speakers, an impractically large number of models must be maintained. In addition, no
provision is made for modelling cross-word contextual effects.

!Cambridge University Engineering Department.

2 Acoustic signal parameterisations are described in more detail in Section 4.2.1, and typically make use
of a frequency-domain representation of a brief (eg. 25ms) windowed segment or frame of speech, where
the time step between frames (eg. 10ms) is chosen to give an overlap between successive window functions.

3This acoustic model is typically also coupled with a priori syntactic constraints.

4The “phonemes” are the distinctive sounds of a language, in the sense that the substitution of one
phoneme for another will distinguish between the identities of two words; “phones” are the minimal
sounds which are acoustically self-consistent, such as each of the two voiced sounds in a diphthong; and
“allophones” are the various realisations of sounds due to contextual or accentual differences. Descriptions
of the phonemes and phones used in this dissertation are given in Section 5.3.2 and Appendix A.

5The movable structures in the vocal tract.
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1.2.2 Hidden Markov Models

Recognition systems based on Hidden Markov models (HMMs) typically also employ a
frequency-domain frame-based representation of the speech signal, but the acoustic and
temporal models employed are usually defined at the sub-word level®. These models
commonly represent phonemes, but may alternatively represent smaller sub-phonemic
units, or else larger segments such as syllables.

Each model predicts the probability of observing a particular acoustic vector during
the production of the lexical token concerned; for example, the model for the phonetic
token /u/ might specify the probability of observing a given amount of energy in each
of a set of pre-defined frequency ranges at each point in time during the articulation
of /u/. Models for larger units are then constructed by concatenating a series of sub-
models representing their constituent parts—for example by combining the models for the
sequence of phonemes which together comprise a word.

Recognition is performed by using a grammar to hypothesise word sequences corre-
sponding to a particular utterance. The probability that a particular word-level transcrip-
tion correctly represents the utterance is then computed by concatenating the appropriate
acoustic models, and evaluating the probability that these models could have produced
the observed acoustic signal”. All possible transcriptions need not be evaluated, as par-
tial transcriptions with very low probabilities can be abandoned during the search. The
most likely transcription of an utterance is therefore determined indirectly, by partially
exploring the space of possible transcriptions, and evaluating the associated probabilities
of observing the original acoustic input sequence.

The principal advantages of this approach stem less from the accuracy of the temporal
and acoustic models employed, than from the efficiency of the algorithms which can be used
to implement them. Specifically, the use of a set of sub-word models whose parameters
are optimised using the Expectation-Maximisation algorithm [36], and the decoding of
acoustic vector sequences in terms of these models using Viterbi search [167] have made
HMDMs easily the most popular approach to building automatic speech recognition systems.

Contextual Modelling

One of the drawbacks of HMMs in their basic form is that they provide rather poor
contextual modelling. To begin with, each acoustic observation vector is treated not only
as having a frequency-domain representation which is stationary throughout the duration
of the frame, but which is also statistically independent of all other frames—an assumption
which is clearly invalid.

A technique commonly employed to lessen the impact of this independence assump-
tion is to augment the acoustic feature vector with additional parameters which crudely
represent the time-varying nature of the acoustic signal in the frequency domain. This is

51n this section only a very brief introduction to a limited class of HMM speech recognition systems is
given. A more detailed introduction to HMM theory can be found elsewhere [67, 130].

"The a priori probability of the transcription as computed by a language model is typically combined
with this acoustic probability score.
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achieved through the use of “delta” and “acceleration” parameters to capture the short-
term acoustic context, by computing the differences between neighbouring static feature
vectors and the differences between the resulting difference parameters, respectively.

Since the units modelled in HMM systems are typically phonemes, the phonetic context
in which a model appears will also generally have a strong influence on the observed acous-
tic vectors. The duration of these effects will be both phoneme and context-dependent,
since the durations of individual phonemes are variable, and the influence of the articu-
latory configuration required for the production of one phoneme may also spread further
than the immediately neighbouring phonemes.

Contextual effects such as these cannot be directly modelled within the standard
HMM framework; a less elegant indirect approach is therefore employed in which mul-
tiple context-dependent models are provided for each phoneme. In a “triphone” system
for example, a single model for a phoneme such as /u/ is replaced with separate models
specifying particular left and right contexts, eg. /b/-/u/+/t/, denoting /u/ preceded by
/b/ and followed by /t/%. This approach suffers from the additional drawback that it
immediately leads to an explosion in the number of models to be trained, since the num-
ber of possible triphones is extremely large. As a result, an impractically large amount of
training data would be required to adequately estimate the parameters of all these mod-
els. Sophisticated clustering techniques must therefore be used to ensure that sufficient
training examples are available for each clustered contextual class; hence the number of
distinct context-dependent models is typically considerably less than the true number of
contexts observed [118, 177].

An alternative approach is that of “segmental” HMMSs, which attempt to provide
more accurate modelling of acoustic variability in segments of speech ranging in length
from phonemes to words. Each segmental model is typically composed of a larger number
of static sub-models than are the phonetic models of a standard HMM system. These
models may be fixed-length probabilistic representations of phoneme-length segments [39,
120, 144], or else variable length models® [17, 18, 28, 35, 40, 54, 92, 104]. In each case,
the algorithms attempt to model the time-varying dynamics of acoustic parameters in the
frequency domain. A frame-based acoustic representation is typically used, and parameter
trajectories are modelled using dynamic programming or linear dynamic systems. While
promising results have been obtained using systems such as these, the development of
algorithms for the identification and optimisation of a suitable set of segmental models
remain significant problems, and these approaches have not yet matched the recognition
performance of the best conventional HMM systems on large tasks.

1.2.3 Hybrid Recognisers

Hybrid speech recognition systems typically use some form of artificial neural network
(ANN) in conjunction with an HMM in the hope of being able to take advantage of the

8Similar systems have been proposed using simpler “biphones” (models incorporating either left or right
context), or more complex “quinphones” (which specify a five-phoneme context).

9 Alternatively, the segmentation can be performed at multiple levels [180].
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benefits offered by each of these schemes!®[21, 22, 141]. The principal advantages of using
ANNSs in this context are that they provide a relatively fast method for estimating classi-
fication probabilities, and a natural basis for the discriminatory estimation of parameter
values'!.

ANNs are typically used to directly estimate the probability that a given acoustic
observation corresponds to the production of each of a set of sound units, which are
usually phonemes. While HMMs use parametric distributions to model the probability
of observing a particular acoustic vector value during production of a given phoneme,
ANNSs are used to discriminatively predict phoneme probabilities given an observation,
without placing strong prior assumptions on the form of the probability distribution being
modelled [27].

Contextual Modelling

The short-term acoustic context can be modelled directly in ANN systems by including a
number of additional speech frames either side of the frame being classified in the input
vector presented to the network!?. In practical implementations, the length of the input
window used is typically similar to the number of frames used to compute the delta and
acceleration parameters in HMM systems.

The provision of a model for longer-term effects due to the phonetic context is more dif-
ficult however, since the durations of these effects are variable. Whereas in HMM systems
separate context-dependent models can be used for each lexical token as an approximate
model of these contextual effects, ANN systems predict lexical token probabilities directly
from the acoustic signal and such an approach is not immediately feasible. One solution
to this difficulty is to use time-delay neural networks, in which a feed-forward structure
approximates a recurrent network!'3 over a finite time period. The network’s weights can
then be tied to make the network mapping time-shift invariant, and hence allow for the
lengthening or shortening of the sounds presented at the input [168].

Robinson has approached this problem by directly implementing a recurrent network
architecture [141], in which the network learns both a set of output probabilities and a
mapping to an internal state representation. These state values implicitly encode infor-
mation about the previous acoustic vector inputs, and are fed back as additional inputs
to the network along with subsequent speech frames. This system is therefore capable of
modelling longer-term acoustic contexts, but the effectiveness of the approach is limited
by the time constants of the internal state vector values, which control the duration of the
influence of these contextual effects. Kershaw has therefore proposed augmenting such a
recurrent ANN with a set of context-dependent single layer perceptrons which explicitly
model the phonetic context. This is achieved by mapping the monophone probabilities pro-
duced by the recurrent ANN onto context-dependent phoneme class probabilities, where

101n fact, it is possible to construct an ANN architecture whose training emulates that of an HMM-based
system [26, 80, 116].

" Discriminatory training techniques have also been described for HMM systems [165].
12Delta and acceleration parameters are also commonly used, as was the case for HMM-based systems.

13 A network in which feed-back as well as feed-forward connections are used.
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a suitable set of these latter phoneme classes are determined by a clustering technique
similar to that used with HMMs [83]. This technique results in improved recognition
performance, yet as in the case of HMM systems it represents an inaccurate and indirect
approach to contextual modelling.

1.2.4 Spectral Pre-processing

Finally, an alternative approach to modelling contextual variation is to attempt to remove
its effects in the spectral domain'# before extracting acoustic feature vectors. The goal of
this approach is to obviate the need for accurate contextual modelling in the recognition
algorithm itself.

Systems have been described in which spectral energy peaks (such as formants) are
identified, and either explicit trajectory models [89] or dynamic systems [1, 2] are used
to recover hypothetical spectral targets. Deviations from these target values are then
postulated as being the result of co-articulatory effects, and hence the recovered target
values are used in vowel or CV'® recognition, yielding improved results. In each case the
authors do not report results for the recognition of connected speech, and the wider utility
of these techniques is yet to be demonstrated.

1.3 An Articulatory Approach

A problem inherent in all of the approaches described in the preceding sections—in ad-
dition to their system-specific limitations—is that they attempt to model a time-domain
effect in the frequency domain.

The underlying cause of contextual variation in the acoustic signal is the co-articulation
of sounds during speech production in the time domain—variations in the articulatory
movements used to produce a sound according to its context in an utterance. This suggests
that contextual variation itself might be better modelled in the time domain, since:

1. The non-linear relationship between articulatory positions and acoustics means that
modelling contextual variation directly in the frequency domain is difficult to ac-
complish.

2. An explicit model of articulatory movements would provide a compact representation
of co-articulatory effects, thereby avoiding the need for the many context-sensitive
acoustic models used in indirect approaches.

The system described in this dissertation attempts to address these problems by in-
corporating a time-domain model of co-articulation into the recognition framework'6. By
using an explicit model of contextual effects on articulatory positions, it is hoped to pro-
vide accurate articulatory and acoustic modelling, while using relatively few parameters
compared with standard recognition systems.

14The time-varying frequency domain.
15Consonamt—Vowel, eg. /k u/.

'8Such a combination of phonetic knowledge with existing automatic speech processing technologies has
been labelled “computational phonetics” by Moore [112].
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1.3.1 Articulatory System Overview

Descriptive models of articulatory movements have existed in the literature for many
years, and have been increasing in sophistication as knowledge of the articulatory mecha-
nism increases. More recently, the potential application of articulatory models to speech
recognition, together with greatly improved articulatory data acquisition and computer
modelling techniques, have led to renewed interest in predictive models of articulatory
movement [62, 90, 159, 173], and articulatory speech synthesis systems [108, 145, 156].

A model of articulatory speech production can be introduced into a recognition system
either by incorporating it into the existing algorithm, or else by using the production model
as a secondary recognition phase. In the former case, researchers have typically employed
an articulatory description in either the symbolic representation of an utterance encoded
by the input state sequence of an HMM (in place of phoneme sequences), or else as the
representation modelled by the output distributions (in place of acoustic vectors).

By contrast, the system described in this dissertation is an example of the latter
strategy whereby the existing recognition paradigm is left intact, and the production
model is used to augment its performance. A conceptual overview of the system is shown
in Figure 1.1.

Spectral
m» —_—— vector —= | HMM
Input representation
speech \b V
(_:ompare vector Textual hypotheses
strings and re-order as time-aligned
hypotheses phonemic strings
Synthetic ¢ w
speech Spectral
w <-- vector <=—— | SPM
representations

Figure 1.1: Recognition system overview. An HMM-based recognition system is used to
generate a list of textual hypotheses corresponding to a parameterised input utterance.
Parameterised speech vectors are re-synthesised from each transcription, and the original
and re-synthesised representations are compared. The transcription corresponding to the
re-synthesised vector sequence which yields the best match to that of the original speech
is chosen as the system output.

As indicated in the figure, a conventional speech recogniser such as an HMM-based
system provides a ranked list of hypothesised transcriptions corresponding to an utterance,
along with their time-alignments to the acoustic signal. Each time-aligned transcription is
then used as input to the SPM and parameterised speech is re-synthesised. By comparing
the synthetic speech corresponding to each of the transcriptions with the original signal,
the transcriptions are re-ranked, thus potentially offering improved recognition results.

The advantage of using an articulatory SPM in this context is that it allows an explicit
time-domain representation of co-articulation to be used, since the movements of the
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various articulators are modelled directly. The production model is self-organising in that
it learns the parameters of both an articulatory and an acoustic model from a training
data set, as opposed to explicitly controlling a biomechanical model of the articulators
and simulating sound wave propagation through a time-varying vocal tract. Indeed, since
the primary concern is the accurate synthesis of speech spectra and not physiological
plausibility, the parameters of the system may be optimised during training so that they
no longer represent structures which are physiologically interpretable.

Statistics describing articulatory positions and accelerations at the midpoints of phone-
mes are automatically extracted from time-aligned articulatory trajectory data. The cor-
relations between the accelerations of the articulators and their realised positions are then
used to predict co-articulatory variations, and hence to generate synthetic articulatory tra-
jectories corresponding to the time-aligned transcriptions. From these, a set of artificial
neural networks predicts synthetic log spectral vector values along with their associated
variances, which are compared with a spectral version of the input speech. In this way the
transcription yielding the best spectral match is chosen as the most probable output!’.

The use of this co-articulation model results in a significant reduction in articulatory
error by comparison with X-ray traces. In addition, the model provides a method for
incorporating articulatory information into the recognition paradigm, and when combined
with a conventional speech recognition system, results in a reduction in recognition error
rates when evaluated on two data sets.

1.4 Dissertation Outline
This dissertation is broadly sub-divided into the following parts:

e Introduction and review of previously described speech recognition and production
systems which employ articulatory representations.

e Derivation of the articulatory and acoustic models used in the new model.
e Description of the two databases to which this model has been applied.

e Evaluation of the articulatory and acoustic modelling accuracies achieved, together
with the recognition performance obtained.

e Discussion of these results.

In Chapter 2, recognisers which make use of articulatory representations are reviewed,
and an overview of articulatory speech synthesis techniques is presented.

Chapters 3 and 4 present the details of the articulatory speech production model.
Chapter 3 concerns methods for predicting the motion of articulators from a time-aligned

" Transcription re-ordering algorithms have previously been described in the literature which perform
re-scoring based on stochastic segmental models [119] and segmental neural networks which are specifically
trained to discriminate between correct and incorrect transcription hypotheses [5, 153].
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phonetic string. The co-articulation mechanism is examined, and techniques for mod-
elling it are discussed; the methods used in the new model for both characterising and
subsequently predicting articulatory variation are also described.

Chapter 4 examines mappings which can be used to predict parameterised acoustic
vectors from these articulatory trajectories. Two example acoustic modelling strategies
are discussed, and several self-organising approaches to approximating the mapping are
presented.

The following two chapters present the data sets to which the self-organising model
has been applied. An articulatory data set comprising actual articulatory traces deter-
mined from X-ray images is presented in Chapter 5. Chapter 6 provides both a review of
techniques for generating synthetic articulatory data, and an example application for an
acoustic speech database. In both this and the preceding chapter, techniques for automat-
ically aligning the speech data to the corresponding phonetic transcriptions are described.

An evaluation of the production model’s performance on each of these databases is pre-
sented in Chapter 7. The method for predicting articulatory variation at the midpoints of
phonemes and the synthetic trajectories formed using these predictions are separately eval-
uated, and the results of training the artificial neural networks to map from articulatory
to acoustic space are described.

Chapter 8 concerns the use of the model in augmenting an automatic speech recognition
system. Both the generation of N-best transcriptions of utterances and the re-scoring of
these transcriptions using the production model are described, and recognition results are
presented for both data sets.

Finally, Chapter 9 provides a brief summary of the articulatory and acoustic models
used in the production system, as well as a review of the recognition performance obtained.
Future improvements which could be made to the system are suggested, and a concluding
overview of the dissertation is provided.



Chapter 2

Articulatory Methods

2.1 Introduction

The computer speech recognition and synthesis systems which currently achieve the clos-
est approximation to human performance are largely acoustically-driven, and typically
incorporate no explicit articulatory information.

In the case of recognition systems, direct probabilistic modelling of time-varying acous-
tic features in the frequency domain is employed, although some syntactic-phonetic infor-
mation is usually introduced through the use of statistically-based language models, and
the selection of acoustic models based on their phonetic contexts [118].

Both time and frequency-domain speech synthesis techniques have been shown to pro-
duce high-quality acoustic waveforms, yet once again these methods usually rely not on
articulatory modelling but on the concatenation of pre-recorded speech fragments or the
direct specification of features in the frequency domain, respectively [41].

This chapter provides a review of alternative speech recognition and synthesis tech-
niques, in which articulatory information is directly incorporated into the algorithms used.
Section 2.2 describes the motivation for exploring the potential of articulatory models in
automatic speech recognition systems, as well as providing a brief review of this field.
Subsequently, Section 2.3 discusses techniques for implementing articulatory models of
speech production, and provides a justification for the choice of a self-organising model
over the use of explicit simulations of the human vocal apparatus.

2.2 Articulatory Production for Speech Recognition

The recognition of human speech by machines is achieved by computing the word sequence
which is most likely to correspond to a given set of acoustic observations. Conventional
speech recognition algorithms do not approach this task—as might first be thought—
by directly approximating a mapping from the acoustic input space to symbolic textual
representations.

HMM recognisers, for example, instead evaluate the probability that an observed acous-
tic vector sequence could have been produced as a realisation of a particular word-level
transcription (Section 1.2.2). In mathematical terms these two quantities are related by
Bayes’ rule:

11
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P(O|W) x P(W)
P(0)
where W is the hypothesised word sequence, O is the sequence of observed acoustic vec-
tors, P(W) is the prior probability of the word sequence and P(O) is that of the observa-

P(W|0) =

(2.1)

tion sequence. The goal of recognition is to find the word sequence W which maximises
P(W|0), the probability of the word sequence given the observations. The acoustic model
in an HMM system computes P(O|W), which is the likelihood of the observed acoustic
vector sequence being produced from a hypothesised word sequence. HMMs themselves
are therefore essentially specialised speech production models, which implement a form of
“recognition by synthesis”.

The recognition systems described in this section are similar to this in that they all
employ forward models of speech production of some kind. They differ from the conven-
tional approach however, in that they seek to incorporate articulatory information into the
recognition algorithm, since time-domain co-articulatory effects during speech production
are responsible for the contextual variations in the acoustic signal which they are attempt-
ing to model. The aim of systems such as these is therefore to improve the performance
of production-based recognition systems by making explicit use of the articulatory infor-
mation which characterises the production process, as opposed to inferring transcriptions
from the observed acoustics alone [142].

In Sections 2.2.1 and 2.2.2, “stand-alone” systems are described, which provide not
only an articulatory representation, but also a temporal model and a search algorithm,
since recognition requires not only a technique for the acoustic evaluation of hypothesised
transcriptions, but also an efficient method for generating likely hypotheses and their
optimum time-alignments. Thus each of these systems uses either an HMM or an HMM-
like state representation for temporal modelling, although the extent to which they provide
explicit models of co-articulation varies considerably.

Section 2.2.3 subsequently presents systems which focus purely on articulatory produc-
tion, and which therefore use a separate system! to provide a set of time-aligned textual
hypotheses at their inputs.

2.2.1 Symbolic Articulatory State Inputs

Deng and Sun have described an approach to modelling the contextual variations in a
phoneme’s acoustic realisation in which utterances are represented symbolically by over-
lapping sequences of articulatory features?, rather than by concatenations of lexical tokens
representing (possibly context-sensitive) phonetic models [38].

Every phoneme is associated with a state-transition graph where each state represents
a set of asserted or unasserted articulatory features for the context in question. This
graph is implemented as an HMM chain, and recognition is performed by searching for
the transcription whose articulatory feature representation is most likely to have resulted
in the observed acoustic vector sequence.

!Typically an HMM-based recognition system.

2For a discussion of the temporal representation used in this model, see Section 2.3.3.
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2.2.2 Probabilistic Articulatory State Outputs

Rather than decoding a sampled acoustic vector sequence in terms of articulatory labels,
an explicit sampled articulatory representation can be derived and decoded in terms of
phonological or lexical symbols. In this section, a number of models which take this
approach are presented.

Indirect Acoustic Evaluation

Ramsay and Deng have proposed a system which uses an HMM chain whose states encode
an overlapping sequence of phonological features or “gestures” in a similar manner to
the articulatory features of Deng and Sun [38], but whose output distributions do not
model acoustic vector probabilities but physical articulatory targets and formant frequency
distributions [37, 134, 136]. Articulatory movements based on these target positions are
controlled by a stochastic linear dynamic system, and the mapping to acoustic space is
modelled by a series of piece-wise linear approximations to an explicit model of the vocal
tract®. The system is then trained using Kalman filtering [9, 30] and the Expectation-
Maximisation algorithm [36].

During recognition, hypothesised transcriptions of an utterance are coded as overlap-
ping gesture sequences, and random articulatory target sequences are computed from the
HMM output distributions. Smooth trajectories through articulatory space are deter-
mined by the dynamic system, and acoustic vectors are synthesised using the piece-wise
linear mapping. The resulting acoustic representations for the hypothesised transcriptions
are then compared with the original acoustics to determine the most likely transcription.

Articulatory-Acoustic Inversion

An alternative technique for providing an articulatory representation is to use an explicit
inverse mapping from acoustic space to articulatory space, and use the resulting artic-
ulatory representation as the input signal to a recogniser*. Systems described in the
literature taking this approach include the inversion of an articulatory-acoustic codebook
to determine articulatory trajectories corresponding to an observed acoustic vector se-
quence® [137, 138], and the use of a probabilistic model to predict articulatory target
features from acoustic cues [149].

The first of these systems seeks to provide an explicit time-domain description of co-
articulatory effects by using a finite-state grammar of articulatory movements to perform
the codebook inversion. This articulatory representation can then be used as the basis
for a recognition system. By contrast, the aim of the second system is to attempt to re-

move the effects of co-articulation before attempting recognition, by recovering underlying

3Methods for modelling the human vocal tract are discussed in Section 2.3.4.

4Zlokarnik has shown that when actual articulatory data gathered using electromagnetic articulography
(Section 2.3.2) are used to augment the acoustic signal at the input to an HMM, improved recognition
performance can be obtained [179]. In a general recognition task however, such information is not readily
available and must be estimated from the acoustic signal.

5An example of the inversion of an articulatory-acoustic mapping using this technique is presented in
Section 6.4.
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articulatory targets. Values directly estimated from the speech signal, such as formants,
are used as “acoustic-articulatory” features to predict the probabilities of articulatory
place and manner target variables, as well as the probabilities of transitions in place of
articulation in VC and CV segments®. This represents an acoustic-articulatory inversion
which does not attempt to predict exact articulatory movements, but rather probabilistic
articulatory target feature values.

Finally, Bakis has described a third approach which explicitly incorporates both an
explicit and a target-based representation [8]. Two HMMs are used, which are alternately
and iteratively updated during training: one HMM controls the dynamics of co-articulation
(the phonetic model), and the other predicts acoustic vector probabilities (the acoustic
model). During training, the phonetic HMM takes as input a sequence of discrete target
vectors in a phonetic state space. These might represent desired articulatory positions, or
else some more abstract representation. The outputs describe a state space path which is
chosen to minimise a cost function comprising both a phonetic error penalty—the distance
between the target and actual state vectors—and an articulatory penalty, which computes
the effort of moving the articulators from one state to the next.

The acoustic HMM then models the observed acoustic vector probabilities in a similar
manner to a conventional HMM system, except that the input is now a continuous state-
space representation rather than a discrete symbolic one. During recognition the acoustic
HMM predicts smooth trajectories in articulatory space given an acoustic representation,
and the phonetic HMM estimates the most probable driving phonetic target sequence
which could have resulted in these smooth trajectories.

In each of the models described above the final articulatory representation is then
used by a conventional recognition system to recover the most likely transcription of the

utterance” 8.

2.2.3 Combined Recognition and Synthesis Systems

An alternative approach to increasing the level of articulatory information used in the
recognition process is to leave most or all of the traditional speech recognition paradigm
intact, and to supplement it with production-based models or knowledge.

One unusual system along these lines uses re-synthesis of speech fragments in an at-
tempt to increase recognition accuracy. The speech signal is first automatically segmented

5Vowel-Consonant and Consonant-Vowel respectively.

"The linear dynamic system model of Digalakis (Section 1.2.2) which uses Kalman filtering to recover
underlying feature trajectories is closely related to these approaches, although it was not presented as an
articulatory model.

8Several systems have also been described which use explicit articulatory-acoustic inversion to perform
relatively simple classification tasks without attempting the recognition of continuous speech. Shirai and
Kobayashi estimate articulatory parameter values using iterative optimisation, then use these for isolated
vowel recognition [155]. Papcun et al. and Zacks and Thomas have described a similar vowel recognition
system in which articulatory gestures are predicted from the acoustic signal using artificial neural networks
trained using either standard cost functions or ones based on longer-term “shape” constraints in the
output signal [122, 178]. Finally, Candille employs an articulatory-acoustic codebook to hypothesise static
tract shapes for vowel sequences, and uses the corresponding predicted formant trajectories for vowel
recognition [31].
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into stationary and transitional regions based on changes in the frequency of the second
formant only [121, 164]. The stationary segments are matched against stored templates to
yield a list of hypothesised labels; pairs of labels are then taken in turn and corresponding
speech spectra are synthesised. Based on the spectral match between the observed and
synthetic transitional patterns between the stationary segments, the best hypothesised
stationary label pair is chosen as the correct transcription fragment.

The system described in this dissertation is also an example of a re-synthesis tech-
nique; by contrast with the preceding system however, re-synthesis is applied to complete
utterance transcriptions, as outlined in Section 1.3.1.

Finally, it is also possible to use any of the “stand-alone” systems described in Sec-
tions 2.2.1 and 2.2.2 in a combined approach. The “Waxholm” dialogue system for ex-
ample, uses a conventional recognition system to provide IN-best transcription hypotheses
which are then re-scored using Blomberg’s production model-derived templates [10, 17, 18].

2.3 Articulatory Speech Production Models

The goal of articulatory speech production is the synthesis of a continuous or sampled
acoustic signal from a discrete symbolic input, via an intermediate representation in artic-
ulatory space [49]. The acoustic signal is either a raw time-domain waveform or else may
be parameterised, typically in the frequency domain (Section 4.2.1). The symbolic input
may be a textual representation of the utterance concerned, a (possibly overlapping) se-
quence of phonological labels, or a string of phonetic labels (Section 2.3.3). The potential
advantages provided by an articulatory model of speech production include:

e An explicit representation of the effects of context on sound production.

e A natural integration of temporal and spatial constraints.

An understanding of the acoustic correlates of articulatory gestures and hence their
perceptual relevance.

A framework for studying higher-level motor control mechanisms.

A tool for the analysis of human speech defects.

This section presents a brief introduction to the articulatory mechanism, as well as a
discussion of spatial and temporal models of articulatory motion. Finally, both physiolog-
ical and self-organising approaches to modelling articulatory production are described.

2.3.1 The Articulatory Mechanism

The articulators are the anatomical structures involved in human speech production, as
illustrated in Figure 2.1 [44, 57]. Air flow from the lungs passes through the vocal chords
into the throat cavity, or pharynx, then out through the oral and/or nasal cavities.
During the production of voiced sounds such as vowels, an oscillation is set up between
the vocal cords. Pressure builds up beneath the initially closed, tensed cords which forces
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Figure 2.1: The anatomical structures used in human speech production.
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them apart, leading to a flow of air through the opening, or glottis. This air flow results
in a subsequent pressure reduction and the cords therefore rejoin; pressure then re-builds
and the cycle is repeated, the result being a quasi-periodic pressure wave. By contrast,
during unvoiced sound production the air flow through the vocal cords is unimpeded.

According to the position of the velum and the presence or absence of points of closure
in the oral tract, the air flows out through the nasal cavity, the oral cavity, or both. Air
flow through the oral cavity is modulated by the positions of the tongue, lips and jaw;
the movements of these articulators cause deformations of the cavity which result in time-
varying resonant characteristics, amplifying or attenuating the different harmonics of the
excitation signal.

In addition to the excitation at the vocal cords, two other signal sources are commonly
used in the vocal tract. The first of these is frication, which is produced by the turbulent
flow of air through a small constriction in the vocal tract, such as between the tongue
and the hard palate during the production of /s/. The second is a high-frequency burst,
which is caused by the rapid release of air pressure built up behind a closure in the oral
cavity, such as that at the lips during the production of /p/.

Models of speech production which mimic this human physiology can be specified in
terms of the following sub-systems:

1. Definition of a spatial representation of the articulatory mechanism.

2. Conversion of a textual transcription into a temporal phonetic and/or phonological
symbolic representation.

3. Control of the articulatory system to produce articulatory trajectories and hence
vocal tract cavity shapes corresponding to these symbols.

4. Computation of the acoustic signal produced by propagating the appropriate exci-
tation signals through the vocal tract cavity.

The first two model components are the topics of Sections 2.3.2 and 2.3.3, while Sec-
tions 2.3.4 and 2.3.5 present two different implementations of the latter sub-systems: ex-
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plicit physiological models of the vocal tract, and statistical models which automatically
extract their parameters from a training data set.

2.3.2 Spatial Articulatory Representations

The articulatory representations used when modelling human speech production fall into
three categories:

e Exact specification of the position and shape of the articulators.
e Reduced-dimension parameterisations of articulatory space.

e Direct specification of vocal tract cavity shapes.

A complete biological model of the speech production mechanism would require an ex-
act spatial description of the movements of the articulators. In practical systems however,
it is simpler to identify a parameterised set of articulatory variables which are more eas-
ily measurable, and from which an adequate approximation to articulatory positions and
shapes can be derived. Ladefoged has suggested a set of sixteen articulatory parameters
which are necessary and sufficient to uniquely characterise all of the sounds in each of the
known languages [91]; these are listed in Table 2.1.

Tongue front raising Lip width

Tongue back raising Lip protrusion

Tongue tip raising Velic opening

Tongue tip advancing Larynx? lowering
Pharynx width Glottal aperture
Tongue bunching Phonation tension'®
Lateral tongue contraction Glottal length

Lip height Lung volume decrement

Table 2.1: Ladefoged’s articulatory parameters.

Some of these parameters, such as lip width or velic opening, relate closely to the ge-
ometry of the anatomical structures from which they are derived and can be independently
controlled. Others, such as the tongue parameters, refer to the overall characteristics of
the vocal tract shape rather than to the position of an individual articulator. For example,
raising the tip of the tongue with respect to the hard palate can be achieved by raising the
jaw, raising the tongue in relation to the jaw, or a combination of these two movements.
Compensatory movements such as these involving the interdependence of two or more
articulators, lead to a distinction between the direct control of vocal tract shapes and the
control of individual articulators.

Physiological models of speech production compute the acoustic signal radiated from
the lips by solving a set of wave equations governing the propagation of an excitation

9The larynx is the upper part of the windpipe containing the vocal cords.

10The stiffness and mass of the vocal cords.
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signal through the vocal tract (Appendix C). Hence they ultimately require a specifica-
tion of the shape of the resonant cavity bounded by the articulators. This cavity shape
can be specified explicitly, or else can be derived from an initial definition of (usually
parameterised) articulatory positions and shapes'?.

On one side therefore are holistic models which specify vocal tract cavity shapes as
goal states: an example of such a system is one in which a biomechanical model is used
to explore the space of possible articulatory movements and iteratively determine an effi-
cient strategy for the realisation of a sequence of target tract shapes [19]. Alternatively,
the movements of individual parameterised articulators can be modelled explicitly, either
individually or with inter-dependencies.

While the former strategy might appear to have greater biological plausibility in terms
of the acquisition of articulatory control by infants [129], it is far easier to measure articu-
latory positions than high-level control signals. As a result, the latter strategy has formed
the basis for very many more readily implementable engineering models, including that
described in this dissertation [33, 45, 62, 88, 96, 101, 103, 107, 108, 145, 173].

The choice of an appropriate parameterisation of articulatory space in an explicit artic-
ulatory model represents a trade-off between the accuracy of the model and the ease of its
implementation. Consider for example the articulatory parameters proposed in Table 2.1.
While these parameters serve to provide a descriptive model of sound production, features
such as phonation tension and pharynx width are difficult to define precisely and others
such as glottal aperture and length are difficult to measure accurately during “normal”
speech production.

One technique for identifying a practical set of parameters is to use a principal compo-
nents analysis to identify the principal axes of movement responsible for deviations away
from the neutral vocal tract position. Such a model has been proposed by Lindblom and
Sundberg [96] and further developed by Maeda [101, 103].

Articulatory representations such as these are usually restricted to parameterisations
of the lips, tongue, jaw and velum, coupled to simplified damped mass-spring models of the
glottis or explicit models of the glottal waveform [45, 108, 145, 156]. Descriptions of the
exact articulatory parameterisations used in this dissertation are given in Sections 5.2.3
and 6.3.1, and an example of a system for converting articulatory parameterisations into
vocal tract cavity shapes is provided in the latter section.

Articulatory Data Acquisition

One of the earliest and most effective techniques used for tracking movements of the ar-
ticulators is X-ray filming, or cineradiography. Experimental work by Houde [66] and
Perkell [124] in the late 1960s provided moving X-ray pictures of subjects’ heads, taken in
profile while they read from set texts. The identification of soft tissue structures such as
the lips and tongue can be enhanced in this approach by coating them in a barium com-
pound, and the images thus produced can provide reasonably good estimates of tongue,
jaw and lip positions. From these images, the x and y co-ordinates of key locations on

"Kaburagi and Honda have also proposed a system for predicting articulatory movements from vocal
tract shapes [75].
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the articulators can be tracked, and compared with the output of simulated models. The
detailed measurement of constriction apertures and the exact dimensions of the pharyn-
geal cavity are usually not obtainable however, and the characteristics of the vocal fold
vibrations must be measured by alternative techniques, such as high-speed video.

The greatest constraint on the use of this X-ray technique is the need to minimise
the exposure of the subject’s head to radiation, and only a very small amount of data
can be safely recorded from any given speaker using such a system [44]. A more sophis-
ticated technique for the collection of X-ray data greatly reduces this problem by using
only a narrow computer-controlled X-ray microbeam (XRMB) to track the movements of
articulatory points of interest [47]. In one such system described by Westbury, a set of 8
gold pellets are glued to points in the vocal tract, and are tracked in this manner during
the synchronous recording of speech waveforms and video images [171]. This system is
discussed in some detail in Chapter 5.

More recently, alternative techniques for characterising articulatory movements have
been developed, such as magnetic resonance imaging (MRI), electromagnetic articulogra-
phy (EMA) and electropalatography (EPG). Due to the high cost of MRI systems, only
very limited use has been made of this technique, although MRI articulatory data have
been described in the literature!? [6, 175].

In an EMA system, a number of miniature coils are attached to points in the vocal
tract in an analogous manner to the gold pellets used during XRMB data acquisition. The
subject’s head is then placed in an electromagnetic field, allowing the movement of the
coils to be inferred from the corresponding induced voltages. The output of the system is
a set of x and y traces for articulatory movements similar to those produced by XRMB
systems [65, 125].

Finally, the EPG technique was developed as a technique for addressing the problem
of discriminating between an actual contact between two articulators and the formation
of a small constriction between them. Since the resolution of XRMB and EMA images
is often insufficient to make this distinction, EPG systems provide a direct method for
the measurement of the locations and durations of contacts between the tongue and the
hard palate. This is achieved by placing a series of conducting contacts on each of these
articulators and measuring the impedance between them. While palatal contact data alone
are of limited use in describing the articulatory mechanism, Hardcastle has described a
complementary EPG/EMA system for tracking both articulatory movements and contacts
during speech production [56].

2.3.3 Temporal Symbolic Representations

Given a spatial representation of the articulatory system, a method for specifying tempo-
ral relationships during an utterance is required, to facilitate the conversion of a purely
abstract textual transcription into a set of time-varying articulatory movements.

The conversion of text into a temporally-aligned representation is typically achieved

12Ultrasound has also been used to record images of the tongue during speech production, but this
technique does not track individual flesh points, and cannot resolve hard structures in the vocal tract, such
as the jaw [160].
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by the use of an intermediate phonetic and/or phonological symbolic representation before
articulatory movements are predicted. Regardless of the physical implementation chosen
it is possible to distinguish between two different temporal strategies at this symbolic level,
each of which will be discussed in this section:

e Concatenated sequences of (usually phonetic) units.

e Overlapping sequences of (usually phonological) labels.

These two techniques are often referred to in the literature as “segmental” and “non-
segmental” approaches respectively [29, 97, 98, 148]. Since the term “segmental” is also
used in hidden Markov modelling to refer to systems which often do not use a concatenation
of conventional phonetic units (Section 1.2.2), we shall avoid using this terminology for
clarity.

Concatenative Systems

Concatenative systems assume that a sequence of discrete input symbols is representable
in an approximate sense at the phonological and/or phonetic level as a corresponding
time-ordered sequence of elements. For example, the lexical entry “bat” might be realised
phonetically as a concatenation of the individual models for /b/, /ae/ and /t/, each
having its own spatial articulatory representation.

There are two central difficulties with a model such as this. Firstly it implies the
existence—at least nominally—of time-boundaries demarcating these elements, whereas
speech production is a continuous process with no such hard boundaries [82]. Secondly,
in its simplest form it also suggests an independence of the basic units, whereas in reality
the context in which a sound occurs is known to have a strong influence on its acoustic
realisation (Section 3.3).

The problem of reducing hard nominal boundaries to smooth transitions is usually
addressed in articulatory synthesis by using the spatial articulatory representations derived
from a series of concatenative elements as the driving functions for a dynamic system which
produces smooth articulatory trajectories at its outputs, as described in Section 2.3.4.

The dependence of individual units on their context may also be approximately mod-
elled by these system dynamics. Alternatively, these effects may be accounted for either by
a secondary system which modifies the spatial representations according to their context,
or else by using a large number of context-specific models for each unit, as is common
in conventional speech recognition systems (Section 1.2.2) and in rule-based formant and
concatenative speech synthesis systems [85].

This latter approach suffers from the requirement of very large training data sets in
order to successfully model each individual unit in all of its contexts. More importantly,
the fundamental advantage of using articulatory synthesis is the opportunity to explicitly
model contextual effects in the time domain, so that the use of multiple context-sensitive
models is somewhat counter-intuitive. The former technique—mnamely the use of explicit
secondary models of co-articulation as an alternative to context-specific units—is discussed
further in Section 3.3.
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Overlaid Systems

While concatenative systems couple biologically-implausible but readily implementable
representations with secondary “fixes” to render them more accurate, overlaid systems
employ a more complex specification which aims to model the human production mecha-
nism more closely throughout.

This approach typically involves an intermediate phonological representation compris-
ing a sequence of overlapping labels or “gestures” [29, 38, 163]. These labels often span
larger time intervals than single phonemes: for example the label “voiced” might be as-
serted during both /b/ and /ae/ in “bat”. The advantage of this system is that it allows
the description of the production mechanism to be made in terms of actual articulatory
events—in this example by specifying the onset and termination of vocal cord vibration—
as opposed to a description in terms of arbitrarily-defined units such as phonemes. The
phonetic state of the system is then defined in terms of the set of phonological labels which
are asserted at any point in time.

The YorkTalk model takes this overlaid approach one step further, and uses a directed
graph rather than a sequence of phonological labels [97]. Standard tree-based parsing
methods can then be used to identify the syntactic structure of an utterance. Each syn-
tactic unit is assigned a set of phonological labels or “features”, which can be shared
between relevant sub-structures. This has the benefit of providing a more natural model
of co-articulatory effects, since the representation of a particular part of an utterance is
now only defined when in context.

Neither the overlaid sequential or graph-based model completely removes the need for
explicit timing information, since the endpoints of the asserted labels must still be speci-
fied. These endpoints should now coincide more accurately with actual articulatory events
however, and hence the problem of ensuring continuity will be reduced. Phonological la-
belling such as this is a complex procedure which is difficult to automate by comparison
with phonetic segmentations, which can be approximately determined by the automatic
alignment of phonetic transcriptions to acoustic waveforms (Sections 5.4 and 6.2). Thus
while overlaid systems appear to hold great promise for articulatory modelling, a concate-
native system coupled with an explicit secondary model of co-articulatory effects has been
employed in this dissertation.

2.3.4 Physiological Production Models

Given a spatial description of the articulatory system and a symbolic temporal representa-
tion of an utterance, both a method for controlling the articulatory system based on this
timing information, and a technique for predicting the resulting acoustic output signal
are required. Physiological models of speech production achieve this latter goal by propa-
gating a set of excitation signals through a vocal tract model defined by the articulatory
specification.
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Dynamic Control of Articulators

The biomechanical properties of the human speech production mechanism are extremely
complex. Control of the soft and hard tissue structures of the vocal tract is achieved by the
synergistic interaction of a large variety of muscle fibres. The properties of these muscles,
their control signals and their inter-dependencies are very difficult to determine empirically,
and hence their actions during the articulation of speech are poorly understood.

Nevertheless, even if the exact equations of motion governing the articulatory system
cannot yet be derived, it is possible to make use of real articulatory data acquired as
described in Section 2.3.2. By attempting to fit dynamic models to these experimental
data the parameters of simplified models which approximate those governing articulatory
motion can be determined.

A physiological articulatory model comprises a dynamic system and a set of forcing
functions which drive it. For example, Mermelstein has proposed a model which uses expo-
nential functions to model the closure and release of stops, and an explicit smooth function
to model inter-vocalic transitions [107]; Coker’s model works in a similar fashion, using
a linear combination of the modes of partial differential equations or lumped-component
approximations to describe articulatory movements [33].

More recently, second order dynamic systems have been used by many researchers to
perform this task [128]. Critically-damped linear second-order systems have been shown to
provide reasonable approximations to articulatory trajectories [147, 155], and have formed
the basis for models of speech dynamics using both piece-wise parameter fitting [88] and
parameter optimisation using Kalman filtering [108]. Attempts to model non-linearities
in the control dynamics have included the use of recurrent artificial neural networks to
predict articulatory movements [62], and the solution of simultaneous sets of non-linear
second-order differential equations describing the motion of soft-tissue articulators [173].

The forcing functions used as inputs to these dynamic systems are typically articula-
tory target positions inferred from experimental data (Section 3.3.2). The difficulty with
systems such as this however, is that it is not possible to model actual articulatory trajec-
tories accurately using context-independent targets and fixed articulatory dynamics. This
problem is illustrated in Figure 2.2, which shows simulated articulatory trajectories for
lower lip height during the VC sequences /i b/ and /aa b/.

In the figure the timing for both sequences is identical, but the vertical displacement
of the lower lip required to achieve the labial closure in /b/ is far greater in /aa b/ than
in /i b/, due to the lowering of the jaw during the production of /aa/. If the same target
position for /b/ and articulatory dynamics are used in both cases, and the parameters of
the dynamic system are adjusted to give an appropriate transition for /i b/ as shown,
then closure will not be achieved for /aa b/.

Co-articulatory effects such as this may be perceptually permissible when produc-
ing voiced sounds, but in the case of stops the achievement of an occlusion in the vocal
tract is essential, and thus the articulator forming the closure must reach its target posi-
tion. The solution to this problem is either to provide some form of secondary non-linear
trajectory warping to ensure that consonantal targets are reached [107], or else to use
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Figure 2.2: Simulated lower lip height movements during production of (a) /i b/ and (b)
/aa b/. Desired lower lip heights are indicated by dotted horizontal lines, and phonetic
boundaries by dashed vertical lines. A positional value of Omm corresponds to labial
closure.

context-sensitive articulatory targets and/or dynamics'® [33, 108].

Vocal Tract Models

The generation of an acoustic signal during human speech production is achieved by
the propagation of one or more excitation signals through the vocal tract cavity. Most
physiological models of the vocal tract therefore comprise a glottal model for producing
voiced or quasi-periodic excitation, coupled to a model of the vocal and nasal tracts. The
positions of the articulators determine both the time-varying shape of the tract and the
relative lossiness of the cavity walls at varying distances from the glottis. In addition, the
articulatory configuration is responsible for the noisy excitation sources created by the
turbulent flow of air through any points of constriction in the tract. Voiced excitation at
the glottis and/or noisy excitation at points of constriction in the tract are then propagated
through the cavity and radiated as an acoustic wave at the nostrils and lips.

Models of the voicing source may either employ direct prediction of glottal waveforms,
or else mechanical simulations of vocal cord vibration. Early models of glottal wave-
forms consisted of triangular waves or low-pass filtered impulse trains [44, 85]. Analytical
forms for improved glottal pulse waveforms were later established using perceptual exper-
iments [143], and models were developed which could produce waveforms with variable
pitch period, amplitude and open quotient (the “duty cycle” of the waveform) [85]. An
example of a glottal model using such a waveform is presented in Section C.5.1.

A more realistic model of the voicing source would also incorporate interactions be-
tween the quasi-periodic glottal source and the acoustic impedance of the vocal tract. This
can be achieved by using a biomechanical model of the vocal cords themselves. Flanagan
and Ishizaka have proposed a model for vocal-fold vibration which treats each vocal cord
as a two-mass model [45, 69]. This model, or the simpler one-mass version of it, has been

13 Context-sensitive models are discussed in further detail in Section 3.3.
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used in several articulatory synthesis systems [108, 156]; more complex models involving
a larger number of coupled masses have also been developed [85].
The different approaches taken to modelling the vocal tract itself include:

e Direct computation of the resonant frequencies of the specified vocal tract shape
from finite difference approximations to wave equations.

e Transmission-line models of the vocal tract, in which wave propagation is described
by linear and/or non-linear differential equations which are approximated by finite
difference equations.

e Models of the vocal tract as a concatenation of fixed-length cylindrical tubes with
variable cross-sectional area, in which wave propagation is modelled by computing

reflection and transmission of the wave at section boundaries!4.

In the first approach, the shape of the tract is used to directly predict the frequencies
and bandwidths of formant (or resonant) frequencies during the production of speech [33,
107, 159]. These frequency-domain models are then used to generate acoustic signals by
using a formant synthesiser comprising a waveform-based voicing source coupled with a
parallel set of low pass filters to produce synthetic speech spectra.

Alternatively, a time-domain approach can be used to propagate an excitation signal
through the vocal tract. Early time-domain models included transmission-line analogues
of the vocal tract [43, 44], which can be modelled by differential equations whose solutions
are approximated by the method of finite differences [45, 102]. Such models require a
great deal of computation however, and as a result many researchers have preferred to
use variants of the Kelly-Lochbaum model [44, 108, 132, 145], which approximates the
vocal tract by a series of uniform cross-sectional area cylindrical tubes and models the
propagation of the excitation signal in terms of reflection coefficients at their junctions [81].
An example of such a vocal tract model is given in Appendix C.

Finally, Sondhi and Schroeter have proposed a model which combines a time-domain
model of the glottal source similar to that of Flanagan and Ishizaka [45, 69] with a
frequency-domain variant of the vocal tract approximation based on a concatenation of
fixed-length cylindrical tubes [156].

2.3.5 Self-Organising Production Models

Self-organising models of speech production attempt to automatically extract appropriate
values for the parameters of a set of statistical models from a set of training exemplars.
The advantages provided by such an approach are that:

e The systems are automatically adaptable to new speakers, provided appropriate
training data are available.

e Many of the difficulties of modelling the dynamics of the articulatory mechanism
can be avoided, while still producing good approximations to physical articulatory
movements.

14This technique is also referred to as wave digital filtering.
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e The necessity for mimicking human physiology can easily be relaxed if desired.

e It is inherently possible to provide a probabilistic description of speech production
which is suitable for use in the context of speech recognition systems (Section 4.2.3).

The explicit models of human speech production described in the preceding section
generally do not satisfy these requirements, since procedures for automatically tuning
their parameters are typically not available'®, and they produce definitive rather than
probabilistic signals at their outputs.

The recognition system of Ramsay and Deng described in Section 2.2.2 is an example
of an approach in which a statistical description of the production system is used as
the fundamental basis for part of the model [135]. They use a stochastic HMM-based
model of articulatory dynamics, in which the output distributions of the HMM states
represent both articulatory positional probabilities and formant frequency distributions.
The parameters of these distributions are automatically optimised over a set of articulatory
and formant vector training exemplars, and are then used to decode articulatory and
formant trajectories during recognition, in conjunction with an explicit linearised model
of the vocal tract.

The system described in this dissertation differs from this approach in that it uses self-
organising models for both the prediction of articulatory dynamics and for the synthesis of
acoustic signals. The detailed description of these two models forms the basis of Chapters 3
and 4 respectively.

15Some of these explicit models do incorporate sub-systems with partially automatic data-driven optimi-
sation procedures. For example, Meyer’s model of articulatory dynamics is optimised over a training data
set using Kalman filtering [108], and several systems have been described which use iterative optimisation
procedures for determining vocal tract configurations [7, 19, 90, 123, 139].



Chapter 3

From Phonemes to Articulators

3.1 Introduction

This chapter describes the techniques used in the SPM to convert time-aligned phonetic
strings into articulatory representations. The primary articulatory modelling task of the
SPM is the provision of a spatial specification of articulatory movements; hence the provi-
sion of a basic description of the temporal organisation of an utterance is required a priorsi.
The temporal model used in the system is a time-aligned concatenation of the phonetic
units which comprise the utterance, as produced by an automatic alignment system such
as HTK! [176].

The conversion of this symbolic sequence to a set of smooth articulatory trajectories
representing the utterance is achieved by:

1. Estimation of probability distribution functions describing articulatory positions at
points in time corresponding to the midpoints of phonemes.

2. Prediction of variations in these articulatory positions due to co-articulatory effects.

3. Generation of complete articulatory trajectories.

The derivation of a parametric description of variations in articulatory positions is de-
scribed in Section 3.2. Section 3.3 contains a discussion of the co-articulatory mechanism
and proposes a descriptive model which can also be used in the prediction of co-articulatory
variation. Finally, Section 3.4 describes both a technique for implementing such a predic-
tive model and the subsequent generation of complete articulatory trajectories.

3.2 Characterising Articulatory Variability

The spatial trajectories followed by the articulators during the production of human speech
are the result of a trade-off between inertial and perceptual constraints. The former dictate
that these movements be as efficient as possible, in order to minimise biomechanical effort,
while the latter require that articulatory movements be sufficiently precise as to produce
an acoustic signal which is intelligible to the listener.

1For a discussion of temporal modelling in articulatory speech production, see Section 2.3.3.

26



CHAPTER 3. FROM PHONEMES TO ARTICULATORS 27

The acoustic relevance of the spatial positioning of an articulator varies considerably
from sound to sound, an important observation which is discussed further in Section 3.3.
All articulators show some degree of positional variability however, and this section is
concerned with identifying and characterising that variability.

3.2.1 Sources of Variability

There are many sources of variability in the acoustic realisation of a sound within an
utterance [126]. These include:

e Random variations due to the limited precision of muscular control of the articulators
and/or limited precision in the neural control signals sent by the brain.

Systematic variations due to the phonetic context in which the sound occurs.

Systematic variations due to the prosodic context in which the sound occurs.

Variations due to stationary or time-varying noise on the signal.

Variations due to channel distortion during transmission of the signal.

The scope of this dissertation is restricted to the analysis and synthesis of low-noise
high-bandwidth speech signals, and hence only the variability arising during the articu-
latory production of speech is of interest, and not the effects of additive noise or channel
distortions.

Prosodic variation

Prosodic influences on the speech signal are typically defined over longer time intervals
than the lengths of individual phonemes?, and result from linguistic intentions such as
tone, intonation and stress [170]. Variations in these three characteristics have a sig-
nificant impact on the acoustic waveform, primarily affecting the pitch3, duration and
signal intensity. Standard HMM-based recognition systems however, are designed to be
relatively insensitive to variations in these characteristics of the acoustic signal. For ex-
ample, the acoustic parameterisations commonly used in speech processing are insensitive
to variations in pitch and signal intensity. While the relative signal intensities at different
frequencies are of great importance, changes in the overall energy content in the signal over
time typically affect few if any of the acoustic parameters used. Furthermore, a feature
of HMM-based systems is their use of variable-duration models to normalise the effects of
temporal variations in the speech signal.

This attempt to exclude prosodic effects from the recognition process is far from co-
incidental, as the goal of speech recognition systems is to remove from the signal any
variability which is not strongly related to the identity of the words being recognised.
Prosodic information provides only weak cues as to word identities, although it is highly

2For this reason they are also referred to as “supersegmental” features.

3The fundamental frequency of oscillation of the glottis.
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relevant to the understanding of the acoustic signal, and some researchers have proposed
the use of prosodic information to distinguish between ambiguous semantic interpretations
of recognised word sequences [68].

Since the durational information used by the SPM is provided by an HMM-based
system, and both pitch and slowly time-varying spectral intensity features will not be used
in the frequency-domain representation of the speech signal, the SPM does not incorporate
a prosodic component. If the system were to be used for the synthesis of natural-sounding
time-domain acoustic signals however, a technique for automatically assigning prosodic
features to the transcription of an utterance to be synthesised would be required.

In terms of the observed articulatory variation therefore, prosodic influences on articu-
latory positions—such as increased amplitude of movement for stressed syllables—will be
modelled as random variations.

Random variation

The primary source of random variation in articulatory movements is the inexact control
of the muscles over multiple repetitions of the same task. Figure 3.1 shows an example of
overlaid X-ray articulatory trajectories for the horizontal and vertical displacement of the
tongue tip during four repetitions of the same phrase. Approximate phonetic boundaries
as produced by an automatic alignment program are shown by vertical dotted lines.
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Figure 3.1: Random variations in (a) horizontal and (b) vertical position of the tongue tip
taken from X-ray data during four repetitions of the phrase “The other one is too big”.
Solid and light arrows indicate regions of relatively low and high variability, respectively.
Phonetic boundaries are indicated by dotted vertical lines.

In this example relatively little durational variation is observed, as the speaker has
endeavoured to maintain a constant speaking rate. The maximum temporal displacement
between the waveforms is only = 0.05sec, while there is as much as 5mm of positional
variation. In general the vertical position of the tongue tip is more accurately reproducible
than the horizontal position, although the degree of variability is time-varying during
the utterance. For example, both horizontal and vertical positions are relatively tightly
constrained during production of the two occurrences of the phoneme /dh/ in “the” and
“other”, marked by solid arrows in the figures at the start of the utterance and after
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~0.3sec. This relative lack of variability is explained by the requirement that the tip of
the tongue be placed between the teeth during production of /dh/, so that its position is
tightly constrained.

By contrast, the horizontal position of the tongue tip during the phoneme /w/ at
the start of “one”, marked by a light arrow in figure (a), shows a considerable degree of
variability while still maintaining acoustic intelligibility.

Contextual Variation

Variations in achieved articulatory positions due to the phonetic context in which a sound
occurs are responsible for much of the variability observed in the corresponding acous-
tic signals. Since these variations arise in a systematic way, it is hoped that they are
predictable from the phonetic and temporal transcriptions of an utterance.

Figure 3.2 shows an example of the effects of context on the height of the back of the
tongue, during multiple repetitions of the same phrase used in Figure 3.1, again recorded
using X-ray tracking.
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Figure 3.2: Vertical displacement of the back of the tongue taken from X-ray data during
the phrase “The other one is too big”. Solid arrows indicate two dissimilar but repro-
ducible articulatory strategies used during the production of the phoneme /dh/. Phonetic
boundaries are indicated by dotted vertical lines.

Focus again on the position of the articulator during the two occurrences of /dh/, at
the start of the utterance and after 0.3sec as marked by solid arrows. As was the case
in Figure 3.1, there is relatively little positional variation at these points over multiple
repetitions of the phrase. By contrast with the previous figure however, a significant
and consistent difference is now seen in the placement of the articulator between the two
occurrences of /dh/.

This difference is explained by the context in which the sound occurs in the two
examples. The initial /dh/ (in “the”) is preceded by silence and followed by /iy/, a
vowel which requires the back of the tongue to be raised. The second /dh/ (in “other”)
however, is preceded by /ah/ and followed by /er/, two vowels which require a lowering
of the tongue back.
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Since the height of the back of the tongue can be varied during production of /dh/
without significantly altering the acoustics, economy of movement dictates a relatively high
tongue back during the initial /dh/ in anticipation of /iy/, and a relatively low position
for the second inter-vocalic /dh/. That this variation is due to contextual rather than
random effects can be seen from the minimal variation observed over multiple repetitions
of the utterance.

If the positional variation observed for a given articulator were characterised during the
production of a particular phoneme in a large corpus of speech, both “random” variation—
in this case comprising both truly random variation and prosodically-based variation—and
systematic contextual variation would therefore be observed®.

3.2.2 Positional Sampling

A relatively straightforward technique for characterising articulatory variation is to sample
articulatory positions over very many examples of the production of each phoneme in a
speech corpus. The samples obtained would ideally be insensitive to changes in phonetic
duration, but would incorporate the effects of co-articulation due to both the right and left
phonetic contexts of the phoneme. In addition, since the goal is to develop a self-organising
model, this sampling process should be fully automated.

The labelling of articulatory samples according to their phonetic class implies the avail-
ability of an alignment of the acoustic signal to a phonetic transcription. The generation
of these alignments is discussed in Sections 5.4 and 6.2, and involves the use of the HTK
toolkit to identify initial and final time stamps demarcating each phoneme in a phonetic
sequence corresponding to the utterance’s transcription. These time markers bound the
local regions in the speech signal which best match the HTK models for the phonemes
concerned.

When modelling articulatory movements it is assumed that:

1. Each phonetic segment comprises two basic sections. In the first of these, the ar-
ticulators are moving away from the positions dictated by the previous phoneme
and toward those required for the phoneme in question. In the second section the
articulators then begin to move to locations corresponding to the following phoneme.

2. There is a sub-section of the phonetic segment in which the articulators reach po-
sitions which are such as to produce an acoustic signal which is identifiable as the
phoneme concerned. The sub-section may or may not include a region in which the
positions of one or more articulators are held constant.

3. This sub-section roughly corresponds to—or else encompasses—the midpoint of the
phoneme.

As an example, on one extreme are phonetic sequences such as /s z s/ where the
central phoneme is identified only by the presence of voicing. In this case the articula-
tors are motionless throughout the production of /z/, so the initial and final sections of

4A further discussion of contextual effects on articulation (“co-articulation”), along with techniques for
modelling the resulting positional variations, can be found in Section 3.3.
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this phoneme are indistinguishable, and the entire phonetic segment satisfies the minimal
articulatory positioning requirement.

On the other extreme are sequences such as /ae dx ae/, in which the tongue tip is
constantly in motion. The flap /dx/ is characterised by an initial articulatory gesture in
which the tip of the tongue is moving towards the hard palate, followed by a final gesture
in which it moves away from it. In between these two is a brief period around the midpoint
of the phoneme when the tip briefly makes the requisite contact with the hard palate.

The requirement that the articulators satisfy positional constraints at the midpoints
of phonemes is discussed further in Section 3.3, but it is observed briefly here that this
is conceptually different from requiring that the articulators attain and maintain static
spectral “targets”. Several authors have demonstrated that only transitional information
is required for the recognition of certain vowels in particular contexts, since static vowel
nuclei can be deleted without impairing human recognition performance [48, 161]. This is
consistent with the model presented above, since articulatory constraints at the midpoints
of phonemes may be used only to define initial and final articulatory trajectories, without
the need for a steady vowel nucleus region to be maintained.

The positional variability of each articulator during the production of each phoneme
is therefore characterised by sampling its midpoint position as depicted in Figure 3.3.
This figure shows the simulated movement of an articulator during the word “star”, where
phonetic boundaries are marked by solid vertical lines, and sampling points by dashed
vertical lines.
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Figure 3.3: Simulated articulatory positional sampling points during the word “star”.
Boundaries between phonemes are indicated by solid vertical lines, and sampling points
corresponding to the midpoints of phonemes are shown by dashed vertical lines.

This technique is duration-independent, and represents both an explicit and an im-
plicit model of perceptually relevant articulatory behaviour: specific positional constraints
are explicitly incorporated, while the shapes of articulatory trajectories into and out of
phonemes are implicitly modelled.
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3.2.3 Parametric Models

The result of this sampling process is a set of positional values for each phoneme and each
articulator. The probability distribution functions of these samples are then approximated
by parametric models, which efficiently encode the significant characteristics of the dis-
tributions. The articulator’s positions at the midpoints of the examples of each phoneme
are modelled with a single Gaussian distribution of the form:

! exp <—M) (3.1)
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where x is the positional value of the articulator at the midpoint of the phoneme concerned,
p is the mean of the distribution and ¢? is its variance, which arises from both random
and systematic positional variations. In making this approximation it is assumed that:

1. The distribution of articulatory positions at phonetic midpoints is unimodal.

2. In the limit of a very large number of sample points, this distribution approaches a
“normal” distribution.

3. A first approximation to articulatory positions can be obtained by modelling the
positional variation of each articulator independently.

The first of these assumptions implies that a single articulation strategy is used for
each phoneme regardless of its context. All possible articulations will then represent
different manifestations of the same basic articulatory pattern, with variations about the
mean position® being caused by contextual effects. If a speaker maintains more than one
strategy for the production of a given sound and chooses amongst these according to the
phonetic context, then either a multimodal distribution must be used, or else a set of
unimodal distributions maintained, and rules used for selecting between them according
to the context.

The second assumption predicts the shape of the probability distribution obtained
from the sample points, dictating both its rate of fall-off away from the median value, and
also that this fall-off should be symmetrical about the mean position, so that the mean
and median positions coincide.

When dealing with real articulatory data, a limited number of different contexts and
sample points will be available, and hence the use of a “normal” distribution will by
definition be approximate. In addition, the nature of the articulatory system is such
that many positional distributions will not quite be symmetrical. For example, when
positioning the tongue tip during the production of /s/, there is far greater scope for
random or systematic variations due to downward rather than upward movement, due
to the presence of the hard palate. This physical constraint will be manifested in the
statistical data as a skew on the distribution.

Nevertheless, the single Gaussian distribution model described above serves as a useful
approximation which is not only mathematically tractable, but very efficient in its use

5As discussed in Section 3.3 this mean value should not be interpreted as a “target” position.
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of parameters. In practice, it proves to be a successful model of systematic articulatory
variations.

Finally, each articulator’s movements are modelled independently. This is a simplifying
assumption which is not valid in the case of the human articulators®, but which permits
an initial approximation to articulatory movements to be relatively easily derived using
the positional sampling technique”.

3.3 Co-articulation Models

Co-articulation is the allophonic variation of a phoneme due to changes in its phonetic
context [51]. Human speech does not consist of a concatenation of independent sounds,
but rather of a continuous sequence of sounds which are produced by smoothly varying
both the positions of the articulators and the excitation signals in the vocal tract.

Since the inertial masses of the articulators restrict their movements to finite speeds—
and more importantly since humans are inclined to use the most efficient movements
possible while ensuring acoustic intelligibility—the production of any particular sound is
strongly influenced by the articulatory constraints imposed by its neighbours. In this
section the mechanisms which give rise to co-articulatory effects are described, and two
models of articulatory behaviour are presented.

3.3.1 Co-articulation Mechanisms

The study of the mechanisms of co-articulation during human speech production is an
active field of research, and current models of articulatory behaviour are far from complete.
This section provides a brief introduction to some of the underlying causes of these co-
articulatory effects.

Causes of Co-articulation

The degree to which the phonetic context will influence the positions of the articulators
during the production of a given sound varies greatly from articulator to articulator and
from sound to sound. Factors which determine this variation include:

e The duration of the current sound and of its neighbours, both relative to each other
and in terms of the overall speaking rate.

e The spatial separation between the desirable articulatory positions for adjacent
sounds.

e The degree to which any articulatory positional constraints are perceptually relevant.

5An example of the correlations between such a set of articulators as measured from X-ray data is given
in Section 7.2.1.

"The development of an articulatory model which takes into account the inter-dependence of these
raw articulatory variables would represent a logical area for future research into this field, as discussed in
Section 9.5.
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e The physiologically-determined speed and precision with which a particular articu-
lator’s position can easily be controlled.

e The amount of articulatory effort used by the speaker.

The first two items determine the underlying geometrical framework for articulatory
production. The smaller the temporal separation between the midpoints of two adjacent
sounds and the larger the displacement between their desired articulatory configurations®,
the greater becomes the articulatory effort that will be required to produce them in se-
quence.

Once a desired articulatory position has been specified, the physiological nature of the
articulator concerned strongly influences the speed and accuracy with which this position
is approached. For example, the tongue tip is considerably more nimble in its movements
than is the jaw, and hence is able to produce relatively rapid, accurate movements.

In “normal” conversational speech however, articulatory movements are rarely limited
directly by such inertial constraints, but more often are indirectly linked to them through
efficiency considerations on the part of the speaker. That this is so can be seen from
the observation that human speakers are capable of clearly articulating speech at much
higher rates than are typically used in conversation?. The movements of the articulators
therefore do not in general reflect the physical limits of muscular control, but rather an
economy of effort while communicating a message [95].

This does not mean that the inertial properties of the articulators are without rele-
vance, since even if such a strategy based on minimised effort is postulated, the interrela-
tionship between the mass of an articulator and the strength of the muscles controlling it
will continue to strongly influence the co-articulation process.

Within this framework of geometrical constraints and economies of movement, the
amount of co-articulation permitted perceptually is largely determined by the degree of
specification of an articulator’s position in a particular context [78]. Thus in Figures 3.1
and 3.2 in Section 3.2.1 it can be observed that during the production of /dh/ the position
of the tongue tip is highly specified, while that of the back of the tongue is underspecified—
its position can be varied without greatly altering the acoustic signal. As a result, the
back of the tongue is relatively free to move into a position which is most convenient for
production of the sounds in either the left or the right context, or a compromise between
these two. This in turn leads to an economy of movement since unnecessary displacement
of the tongue back is avoided. By contrast, the position of the tip of the tongue is
highly constrained during /dh/, since it must be in position before this phoneme can be
articulated, and is not free to move to the next required position until after the relevant
acoustic cues for /dh/ have been produced.

A continuum in the degree of specification is therefore postulated, from one extreme of
exact specification, through loosely specified constraints, to the other extreme of complete
underspecification of articulatory positions.

8The issue of specifying desired articulatory configurations such as these is discussed in Sections 3.3.2
and 3.3.3.

9The 1991 Guinness Book of Records quotes the fastest achieved intelligible speech rate as 586 words
per minute [106], as compared with a “standard” rate of between 100 and 200 words per minute.
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Types of co-articulation

The detailed characterisation of the mechanism of co-articulation during speech production
remains an active field of research. Nevertheless, it is generally agreed that there are two
distinct mechanisms which give rise to co-articulatory variation:

e Anticipatory co-articulation: occurs from right to left and is due to timing
effects, whereby the movement of an articulator toward the position dictated by the
following sound commences during production of the current sound.

e Carryover co-articulation: occurs from left to right and is due to mechanical
inertia, whereby an articulator is slow to move away from the position required by
the previous sound and into that dictated by the current sound.

An example of both effects can be seen in the word “toot”. When pronouncing
/t u t/, the lip rounding gesture required for the production of /u/ is initiated dur-
ing the first /t/—an anticipatory effect made possible by the underspecification of lip
position during production of /t/. This same lip underspecification then allows a further
economy of movement to be achieved, as the lip rounding gesture continues during the
following /t/ via the carryover effect. The result is a rounding of the lips throughout the
word, although this feature is nominally only required for the central vowel.

As is the case in this example, the largest co-articulatory movements will in general
be observed for the least specified articulators—ie those which are least relevant acousti-
cally. This does not reduce the importance of modelling co-articulatory effects however,
since co-articulatory movements result from the combination of one sound for which an
articulator’s position is highly specified, with another for which it is not. A model of the
articulator’s behaviour during the underspecified sound is therefore required to accurately
predict the trajectory that will be followed by that articulator during the transition into
the acoustically relevant region.

Thus co-articulatory effects are present even for the most highly specified of artic-
ulatory configurations, since the context will determine the trajectories followed by the
articulators into and out of the production of the sound concerned. The phonetic context
therefore influences initial and final articulatory transitional movements to some extent for
all phonemes and all articulators. The articulatory configuration reached between these
two transitions will be dictated both by perceptual constraints (the degree of specification
of an articulator) and by geometric constraints (the spatio-temporal demands placed on
the articulator in relation to its ease of movement).

The presence of both anticipatory and carryover effects implies that the articulation
of a sound will in general be dependent on both the preceding and following contexts.
Several studies have attempted to determine whether these effects are limited to the im-
mediately neighbouring phonemes, or whether a larger context is required. Although
specific contexts have been identified in which anticipatory effects can be demonstrated
over multiple phonemes, Gay has argued that in VCV utterances, both anticipatory and
carryover effects do not spread further than the immediately neighbouring segments [50].
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This suggests that a relatively simple, single-neighbouring-phoneme bi-directional model

of co-articulation can be used as a first approximation to the co-articulation process'C.

3.3.2 Target Models

The exact mechanism of human speech production is still poorly understood. Many re-
searchers have proposed models which attempt to describe how a discrete symbolic repre-
sentation of an utterance is converted to a smooth articulatory realisation, while satisfying
both perceptual and physiological constraints. A popular modelling technique is to rep-
resent an utterance by the specification of a sequence of underlying goals, and to regard
articulatory movements as attempts to reach these goals while satisfying biomechanical
constraints. The goals may be fixed target points, or else may specify target regions or
trajectories. They may be defined in one or more of a number of different sub-spaces,
hypothesised examples of which include [58]:

e Invariant electromyographic signals: the signals sent by the nervous system to
the muscles involved in the production of a given sound are contextually invariant,
and the responses of the muscles to these signals result in co-articulatory variation.

e Articulatory targets: articulatory movements are governed by a desire to attain
articulatory targets which are maintained by both peripheral and internal feedback,
the achievement of which is hampered by inertial constraints.

e Acoustic or perceptual targets: speech comprises a series of acoustic targets,
which can be achieved (or at least approached) using a variety of articulatory move-
ments.

These proposals differ both in the level at which invariant goals are specified (high-
level motor control signals versus low-level articulatory positions), and in the degree of
abstraction of the control signal (physical nerve signals and/or articulatory positions versus
resultant acoustic waveform characteristics).

The disadvantages of using high-level control signals are that they are difficult to
study empirically, and that even if it were possible to accurately characterise them, a
detailed knowledge of the muscular system in the vocal tract would be required in order
to determine their effects on the articulation of speech. By contrast, a wide variety of
systems have been proposed in which some form of articulatory and/or acoustic goal
sequence is used to model articulatory movements. This section provides a brief summary
of several systems which take this latter approach.

Acoustic-Articulatory Targets

Several researchers have described systems which make use of either spectral energy or
formant frequency targets. Akagi has attempted to extract invariant spectral targets by

Experiments in large-vocabulary computer speech recognition have suggested that contextual infor-
mation useful to the recognition process may also be contained in the identities of the phonemes two steps
away from a given phoneme [174].
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modelling spectral trajectories with dynamic systems [1, 2], and Kuwabara has proposed
an explicit mapping for increasing the separability of formant frequencies for vowels, and
hence reducing co-articulatory effects [89].

Techniques such as these are more applicable to modelling transitions between vowels
than those involving consonants, since the identification of spectral energy trajectories
is more difficult in the latter case. An alternative approach is to combine acoustic and
articulatory goals, as proposed in Perkell’s model of peripheral and internal feedback [127],
and Stevens’ system which supplements formant targets with articulatory goals to account
for consonantal constrictions when controlling a formant synthesiser [159].

As discussed in Section 1.3 however, each of these systems is attempting to model
a time-domain effect in the frequency domain, and a separate mapping to articulatory
positions would be required for articulatory synthesis.

Articulatory Point Targets

Early articulatory models proposed specific spatial or muscular target positions for the ar-
ticulators during the production of each particular sound [33, 66, 100, 107]. The movement
of the articulators in response to these control signals is modelled in these systems using
explicit functions of position and time. These typically comprise either single exponentials
or the sum of multiple linear and exponential functions.

Later variants of this approach include the use of simple linear interpolation between
target sequences [145], and the use of Kalman filtering to optimise a set of low-pass
filters [172]. Shirai proposed using critically-damped second-order linear dynamic systems
to approximate articulatory trajectories [155], an approach that has since been used by
several researchers [88, 108].

There are several difficulties with models such as these. Firstly, it is clear that context-
independent spatial targets which are invariably achieved do not exist for all articulators
or all phonemes. While it is true that during /b/ for example, lip closure is always achieved
regardless of the context, articulatory positions for many other phonemes and articulators
are less tightly specified, or may not be specified at all.

Even if exact spatial targets such as these did exist, if fixed dynamic properties are
used to model articulatory movements independently of the context, then targets would
only sometimes be reached, as demonstrated in Figure 2.2 in Section 2.3.4. A common
solution is to hypothesise the existence of virtual targets in articulatory space which may
not be physically realisable, but may instead be “undershot”. In this way contextual
variation would lead to a distribution of articulatory positional values, rather than a fixed
spatial configuration which must be reached.

This proposal only partially accounts for the problem of contextual variation however,
since there is now a difficulty with phonemes such as /b/ which do require a very precise
articulatory specification. As a result, these systems typically either use extreme virtual
targets for phonemes such as /b/ and constrain the lip models to stop moving once they
collide, or else they apply secondary modifications to the articulatory trajectories to ensure
that consonantal requirements are met [33, 107, 108, 172].

An additional problem with the use of either virtual or physical targets is the fact
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that quite different vocal tract shapes can be used to produce very similar acoustic output
for some phonemes'! [4, 94]. Thus multiple articulatory targets might exist for a given
phoneme, with the vocal tract shape used for each individual instance being selected
according to the context.

A more realistic model would therefore require the use of context-sensitive targets
and/or dynamics. As discussed in Section 3.3.1, articulators typically do not move at
their maximum speed, but with the minimum of effort required to ensure intelligibility.
Thus since lip closure is perceptually essential during the production of /b/, the amount
of articulatory effort used in a given context will be that which is sufficient to achieve
closure in that context. In Meyer’s system for example, more than one spectral target
is used for some phonemes according to their context [108], and Kroger uses a system
with fixed targets but time-varying dynamics [88]. The drawback with these approaches
is that determining and specifying the context-sensitive control parameters is a difficult
task, which obviates either the advantage of postulating contextually-invariant articulatory
targets, or the use of simple automatic articulatory control.

Stochastic Articulatory Targets

Alternatively, it is possible to use HMM-based systems to model articulatory target posi-
tions. Bakis uses explicit articulatory positional targets, which are related to the realised
articulatory positions by a set of probability distributions at the outputs of an HMM [8].
Ramsay and Deng have described a system which uses overlapping phonological gestures
as the symbolic inputs to an HMM, whose output distributions represent both formant
and articulatory positional distributions'? [135]. In both cases a probabilistic distribu-
tion of possible articulations is produced, rather than a definitive sequence of articulatory
movements.

Articulatory Attractors, Regions and Trajectories

Preliminary work has been described for systems which use control signals to define artic-
ulatory trajectories or movements, rather than simple point positions (although specific
configurations may also be specified). For example, Vatikiotis-Bateson et al. use “via point
estimation”, in which several points defining an articulatory sub-trajectory are specified
as a command signal [62, 166].

Several other systems falling into this category are at least in part motivated by the
task dynamics model of Saltzman and Munhall [148]. This system uses an implicit target
model in which articulatory goals corresponding to a phonological task are specified as
attractors in articulatory space, which define constrictions in the vocal tract. Since these
constrictions are usually specific to a particular articulatory configuration, the problem of
discriminating between multiple acceptable vocal tract shapes during speech production
is reduced.

1A phenomenon also known as the “ventriloquist effect”, which is discussed further in Section 6.4.

12For more detail on these systems, see Section 2.2.2.
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Bailly has described a related model of articulatory control, in which targets are re-
gions in articulatory or acoustic space!® which act as attractors on a biomechanical vocal
tract model to produce desired articulatory trajectories [7]. A similar system developed by
Honda and Kaburagi also uses target regions, and determines actual articulatory trajecto-
ries by using dynamic programming to find the path through these regions which optimises
an explicit energy criterion [64, 76]. These trajectories are modelled as second-order linear
systems, and hence context-sensitive system parameters are required to accurately model
articulatory transitions.

Finally, Laboissiere has presented a model of articulatory movements arising from
shifts in articulatory equilibrium positions [90]. A seven-muscle model of the production
mechanism is used, and articulatory targets are encoded as muscle control signals which
change the system’s equilibrium point—in turn giving rise to the desired articulatory
movements.

3.3.3 Window Models

An alternative to using specific articulatory target points or trajectories is to propose
regions of articulatory space through which an articulator must pass in order to guarantee
intelligibility. This is an inherently attractive approach, since it is both simple and flexible.
It can either be used to specify “corridors” through which articulatory trajectories must
pass, or else to set a range of positional values which an articulator can satisfy at any
point in time. The relative degree of specification of an articulator is explicitly encoded
by the size of the perceptually acceptable region, and co-articulatory effects are modelled
as variations within these prescribed limits.

An early model proposed along these lines is Keating’s “window” model of co-articula-
tion [79]. This model specifies both the ranges of possible articulatory positional values
and the time intervals over which these restrictions apply, as shown in Figure 3.4.

This figure shows a simulated articulatory trajectory (solid line), which is constrained
to pass through the regions delineated by dashed horizontal lines. Both the duration and
the degree of specification of the restriction regions are variable, and there may be inter-
vening intervals of complete underspecification. Keating proposed that the articulatory
trajectory be free to pass anywhere within these allowable ranges, with the path being
chosen to fit as smoothly as possible within the constraints imposed by the context.

This is a descriptive model of articulatory movement, which differs from the point
target models in that it directly specifies ranges of achieved articulatory motion, as op-
posed to indirectly controlling articulatory movements through virtual targets which are
undershot by the system dynamics. Not only does this model explicitly represent relative
degrees of specification, but it also emphasises the need for the rate of rise or fall of an
articulator at the onset of a particular phoneme to be context-dependent, as discussed in
Sections 2.3.4 and 3.3.2.

Finally, Guenther has proposed an alternative model based on target regions, which
attempts to address the problem of choosing between multiple vocal tract shapes which
result in similar acoustic patterns. Target regions are initially planned in formant space,

13The use of target regions rather than points is discussed further in Section 3.3.3.
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Position (mm)

Figure 3.4: Simulated articulatory trajectory (solid line) using the window model of co-
articulation. The trajectory is constrained to pass through the “windows” indicated by
dashed horizontal lines.

and are then mapped onto equivalent articulatory target regions by selecting articulatory
movements which best correspond to the desired formant dynamics [55].

3.3.4 A Self-Organising Probabilistic Model

A new model is now proposed which is similar to the window model in that regions of
articulatory space are specified, but in which a very different description of articulatory
motion is provided. A self-organising approach to modelling context-sensitive articulatory
positions is used, which does not require context-dependent system parameters or rules to
be inferred. The key components of this system are:

1. A descriptive probabilistic model of instantaneous articulatory positions at the mid-
points of phonemes.

2. A predictive probabilistic model of articulatory positional variations at these mid-
points due to co-articulatory effects.

3. A simple linear interpolation between co-articulated articulatory midpoint positions.

By contrast with Keating’s model, this descriptive model does not specify time intervals
during which articulators must satisfy a given spatial constraint, but instead specifies artic-
ulatory positions only at the midpoints of phonemes. Furthermore, instead of postulating
a hard-limited region of equally acceptable positions, a smoothly-varying probabilistic
model is used to specify articulatory positions, as demonstrated in Figure 3.5.

In this figure, the midpoints of the phonemes being articulated are indicated by dotted
vertical lines, and the articulatory trajectory is shown as a dashed curve. Against each
midpoint line is shown a probability density function (pdf) which represents the proba-
bility of observing various articulatory values at that point in time. The axes for these
pdfs are the articulatory position vertically, and increasing probability in the directions
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Figure 3.5: Simulated articulatory trajectory (dashed line) using a probabilistic co-
articulation model. The midpoints of successive phonemes are indicated by dotted vertical
lines, and associated with each midpoint is a probability distribution. These distributions
define the probability that the articulatory trajectory will take particular positional values
at the midpoint concerned.

shown. Thus the pdf associated with the midpoint of the leftmost phoneme indicates
that the most probable (mean) articulatory position at this point in time is ~6mm, with
decreasing likelihood above and below this value, and a standard deviation of ~ 2mm.
In Keating’s model these pdfs would be “square” windows rather than smooth functions,
with a zero probability that an articulator will be positioned outside the window, and a
flat distribution of equal probabilities within the window.

This framework for describing co-articulatory variation is neatly implemented by the
technique for characterising articulatory variability described in Section 3.2. By automat-
ically sampling a large number of articulatory trajectories at times corresponding to the
midpoints of phonemes—and modelling the observed variations with unimodal Gaussian
distributions—smooth probabilistic “window” functions can automatically be obtained.
As discussed in Section 3.2.3, multiple distributions would be required if it were necessary
to allow for the possibility of selecting between alternative articulatory strategies accord-
ing to the context in which a phoneme appears. Techniques for predicting co-articulatory
variation within the ranges described by these distributions, and methods for generating
complete articulatory trajectories from them are described in the following sections.

3.4 Predicting Articulatory Variation

The goal of the approach to modelling co-articulatory variation taken in this dissertation is
the development of an automated system for predicting variations in articulatory positions
using a knowledge of the context and the relative durations of the phonetic segments.
The positional variation for each articulator is directly modelled at the midpoint of each
phoneme using a single Gaussian distribution. This task therefore reduces to the prediction
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of deviations from an articulator’s mean position at these midpoints, and the generation
of complete articulatory trajectories from the resulting positional values.

Articulatory movements exhibit both random and systematic positional variation'*.
While random variations are an inherent characteristic of human speech production, their
perceptual effects must be negligible or else words would be randomly mis-perceived by
listeners. Of greater interest is that part of the variation which is systematically repro-
ducible, and which may therefore be perceptually relevant. As discussed in Section 3.3.1,
consistent variations in articulatory movements due to the phonetic context are moti-
vated by efficiency constraints, whereby articulators move early (or late) toward (or from)
perceptually relevant regions, from (or toward) relatively less relevant or “unspecified”
regions. To predict such movements, information which is correlated with these variations
must be extracted in either explicit or rule-based form, from the time-aligned phonetic
transcription.

3.4.1 Articulatory Accelerations

If it is assumed that co-articulatory effects are governed by economy of effort considerations
and perceptual constraints, the greatest deviations from “ideal” articulatory behaviour are
expected to be observed in regions where the muscular effort required is greatest and the
position of the articulator concerned is relatively underspecified. While compromises in
articulatory movements would be desirable wherever relatively large articulatory effort is
dictated, such variations will only be permitted where the corresponding acoustic effects
are perceptually acceptable.

Since the articulators have finite inertial masses, a simple measure related to the mus-
cular effort required at a given point in time is the acceleration of the articulator con-
cerned. In terms of articulatory trajectories, the acceleration is the second derivative, or
“curvature” of the plot, so that regions of relatively high positive or negative articulatory
acceleration tend to correspond to local minima or maxima in a trajectory respectively.
During the production of phonemes for which an articulator’s position is relatively under-
specified, the required acceleration of the articulator concerned is expected to be highly
correlated with deviations from the mean articulatory position, as shown in Figure 3.6.

This figure shows both a desired (solid) and an achieved (dashed) simulated articu-
latory trajectory around the midpoint of a phoneme, indicated by a dotted vertical line.
To the right of the line marking this midpoint position is a hypothetical pdf describing
the observed variation in the simulated articulator’s achieved position at the midpoint,
computed from many examples in a training data set as described in Section 3.2.

In regions of high acceleration, such as the large negative acceleration near the midpoint
of the phoneme in this example, an economy of effort can be obtained by following a less
curved trajectory, leading to an undershoot of the mean articulatory position as shown.
Relatively large positive acceleration demands in turn lead to an overshoot of this mean,
which therefore should not be regarded as a “target” position, but is merely descriptive
of observed articulatory traces.

141n the model described in this dissertation systematic prosodically-based variations are also treated as
“random” effects, as discussed in Section 3.2.1.
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Figure 3.6: Variation in the position of a simulated articulatory trajectory at the midpoint
of a phoneme (dotted vertical line). The pdf associated with the midpoint defines the
probability of observing different articulatory positions. The large negative acceleration
required at the midpoint of the phoneme results in an undershoot of the mean position
which reduces the curvature of the resulting trajectory.

As the articulation of a phoneme comprises articulatory movements into and out of
perceptually required positions, it is assumed that local minima and maxima in the trajec-
tories usually fall close to the midpoints of phonemes as shown in this example. The width
of each distribution describing the achieved articulatory positions will be determined by
both the range of geometrical contexts in which the phoneme occurs—wider ranges leading
to wider distributions—and the relative degree of specification of the articulator. Where
an articulator’s position is perceptually important, increased muscular effort will be used
to achieve the desired acceleration, and less positional variation will be observed.

Estimating Curvatures

If articulatory accelerations are to be used to predict positional variations, a technique for
estimating these from the curvature of time-aligned articulatory trajectories is required.
The curvature ¢ of a function f at the point x is defined as the rate of change of its
gradient at that point:

Ef(z) . gz + Az) — g(x)

o(z) = dx? :Alalcrgo Az (32)

where g(x) is the gradient of the graph, given by:

flz+ Azx) — f(2)

9(z) = Alainrgo Az (3:3)
and hence:
e(z) = lim flz)+ f(z+2Ax) — 2f(z + Ax) (3.4)

Az=50 Ax?
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Given a time-aligned phonetic transcription of an utterance, a first approximation to
the shape of a corresponding articulatory trajectory can be obtained by a simple linear
interpolation between that articulator’s mean positions at the midpoints of each of the
phonemes, as shown in Figure 3.7.

|
12 A

10 A

Position (mm)

X+AX Time (sec)

Figure 3.7: Computation of the estimated curvature measure for a simulated linearly
interpolated articulatory trajectory. The midpoints of successive phonemes are shown by
dotted vertical lines, and mean articulatory positions at these midpoints are indicated by
crosses. The gradients of the linear segments leading into and out of the central midpoint
position are denoted g; and gy respectively.

In this figure, the midpoints of phonemes are shown by vertical dotted lines, and
articulatory mean positions by crosses. If the value (x + Az) is taken to coincide with a
midpoint position as shown, then the gradients g; and g, of the initial and final articulatory
trajectory segments on either side of the midpoint respectively will be given by:

o = f(x+AA92—f(w) (3.5)
o = flz+ 2A;c)A;f(x + Ax) (3.6)

for any small value of Ax, as the segments are linear. The curvature in Equation 3.4 can
then be expressed as:

_ o 92701
=T -7

which is infinite at the midpoint of the phoneme, due to the discontinuity at the boundary
between the segments. If only the relative curvatures of trajectories around the midpoints
of phonemes in different contexts are of interest—rather than the absolute values of these
curvatures—then a simple approximate measure can be obtained by setting Az in this
expression to a constant non-zero value. This simple gradient-differencing technique is
therefore used to estimate relative trajectory curvatures (and hence accelerations) from
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a linear interpolation between successive articulatory mean positions. The resulting es-
timates of articulatory accelerations represent simple approximations to the amount of
muscular effort dictated by the phonetic context.

Since the computation of this curvature measure requires a knowledge of articula-
tory mean positions, statistics describing the distribution of curvature estimates are not
derived until after the articulatory positional statistics have been determined. First ap-
proximations to articulatory trajectory shapes are computed by linear interpolation be-
tween successive articulatory mean values, where these points are placed at the midpoints
of phonemes using a phonetic time alignment!® as shown in Figure 3.7. The curvature
measure described above is then computed for each articulator over all examples of each
phoneme, and the resulting values are modelled using a single Gaussian distribution in each

case, in an analogous manner to the positional distributions described in Section 3.2.3.

3.4.2 Systematic Positional Variation Prediction

The curvature measure described in the preceding section can be used to predict systematic
variations in articulatory positions at the midpoints of the phonemes in any time-aligned
phonetic string. Articulatory positions and curvatures at these midpoints are modelled
by the random variables P and C respectively, each of which has a pdf given by a single
Gaussian distribution. From the time-aligned phonetic string, the value ¢ of the curvature
of an articulatory trajectory at the midpoint of each phoneme is estimated. Given this
value, the expected value of the random variable P describing that articulator’s position
is required. This conditional expectation is given by:

EIPIC=d = [ p.foclple)dp (5.9

where fpo(p|c) is the conditional pdf of P given C'=c, which is defined as:

o fc,P(C;p)
fP|c(p|C) = Folc) (3.9)

where fo(c) is a Gaussian distribution with mean po and standard deviation o:

c— pe)?
folo) = \/2;7 exp (—%) (3.10)

and fg p(c,p) is the joint pdf of C and P, which in this case is just the binormal distribu-

tion:

_ 2 — _ _ 2
ferlen) = b o (i |(54) 2o tglinee) + (e )

where pq p is the correlation coefficient for the random variables C' and P:

5 Descriptions of the techniques used to align the acoustic signals to their transcriptions can be found
in Sections 5.4 and 6.2.
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pen = Z1C _Zci(P —tr)] (3.12)

Substituting Equations 3.10 and 3.11 into 3.9, the following expression for the condi-
tional pdf is obtained:

1 -1 op ]2
c) = exp| ———— — — — (c— 3.13
Frio(ple) V2ropy/1— P, P <2012:(1 — Pép) [p fr = ber Oc (e~ pe) ) ( )

which can then be substituted into Equation 3.8 to find the expected positional value.

Since the conditional pdf in Equation 3.13 is itself a Gaussian however, with mean y and
variance o2 given by:

g

Bo= MP+PCP_P(C_MC) (3.14)
Oc

ot = o3 (1= pp) (3.15)

the expected positional value is equal to this mean:

g
E[P|C=(] = up+pCPU—P(c—uc) (3.16)

C
Equation 3.16, which is known as a “regression curve” [110], allows the prediction of
the most likely articulatory positional value at the midpoint of a phoneme using the esti-
mate of the curvature, the means and standard deviations of the positional and curvature
distributions, and the correlation coefficient between these two distributions.
A summary of the principal characteristics of the resulting model of co-articulatory
variation is given below:

e It is entirely statistically-based and self-organising in nature.

e Articulatory positional variability at the midpoints of phonemes is modelled using
a single Gaussian distribution for each articulator during the production of each
phoneme.

e The required articulatory effort is estimated by computing the gradient changes
(“curvatures”) of linearly interpolated trajectories at the midpoints of phonemes,
which are also modelled using single Gaussian distributions.

e Correlations between curvature and positional statistics are used to predict system-
atic positional variations from the estimated curvatures in particular contexts.

The model is symmetrical with respect to the right and left contexts of phonemes (an-
ticipatory and carryover effects respectively), and considers only the immediate neighbours
of a phoneme when computing contextual effects. The effects of context on articulatory
transitions into and out of phonemes are modelled implicitly, during the construction of
complete articulatory trajectories from the co-articulated values at the midpoints of the
phonemes.
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3.4.3 Generation of Articulatory Trajectories

Finally, a technique is required for generating continuous articulatory trajectories which
are constrained to pass through the midpoint positions specified by the co-articulation
model. Since these pre-specified values are not “target” positions or “attractors” for the
articulators, but represent the most likely positions for the articulators at these points in
time, any dynamic system model would therefore have to be such that the dynamics were
varied according to the context to ensure the achievement of these positions. Alternatively,
the midpoint positions could be connected using explicit linear, piece-wise linear or non-
linear functions.

When choosing amongst these options it is important to consider the nature of the
trajectories being approximated. On the one hand it is clear that actual articulatory
movements describe smooth curves rather than linear segments, which might lead to the
postulation of a dynamic system or curved function model. The caveat to using relatively
complex models such as these however, is that current predictive models of articulatory
position, including that described in the preceding sections, are relatively crude approxi-
mations to human physiology. As a result, it is anticipated that any errors in articulatory
movements due to the choice of connecting segments will be insignificant by comparison
with those due to gross errors in the articulatory positions predicted by the model. For
example, Meyer et al. found in their German-language synthesiser that articulatory tra-
jectories which were fitted to second order critically-damped transitions using Kalman
filtering could be replaced with linearly interpolated trajectories, with “only small differ-
ences” being observed in the acoustic waveform [108].

The results obtained from using both linear interpolation and piece-wise (or “con-
strained”) linear interpolation schemes to connect co-articulated values at the midpoints
of successive phonemes were therefore compared. These two methods are illustrated in
Figure 3.8, which shows simulated articulatory trajectories for the word “star”.

In this figure, phonetic boundaries are indicated by solid vertical lines, and the mid-
points of phonemes by dotted vertical lines. Co-articulated positions at these midpoints
are indicated by crosses, and linear and piece-wise linear interpolated trajectories for the
hypothetical articulator are shown by solid and dashed lines respectively.

While the linear trajectories are constructed by simply connecting positions at the
midpoints of successive phonemes, the piece-wise linear trajectories attempt a closer ap-
proximation to actual articulatory movements by constraining the trajectories to pass
through the average of two successive midpoint values at the boundary between the two
phonemes concerned, as marked by circles in the figure. The resulting trajectories have
higher curvatures for relatively short phonemes and lower curvatures for longer phonemes
compared with the linear interpolation scheme.

When these two models were implemented and the resulting articulatory trajectories
were compared with X-ray articulatory traces, no improvement in articulatory modelling
accuracy was observed when using the constrained interpolation model. Standard linear
interpolation was therefore retained as the model for trajectory generation in the system.

In concluding, it is observed that the use of this linear interpolation scheme implies that
co-articulatory effects will be introduced even in the absence of the explicit co-articulation
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Figure 3.8: Simulated articulatory trajectories using both linear (solid) and piece-wise
linear (dashed) interpolation between articulatory positions (crosses) at the midpoints of
phonemes (dotted vertical lines). Phonetic boundaries are shown by solid vertical lines,
and the means of successive midpoint positions at these boundaries are marked by circles.

model. If mean articulatory positions are used at the midpoints of phonemes, rather than
the modified positions predicted by the technique described in Section 3.4.2, the phonetic
context will still strongly influence the shape of the resulting interpolated trajectory. As
demonstrated in Chapter 7 however, the use of the explicit co-articulation model leads to
a significant increase in the overall articulatory modelling accuracy.



Chapter 4

From Articulators to Acoustics

4.1 Introduction

The ultimate goal of most existing models of speech production is the synthesis of a time-
domain signal which approximates natural-sounding human speech as closely as possible.
While formant-based and concatenative speech synthesis systems still provide the most
human-like synthetic signals [42, 85], more detailed articulatory models are now being
developed which may eventually surpass the performance of these systems in synthesis
applications [173].

The use of articulatory production models in a computer speech recognition frame-
work demands a different set of characteristics than those required for natural-sounding
synthesis. In this chapter, a review of these desirable characteristics is provided, followed
by a brief introduction to explicit vocal tract models. Subsequently, a description of an
alternative approach which uses a self-organising probabilistic model of speech production
to synthesise parameterised acoustic signals is presented.

4.2 Acoustic Model Selection

The features of the acoustic signal which have proved most useful for the automatic recog-
nition of speech by machines are typically defined in the frequency, or transformed fre-
quency domains. Since recognition typically involves the comparison of spectral waveforms
to parametric spectral distributions (Section 1.2), a system such as that described in this
dissertation—which seeks to augment the performance of an existing recogniser—need not
synthesise a time-domain waveform at all, as demonstrated in Figure 4.1.

In this figure, the input speech to be recognised is first parameterised in the frequency
domain, then passed to an HMM-based recogniser such as HTK [176], which hypothesises a
number of possible transcriptions, as described in Section 8.2. Each of these transcriptions
is then used as input to the SPM, which re-synthesises parameterised speech vectors. These
vectors could then be converted into time-domain waveforms, but their primary purpose is
to allow a comparison to be made between the re-synthesised vectors for each hypothesised
transcription and those of the original speech. As detailed in Section 8.3, the transcriptions
are then re-ranked in order of the likelihood that they correspond to the input utterance,
according to a distance metric for comparing the parameterised vector sequences.

49
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Figure 4.1: Schematic diagram of re-synthesis algorithm: (i) An HMM-based recognition
system is used to generate a list of textual hypotheses corresponding to a parameterised
utterance (ii) Parameterised speech is re-synthesised from each transcription.

To facilitate the computation of such a distance metric, the SPM must produce not
only a prediction of the most likely spectral representation corresponding to a given tran-
scription, but also a confidence measure for the spectral values predicted at each frequency
and at each point in time. The desirable characteristics of an acoustic model in such a
system can therefore be defined as follows. It should:

e Take as input a description of articulatory movements, together with a time-aligned
transcription of the utterance.

e Produce as output a spectral representation of the utterance, either directly or by
first synthesising a time-domain waveform and applying an explicit transform.

e Predict not only the spectral vector sequence corresponding to the utterance, but
also the expected variability in these estimates.

e Automatically adapt its parameters to model data from new speakers.

As will be shown in the following sections, while explicit vocal tract models based on
human physiology are well suited to meeting the first two of these requirements, implicit
self-organising models may be preferable for meeting all four criteria simultaneously.

4.2.1 Acoustic Signal Parameterisations

Many different techniques have been developed for extracting features from digitally-
encoded speech waveforms, including time-domain features, linear predictive coefficients
and spectrally-derived representations [132]. The systems described in this dissertation
use the last of these three feature types'.

In the case of the self-organising production model, these features are directly synthe-
sised, while the HMM-based recognition system converts the acoustic signal into a spectral
representation by repeatedly applying a smooth windowing function to short sections of
the time-domain speech waveform, and computing the fast Fourier transform (FFT) of
the resulting values. This windowing function is chosen to have a maximum positive

!The possible use of alternative parameterisations is discussed in Section 9.5.2.
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value at its midpoint, and falls off smoothly to zero on either side, thereby mitigating
the edge effects which would otherwise be observed in the FFT of a short segment of
speech. The length of the window used defines the time and frequency resolutions of the
resulting spectral representation, since the signal is assumed to be spectrally stationary
within the windowed region. In the HTK system for example, a Hamming window of
around 25msec is typically used, and is stepped forward along the speech waveform by
intervals, or “frames”, of 10msec so that there is an overlap between successive windowing
functions [176].

The result is a set of FFT values every 10msec, each of which encodes a 25msec window
of the speech signal. The frequency range of the FFT is divided into a number of frequency
bins which are placed at logarithmically or Mel-spaced intervals to match the logarithmic
frequency discrimination in the human cochlea. The power spectrum values in each bin, or
“filterbank” , are then summed to yield a quantised spectral vector in which each coefficient
encodes the power in a particular frequency range during that segment of speech.

Additional transforms are often applied to these spectral vectors, the most common of
which is to take the logarithm of the power values in each frequency bin, to approximate
the non-linear sensitivity of the human auditory system to changes in signal intensity.
Energy normalisation can also be applied, either by subtracting the mean energy in each
vector from each of its coefficients, or else by computing the mean energy in each coefficient
over a large number of vectors and using these values for energy normalisation over time.

Finally, a popular technique has been to compute the “cepstrum” of the signal: the
inverse Fourier, or “cosine”, transform of the log filterbank energy coefficients. This
transform produces energy-normalised parameters, where the spectral information tends
to be concentrated in the lower coefficients, so that by discarding the higher-order values
(in effect a spectral “smoothing”), an efficient representation is obtained.

The HTK recogniser which generates hypothesis lists in the system described in this
dissertation uses a cepstral encoding of the speech signal as its acoustic representation. For
each speech frame, the current cepstral coefficients are computed, as are the differences
between successive cepstral vectors and the differences between the differenced vectors.
These “delta” and “acceleration” parameters are included as an attempt to model local
dynamics in the acoustic signal, as well as the inter-dependencies between successive speech
frames, as described in Section 1.2.2.

In the case of speech production systems, the computation of any of the representations
described above is a straightforward matter when using a model which synthesises a time-
domain acoustic signal, since the appropriate transforms can be applied explicitly to this
waveform. By contrast, the self-organising model described in this dissertation generates
parameterised speech vectors directly, and hence the choice of features must balance the
complexity of the representation against its ability to capture relevant aspects of the
acoustic signal.

While the cepstral representation used in the HTK recogniser provides an efficient
representation of spectral characteristics, log filterbank energy coefficients were chosen
as the parameterisation used in the production model, as the mapping from articulatory
positions to these coefficients is less complex, and yet an accurate description of the features
of the signal relevant for recognition is still possible.
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4.2.2 Explicit Vocal Tract Models

A discussion of the common vocal tract models described in the literature was given in
Section 2.3.4. The output of these models is either a frequency-domain or a time-domain
representation of the acoustic signal, which in the latter case must be converted to a
parameterised representation before use in a speech recognition framework, as described
in the preceding section.

The difficulties of using explicit vocal tract models for speech recognition are twofold.
Firstly, the parameters of the model must typically be tuned by hand in order to produce
a signal which closely matches the speech of a particular speaker. Not only do articulatory
movements vary from speaker to speaker, but the geometry and properties of the vocal
tract are also variable, and there is no simple way to automate the process of adjusting
these model parameters accordingly.

Secondly, a key feature of any recognition system is the ability to characterise vari-
ability in the speech signal. While an explicit vocal tract model might be able to accu-
rately produce an acceptable acoustic waveform corresponding to a particular utterance,
performing recognition requires the characterisation of all such acceptable acoustic re-
alisations. Thus it is essential to specify which regions of the synthesised spectrum are
relatively highly constrained or variable so that when computing spectral differences, er-
rors in areas of the spectrum which are known to be highly variable will be weighted less
heavily than errors in more tightly constrained regions?.

The detailed implementation of an explicit vocal tract model based on the Kelly-
Lochbaum system, which is used to generate a codebook of [articulatory vector, acoustic
vector] pairs is described in Appendix C. For the reasons described above however, an
implicit self-organising model of speech production has been implemented in this disserta-
tion for the re-synthesis of parameterised speech vectors within the framework of speech
recognition.

4.2.3 Self-Organising Models

By relaxing the constraint that the acoustic model should closely mimic the physiology
of the human vocal tract, it is possible to formulate self-organising models of speech
production which are automatically trainable, and able to characterise the variability in the
acoustic signal. This is achieved by formulating either a linear or a non-linear parametric
model of the mapping, along with an automatic procedure for optimising these parameters
and generating confidence intervals on the outputs. Depending upon the size of the model,
this learning procedure may require the use of more training data than would be needed
to hand-tune the parameters of an explicit vocal tract model.

The input to such a model is a specification of either articulatory positions or vocal
tract area functions, and the outputs produced are typically acoustic spectral vectors.
While vocal tract areas must be supplied at the inputs of explicit vocal tract models,
articulatory positions are directly used as the inputs to the SPM, since data describing
X-ray articulatory traces are more readily available (Chapter 5).

2This issue is discussed further in Section 8.3.1.
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When learning a mapping from these articulatory input parameters to an output spec-
tral representation, there are three sources of variability in the resulting acoustic signal:

e Uncertainty in the original input values specifying articulatory or vocal tract posi-
tions.

o Uncertainty in the optimum values of the model parameters.

e Inherent “noise” or random variations in the target acoustic vector outputs them-
selves.

The first of these is characterised at articulatory midpoints by the variance of the
conditional pdf for the articulator’s position given a curvature value, which was derived
in Section 3.4.2 as:

o = 0% (1—p2p) (4.1)

and which varies from zero in the case of fully correlated positional and curvature dis-
tributions, up to the original positional variance in the case of completely uncorrelated
distributions. The utility of this measure of input variability is limited by the fact that it
is defined only at articulatory midpoints.

An approximation to the acoustic variability arising from both the uncertainty in the
model parameters and the noise on the target values can be made by measuring the
performance of the system on a training data set3. Once the parameters of the system
have been optimised, the error variance for each of the model’s outputs can be measured
over the entire training set, and used as a confidence measure for the prediction of unseen
acoustic output vectors, as described in Section 4.4.1.

The disadvantage of using a self-organising model to learn this acoustic mapping is
that no use is made of explicit knowledge concerning wave propagation in the vocal tract.
Where this knowledge is incomplete or makes erroneous approximations or assumptions
however, self-organising models benefit by comparison with explicit techniques, through
their ability to automatically identify useful features of the input data set. An example of
a linear self-organising model is described in Section 4.3, and non-linear models employing
artificial neural networks are the subject of Section 4.4.

4.3 Linear Regression

Linear regression is the process of finding a (linear) approximation to a function relating
a dependent output variable y to one or more input variables x1,...,x,. This exact
function is approximated by a linear combination of the input variables along with an
error, or “disturbance”, u:

y=bo+bix1+- - +byzp+u (4.2)

3 Alternatively, an acoustic model incorporating explicit distributions on parameter values could be

used [11].
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where b, ..., b, are constants known as regression parameters. Using matrix notation
with n data points:

y=Xb+u (4.3)
where
Y1 1 11 - xlp b() (5%
Yn 1 Zpt -0 Znp by Un

A vector of regression coefficients b = [bg - -+ by]T is required, where []T denotes the

transpose of a vector or matrix, such that the estimated function values:

§=Xb (4.5)

minimise a cost function related to the error in the estimates. Many different linear
system implementations are possible [105], and in this case the model is optimised so as
to minimise the sum of the squares of the errors,

E=(§-y)(9-y) (4.6)

This expression is minimised [32] by solving the system of equations known as the

normal equations:

(XTX)b=XTy (4.7)

Provided that (X7 X) is non-singular, b can then be found as

b= (XTXx)1xTy (4.8)

A separate vector of regression coefficients is estimated for each output in a multi-
variable system, and in each case these values are obtained by evaluating Equation 4.8
over a set of training data points. The corresponding output error variances on the training
data can then be computed, and output values for unseen input data can be predicted by
using these coefficients in Equation 4.5.

The advantage of this linear predictor is that it is extremely simple to implement and
fast to train. By definition however, it cannot model the non-linearities in the mapping
from articulatory positions to acoustic vectors, and it may not be very robust to outliers
in articulatory space, particularly in the case of sparse data sets. Since the model works
by fitting hyperplanes to the training data points, test set points which lie beyond the
range of those points encountered during training will be mapped onto output vectors by
linear extrapolation along a direction which may have been ill-determined during training.
Thus in the case of sparse or noisy data sets, even in the absence of non-linearities in the
mapping, models such as these can result in large output errors.
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4.4 Artificial Neural Networks

The term artificial neural network (ANN) encompasses a broad range of engineering
models with the common feature that they make use of an interconnected network of
“nodes”. Each of these performs a simple computation based on its inputs, but together
they may comprise a complex non-linear mapping from the network’s inputs to its out-
puts [59, 60, 109, 146].

One of the driving forces behind the development of ANNs was the desire to build
models based on biological systems. The majority of network architectures currently in use
however, employ architectures and training mechanisms which are biologically implausible,
but have proven to be implementable and useful. While it can be shown theoretically that
a network of sufficient size is capable of learning any non-linear function of its inputs,
practical implementations require networks of finite size which can be trained in reasonable
time frames.

As is the case for many other statistical models—including HMMs—ANNs have the
desirable ability to automatically learn a mapping between a set of input variables and a
desired output representation. For HMMs, this output representation is a parametric one:
the model optimises the parameters of a set of Gaussian distributions which describe the
acoustic feature vectors. Some ANN models, such as radial basis function networks, are
similar to this in that they use pre-determined distributions to model decision regions in
classification tasks. The models described in this section however, make weaker assump-
tions about the nature of the mappings they approximate. While they do make implicit
assumptions regarding the complexity of this mapping through the selection of network
architectures, they do not use explicit parametric distributions at their outputs [113].

This lack of strong assumptions about the nature of the mapping being approximated
means that ANNs can be trained without the need for a priori application-specific knowl-
edge. In practice however, good performance on complex tasks is rarely achieved without
exploiting such knowledge (such as the use of a frequency-domain parameterisation of an
acoustic signal for example) and ANNs should be viewed as offering only a partial re-
placement of a priori parameter selection by adaptive learning procedures. The potential
benefit of this approach is that ANNs are able to automatically identify useful features
in the input space, and to find optimum combinations of these using a simple objective
function which does not place independence constraints on individual features.

Network architectures may have either a feed-forward (no recursive connections) or
a feedback (with recursive connections) structure. They are trained by the presentation
of input data together with the adjustment of a set of network parameters. These input
data may be either time-ordered or unordered, and in the majority of cases the network
is trained on a finite number of samples, then subsequently used with fixed parameter
values. The training itself may be unsupervised (fully self-organising networks), or super-
vised, in which case “target” output vectors are presented to the network during training.
Alternatively, reinforcement learning techniques can be used, in which a simple positive
or negative teaching signal is used.

Many different implementations of these architectures and training techniques are pos-
sible. A detailed review of the theory and use of ANNs in speech processing and other
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applications can be found in the literature [11, 23, 113, 141], and a brief discussion of
the use of ANNs to predict phoneme probabilities from acoustic vectors was given in
Section 1.2.3. This section presents a brief introduction to the multi-layer perceptrons
and modular network architectures which were used in the SPM to predict parameterised
acoustic vectors from articulatory representations.

4.4.1 Multi-Layer Perceptrons

Multi-layer perceptrons (MLPs) are one of the most popular forms of ANN, and have
been applied to a wide variety of classification and function approximation tasks. In this
section a brief introduction to MLP architectures and training techniques is provided,
before proposing a method for using them to predict parameterised speech vectors from
articulatory trajectories.

MLP Architectures

An MLP comprises several layers of interconnected perceptrons, or “nodes”, through which
a set of input values are propagated to obtain a corresponding set of output values. Fig-
ure 4.2 shows a typical configuration of a two-layer “feed-forward” network. Connec-
tions are only made between adjacent layers and signals are propagated uni-directionally
through them. In this example the adjacent layers have been fully inter-connected.

}

® - @ Qutput nodes

Hidden
nodes

® Network inputs

—> 0

Figure 4.2: Two-layer feed-forward MLP architecture, with fully inter-connected layers.

The middle, or “hidden”, layer provides an internal representation of the input space,
from which the output values are derived. When the network is used for classification,
this hidden space ideally represents a linearly-separable transformation of the input space.
When learning a continuous function of the inputs as is the case in the SPM, these hidden
units compute the moments of the input signals, for use in approximating the functions
at the network outputs.

The input to each node in the hidden and output layers is computed by adding a
constant “bias” value to a weighted sum of the outputs of the nodes in the previous layer,
where these weights are associated with the connections between pairs of nodes. The
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output signal y; of a hidden or output layer node j is computed from this input signal as
follows:

yj=7F <Z(wijyi) + bj) (4.9)
i
where y; is the activation of node 7 in the previous layer, b; is the bias for node j, and
w;; is the weight for the connection between nodes ¢ and j. The activation function F
applied to the outputs of the hidden layer nodes is usually chosen to be a differentiable
function, to permit gradient-based optimisation of the network. In addition, this function
typically takes the form of a thresholding non-linearity, a constraint which serves two useful
purposes. Firstly, it permits non-linear functions of the network inputs to be computed.
Secondly, the thresholding of the function’s output for very large positive or negative values
at its input means that the network mapping will be relatively insensitive to outliers in
the data set.

A popular choice of hidden layer activation function, and that employed in the networks
used in this dissertation, is the sigmoid function:

1

Pl =13 exp(—)

(4.10)

which approaches zero for large negative values of x and one for large positive x values—
referred to as the “saturation” regions of the curve. When the network is used for classi-
fication, a thresholding function such as this is typically also applied at the output layer
nodes. In the case of a “regression” or smooth function-approximating network however,
the activation function on the output nodes is just the identity function.

MLP Training

The supervised training of an MLP involves the adjustment of the network’s parameters
(weights and biases) to minimise the differences between the network’s outputs and a set
of target output vectors over a training data set.

The training data comprise a set of [input, output] vector pairs—in this case artic-
ulatory vectors and log spectral vectors respectively—which are repeatedly presented to
the network. The network’s parameters are initialised to small random values, and the
input vector values are then propagated forwards through the network, to obtain a set
of predicted network output values which can be compared with the supplied target vec-
tors. The error measure commonly used for this comparison in regression networks is the
summed squared error given by:

E:;;

where y, » and t, ; are the k' predicted and target coefficients respectively, for the n'

(Ynk — k)’ (4.11)

[NR

vector in the training set.

4If the target data distributions are Gaussians, the minimisation of this summed squared error criterion
corresponds to maximising the likelihood of the network model given the training data [11].
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Numerous techniques have been developed for optimising the weights and biases of
such a network so as to minimise this error measure. Each of these is based to some
extent on computing the partial derivatives of this error measure with respect to each
network parameter, and using these derivatives to propagate the error back through the
network to obtain updated parameter values (“back-propagation”).

One of the simplest optimisation techniques based on these error derivatives is gradient
descent, in which the parameters of the network are adjusted so as to move in parameter
space in the direction of the negative of the local gradient of the error surface. Variants
of this technique use different methods for computing the exact size and direction of the
parameter updates to obtain faster or more robust convergence, and descriptions of them
can be found in the literature [11, 59, 60].

The resilient back-propagation (RPROP) algorithm was used to train the networks
used in this dissertation, since it gives relatively fast convergence, yet is easy to imple-
ment. This algorithm is a form of error back-propagation in which a separate update step
size is maintained for each parameter in the network [25, 140]. For each input vector the
sensitivity of the network’s output error with respect to each of its parameters is deter-
mined by computing the partial derivatives of the error with respect to these parameters:

o ok
dw;;’ b,

where the error E' is as defined in Equation 4.11, and w;; and b; are network weight and

(4.12)

bias parameters respectively. These partial derivatives are then evaluated by using the
chain rule for differentiation, along with the expressions in Equations 4.9 and 4.10.
The weights in the network are then updated according to the rule:

o OF
(5’LUz'j = —|—A1’]’ if a?u—E” <0 (4'13>
0 otherwise

where the partial derivatives are summed over all vectors in the training set before up-

dating the network’s parameters®, and a similar expression applies for updating bj. The
parameter-specific update value Az(;) at iteration n is found from the corresponding update

value for the previous iteration according to:

nt A=) e oBCTD  ap™) >0

’i] 3’(1)-;J' 8’(1).;j
A = Al %—]D . %ET(? <0 (4.14)
A(T-L_l) otherwise

ij
where 0 < n~ < 1 < nT. The effect of these update equations is to increase the size of the
weight step when successive partial gradient evaluations have the same sign—since in this
case the direction of the local minimum is unchanged. The step size is decreased when the
gradient changes sign, since the last parameter update is then assumed to have resulted

5This is known as “off-line”, or “batch” training.
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in a jump over such a minimum. The algorithm has been found to converge rapidly
compared with simple gradient descent optimisation techniques [71], and its performance
is not particularly sensitive to the values of n~ and n*, which were empirically set to 0.5
and 1.2 respectively.

Cross-Validation

When optimising each network, cross-validation is used to prevent over-fitting to the train-
ing data®. The parameters of the network are iteratively updated to reduce the error ob-
tained over the training set, and the network’s performance on a separate cross-validation
set is monitored. The training procedure is terminated when optimum performance is
obtained on the cross-validation set, which usually occurs well before the optimum per-
formance on the training set would have been achieved.

This early-stopping procedure is intended to prevent the network from attempting to
fit any noise which is present on the training data. The goal of parameter optimisation is
to learn an approximation to the systematic function which is assumed to map the input
values to their corresponding outputs. Such an underlying function should be common to
the training and cross-validation sets, while the noise will differ between these two sets.
By training on one set and using a separate set to determine the stopping criterion, it is
hoped to obtain a set of network parameters which characterise the function but not the
noise.

Confidence Measures

Once a network has been optimised over a training data set, ideally it would be used not
only to obtain a prediction of the most probable output for an unseen input, but also some
confidence measure in this predicted value.

One simple way to compute an approximate confidence measure such as this is to assess
the accuracy of the network mapping on the training data’. Once the network has been
optimised, the biases on the network outputs will be close to zero over the training data
set, so an error variance on the k' output can be computed as:

a (tn,k - yn,k)2

Oerry, = Z W (415)
n=1

where N is the number of training data vectors, ¢, x is the target value for the k™ output

for vector n, and y, ; is the corresponding value predicted by the network. The result of

this process is a global error variance estimate for each network output, which can be used

as an approximation to the expected error variance for unseen test data when computing

spectral differences during recognition (Section 8.3.1).

5An alternative approach to avoiding over-fitting is to incorporate an additional term into the cost
function used during training, which explicitly penalises large network parameter values—a technique
known as regularisation. A detailed description of such algorithms can be found elsewhere [11, 99].

"Several alternative approaches to error estimation are also possible, such as the use of multiple networks
to gauge uncertainty [99] and the estimation of error bars from explicit distributions on the network
parameters [11].
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MLPs for Speech Synthesis

The use of MLPs for synthesising speech is uncommon compared with rule-based formant
synthesis and concatenative time-domain synthesis techniques. Sejnowski and Rosenberg
have described one such system which uses an MLP to predict the values of articula-
tory features which are successfully used to drive an articulatory synthesiser [154]. More
recently, Iso has described a model which uses an MLP to directly predict mel-spectral
speech coefficients from both the previous mel-spectral vectors and a linguistic control
command sequence [70]. Both the control command sequence and the parameters of the
MLP which predicts the acoustic vectors are learned from a training data set, and the
system is used to perform recognition of English spoken letters.

In the model described in this dissertation, MLPs are used to predict log spectral
acoustic coefficients directly from articulatory positions. Unlike Iso’s proposal, this system
does not provide contextual inputs to the MLPs, but predicts acoustic vector outputs from
the current articulatory input alone.

This simplification is made possible by the articulatory framework described in Chap-
ter 3, which models co-articulatory effects explicitly during the generation of articulatory
trajectories. The task of the networks is therefore reduced to the prediction of the acoustic
signal that would result from the specified articulatory configuration at any point in time
during the utterance.

4.4.2 Modular Networks

A problem commonly encountered when training ANN mappings is that of scalability:
performance on a particular task usually degrades significantly as the complexity of the
data being modelled increases. If the size of the network used is increased in order to pro-
vide a more powerful model, training the network’s parameters often becomes impractical
and, even where this is possible, performance usually does not improve in proportion to
the size of the network.

An alternative solution is to use a number of smaller networks, each of which models
a part of the overall problem; in this way each individual network can be kept to a
manageable size as it deals with a task of reduced complexity. In applications such as
phoneme classification for example, a hierarchical system which first separates speech
frames into voiced and unvoiced categories could be used as a simple basis for dividing the
input data into distinct subsets—each of which would then be used as input to a separate
classifier. The ease with which a modelling task can be decomposed in this way varies
greatly from problem to problem however, and even if a suitable subdivision is found it
does not automatically follow that the outputs from the component networks can easily
be recombined in a meaningful way.

One technique for achieving this is to use a hierarchical mixture of experts [72]. This
approach uses a number of individual “expert” networks to solve a set of sub-problems,
and provides a series of “gating” networks to recombine their outputs into an overall
system response. The choice of architecture (the number of expert and gating networks)
is usually made prior to commencing training, however the positioning of these networks
within the input space is not specified a priori, but is learned in conjunction with the
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training of the network parameters, using maximum likelihood estimation.

The task of synthesising parameterised acoustic vectors described in this chapter pro-
vides a natural basis for sub-dividing the input space without the need for such an implicit
data-driven technique. Since the acoustic vectors are synthesised from articulatory vector
sequences which correspond to time-aligned phonetic labels, the identities of these phone-
mes can be used as the basis for such a sub-division. Thus all the articulatory vectors
corresponding to the phoneme /aa/ in an utterance can be passed to a single ANN dedi-
cated to synthesising acoustic vectors for this phoneme, and similar networks can be used
for each of the other phonemes being modelled®. This approach has the advantages that:

e Each component network learns only a small subset of the mapping from articulatory
positions to acoustic vectors.

e Standard MLP architectures and training techniques can be used.

e Since the identities of the phonemes are known a priori, there is no need to provide
an explicit specification of the excitation sources associated with the articulatory
configurations.

The importance of this last item can be seen by considering the differences between
voiced and unvoiced fricative pairs such as /z/ and /s/. Since the positions of the ar-
ticulators are identical during the production of these two sounds, a network which was
trained to predict acoustic vectors from articulatory positions for both of these phonemes
would require an additional input to indicate whether voicing was present or not. By using
a separate network for the data from each phoneme this problem is avoided.

The acoustic vector outputs produced by the various networks can then be concate-
nated in the correct order to produce a vector sequence corresponding to the entire utter-
ance. Alternatively, the overall number of parameters in the system could be reduced by
combining the data sets for phonemes with very similar acoustic realisations but differing
articulations, and training individual networks on the data from these groups of phonemes.
This strategy would also be of benefit where there is insufficient data for a particularly
uncommon phoneme, for which it would otherwise be difficult to reliably train an MLP

mapping.

This concludes the descriptions of the articulatory and acoustic models used in the
SPM. In the following chapters, the databases to which these models were applied are
described, and the articulatory-acoustic modelling results and recognition performances
obtained are presented and analysed.

8This corresponds to a mixtures-of-experts approach in which the gating networks are replaced by a
hard sub-division of the input space, so that acoustic vectors are synthesised by switching between the
appropriate phoneme-specific MLLP “experts”.



Chapter 5

X-ray Data: University of
Wisconsin

5.1 Introduction

To train a self-organising speech production model, a data set comprising articulatory po-
sitional traces along with synchronously recorded speech waveforms is required. Although
articulatory data such as these have been available for many years, until recently only
very small amounts of data have been available for any one speaker [66, 124], and previous
corpora typically provided data for only two or three speakers. The system described in
this dissertation seeks to learn a statistical description of the behaviour of an individual’s
articulators in all of the various contexts encountered during speech production. As a
result, it is important to have as much phonetically diverse speech material available as
possible.

Recently, Westbury and his team have used the X-ray microbeam (XRMB) facility' at
the University of Wisconsin (UW) to assemble a comparatively large speech production
database, which not only includes recordings from many different speakers, but also a
relatively lengthy and varied speech task inventory [171]. This chapter provides a brief
description of the UW XRMB database in its “raw” format, and describes the techniques
used to process this data in order to align the articulatory and acoustic waveforms with
their phonetic transcriptions. The resulting data set can then be used to train the articu-
latory and acoustic models described in Chapters 3 and 4, to yield a model of the speaker’s
production mechanism suitable for use in automatic speech recognition, as described in
Chapters 7 and 8.

5.2 Corpus Description

The UW XRMB database contains articulatory positional traces along with synchronously
recorded speech waveforms for 57 speakers of American English, comprising 32 females
and 25 males. Detailed information regarding the age, sex, height, weight and dental state

' A discussion of this and other techniques for the acquisition of articulatory data during speech pro-
duction was presented in Section 2.3.2.
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of each speaker is provided, along with their educational history, non-English language
training, place of birth, dialect base and place of residence.
During data acquisition, a total of four signal types were recorded:

e Acoustic pressure wave.
e Neck wall vibrations.
e Horizontal and vertical positions of eight gold pellets in the vocal tract.

e Frontal and lateral video images.

For the purposes of this dissertation only the acoustic and articulatory information
sources are of interest. The corpus contains both read speech and (nominally) silent oral
motor tasks, and an approximate breakdown by recording time for each task type is given
in Table 5.1.

Sentences: 40%
Citation words and sound sequences: 33%
Prose passages: 13%
Oral motor tasks: 8%

Counting and sequences of number names: 6%

Table 5.1: Breakdown of UW XRMB corpus.

The total recording time was approximately 19min per speaker, and of this only
~ 17min were used, by excluding the oral motor tasks and non-word sound sequences.
Approximately three quarters of the data in each of the remaining speech tasks was used
for training the system (=~ 5000 phonemes per speaker), with the remainder reserved as
speaker-dependent test sets. Although nominal word-level transcriptions were provided
for each task, a considerable amount of pre-processing of the waveforms and transcriptions
was required before a phonetic alignment could be produced.

5.2.1 Speaker Sample

The raw data described in this chapter were drawn from a pre-release compact disk con-
taining a subset of the UW XRMB corpus. This permitted the evaluation of the SPM on
data from six speakers, comprising three females and three males.

A subset of the speaker details taken from the UW handbook [171] for these six speakers
is listed in Table 5.2. The subjects are of similar ages, and all except jw45 have a dialect
based in Wisconsin.

5.2.2 Acoustic Data

The speech signal was recorded in the XRMB facility at a sampling period of 46us
(= 21739Hz) by using a directional microphone in the presence of machine noise. A
fixed recording period was used for each task, which occasionally resulted in truncated
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Speaker Sex Dialect Base Age
jwl6 F Kiel, Wisconsin 20
jw27 F Blair, Wisconsin 20
jw29 F  Milwaukee, Wisconsin 20
jwl8 M Hudson, Wisconsin 19
jw24 M  Jefferson, Wisconsin 19
jw4b M Mishawaka, Indiana 21

Table 5.2: University of Wisconsin subject details.

recordings for slower speakers®. In addition, a short tone was played at the start of each
task, and background comments such as “good” and “rep” were present at the end of
many utterances?.

A notch filter was applied to this raw acoustic signal to remove background noise at
5435Hz, and the resulting signal was down-sampled to 16kHz. The 16kHz speech was
then parameterised into 12-dimensional Mel-frequency cepstral coefficients (MFCCs) and
24-dimensional Mel-frequency log spectral coefficients using HTK [176]. In both cases a
Hamming window of length 25ms was applied to the acoustic signal before computing
the Fourier transform, and a step size of 10ms was used between adjacent parameterised
speech frames, as described in Section 4.2.1. The result of each of these parameterisations
was a sequence of spectral vectors—one every 10ms—corresponding to the acoustic signal.
Since the first vector cannot be computed until 25ms of speech is available, the first frame
will be centred at 12.5ms, and subsequent frames at 22.5ms, 32.5ms, etc.

The two separate parameterisations were used for recognition and re-synthesis respec-
tively. Since good recognition and phonetic alignment performance have been achieved
using MFCC parameters in HTK-based systems [174], the MFCC vector sequences are
used to provide the alignments of the training data to the corresponding transcriptions,
and to produce transcription hypotheses and alignments for the test data sets. This also
allows existing MFCC-based phonetic HMMs to be used as a starting point for training
speaker-dependent models, as discussed in Section 5.4.1.

When re-synthesising a parameterised acoustic representation from a hypothesised
transcription, log spectral vectors are used instead of MFCCs for the reasons outlined
in Section 4.2.1. In this case 24 coefficients are used in each acoustic vector to provide
a relatively detailed spectral representation of the signal, as opposed to the 12 MFCCs
used when performing recognition, which provide a more complex but efficient encoding
of spectral information.

2This problem is discussed in further detail in Section 5.3.1.
3A description of the techniques used to model these “spurious” sounds is given in Section 5.4.1.

“The details of this alignment process are presented in Section 5.4.
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5.2.3 Articulatory Data

Articulatory positions in the UW system are determined by using a narrow X-ray beam
to track the movements of gold pellets glued to the tongue, jaw and lips of a subject who
reads from the set corpus. Three reference pellets were attached to the subject’s head, and
eight articulatory pellets were tracked relative to these, with the subject’s head viewed in
profile by the apparatus. Two of the reference pellets were placed on the bridge of the
subject’s nose, and the third on the maxillary (upper) incisors. The tracking pellet names
and their physical positions are summarised in Table 5.3.

Upper lip: UL
Lower lip: LL
Ventral tongue: T1
Mid-tongue: T2, T3
Dorsal tongue: T4
Mandibular incisor: MI
Mandibular molar: MM

Table 5.3: Locations and names of X-ray tracking pellets.

The four tongue pellets T1 to T4 are approximately equally spaced along the centre
of the tongue from the tip (7'1) to the back (74 ), and the labial pellets are placed at the
midline of the upper and lower lips. The mandibular pellets are attached to the teeth at
the front (MI) and back (MM) of the jaw.

The x and y positions of each pellet were tracked relative to the three reference pellets
attached to the subject’s head, in order to remove any motion due to displacement of the
head during recording. The pellet movements were recorded at sample rates which varied
according to the relative accelerations of the articulators, from a minimum of 40samples/s
for those on the jaw and upper lip, to a maximum of 160samples/s for the tip of the tongue.
These trajectories were then interpolated and re-sampled at a uniform sampling period of
6.866ms (~146Hz) before inclusion in the XRMB database.

Due to limitations imposed by the experimental set-up, the XRMB system occasionally

mis-tracks pellets during recording, due to the loss of a pellet trace®

, or as a result of
confusion between two pellet traces which pass close to one another. Tracking may be lost
for a brief period or throughout an utterance, and each tracking error usually affects only
one or two articulatory pellets. These tracking errors have been identified and marked
by hand by Westbury’s team, so that the corresponding points can be excluded from the
positional sampling algorithm.

For the speaker jw29, tracking errors were sufficiently frequent in the mandibular molar
pellet (parameters MMz and MMy) that articulatory statistics for these two variables could
not be obtained, and hence the models for this speaker contain only the first 14 articulatory
parameters. As discussed in Section 7.2.1 however, the value of the articulatory variable

MMz does not discriminate well between phonetic identities, and MMy is highly correlated

5For example, a pellet may be lost by moving into the vicinity of a metallic dental filling which masks
the characteristic pattern of the pellet usually seen by the detector.
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with My, due to the placement of both the MM and MI pellets on the rigid mandible. As
a result, it is anticipated that the loss of the MM pellet may not have a significant adverse
effect on the performance of the production model for this speaker.

The pellet trajectories were re-interpolated (excluding mis-tracked points) and re-
sampled at intervals of 10ms starting from 12.5ms, to give values corresponding to the
centres of the parameterised speech frames described in Section 5.2.2.

5.3 Phonetic Transcriptions

Nominal word-level transcriptions are provided for each of the speech tasks in the XRMB
database. In order to perform a phoneme-level alignment to permit positional sampling
at the midpoints of phonemes however, a transcription at the phonetic level is required.

This is achieved by defining a suitable phoneme set, and constructing a phonetic dic-
tionary which can be used to translate word-level transcriptions into their corresponding
phonetic transcriptions, as described in the following sections.

5.3.1 Word-Level Transcriptions

Although the subjects were reading from a fixed corpus during signal acquisition, they oc-
casionally deviated from the text supplied. In addition, due to the use of a fixed recording
interval for each of the tasks, the utterances for slower speakers were frequently truncated.

As a result it was necessary to hand-edit the word-level transcriptions to ensure cor-
respondence with the recorded acoustic signal. In some cases this simply involved the
correction of mis-read words or the deletion of utterance-final words; where a recording
was terminated during the production of a word however, the acoustic file itself was edited
to remove the signal corresponding to the resulting word fragment.

5.3.2 Phoneme and Phone Sets

The Defense Advanced Research Projects Agency (DARPA) Resource Management (RM)
corpus phoneme set defined by Lee [93] was used as the basis for the phoneme-level tran-
scriptions in the system, and is listed® in Table 5.4.

The “closure” phonemes in this table occur only word-finally, and represent pronun-
ciations of words where a word-final stop is not released. This set of 47 phonemes is not
exhaustive’, but serves as a useful approximation to the discriminatory sounds of English.

In order to accurately characterise articulatory movements, a phone-level rather than
a phoneme-level description of utterances is required. Phonemes such as /b/ for example,
require a combination of two very different articulatory gestures: the closure of the lips
and their subsequent release. If articulatory positions are to be characterised by sampling
trajectories at pre-determined positions, the acoustic signal must therefore be segmented
into the minimal acoustically self-consistent units, or phones. While most of the phonemes

5The phonetic categories used in this table are only broadly indicative of the natures of the various

sounds. More detailed descriptions of phonetic features can be found in introductory phonetics texts, such
as [117].

"For example, there is no phoneme in this set representing the glottal stop at the start of “utmost”.



CHAPTER 5. X-RAY DATA: UNIVERSITY OF WISCONSIN 67

Vowels and Diphthongs
Very front vowels: /ih/, /iy/ Back diphthongs: /aw/, /ow/, /oy/
Near front vowels: /ae/, /eh/, /ix/ Near back vowels: /aa/, /ah/
/ax/, /er/, /uh/

Front diphthongs: /ey/, /ay/ Very back vowels: /ao/, /uw/

Liquids and Nasals
Liquids: /1/,/x/, /w/, /y/  Nasals: /m/, /n/, /en/, /ng/

Fricatives
Strong fricatives:  /dh/, /jh/, Weak fricatives: /ch/, /£/, /hh/,
/ts/, Iv/, /z/ /s/, /sh/, /th/

Stops and Closures
Unvoiced stops: /x/, /p/, /t/ Closures: /dd/, /xd/, /pd/, /td/
Voiced stops: /v/, /d/, /ax/, /g/

Table 5.4: Resource Management corpus phoneme set.

in Table 5.4 already satisfy this criterion, modifications are required to the segmental units
for stops, diphthongs and the strong fricative /ts/. This fricative is very similar to a stop
in that it requires a closure and subsequent release, but differs in that the burst in this
case is aspirated. For the purposes of defining phone sets and for ease of notation, it will
be included with the unvoiced stops in the following discussions.

To derive such a phone set, the stops (including /ts/) and diphthongs are therefore
sub-divided into two component phones, such that the diphthongs are composed of initial
and final voiced segments, and the stops comprise a closure followed by a release, as shown
in Table 5.5.

Diphthongs
Front initials: /ey.1/, /ay.1/ Back initials: /aw.1/, /ow.1/, /oy.1/
Front finals: /ey.2/, /ay.2/ Back finals: /aw.2/, /ow.2/, /oy.2/
Stops

Unvoiced closures: /k.1/, /p.1/, Voiced closures: /b.1/,/d4.1/,

/t.1/, /ts.1/ /dx.1/, /g.1/
Unvoiced releases: /k.2/, /p-2/, Voiced releases: /b.2/,/d4.2/,

/t.2/, /ts.2/ /dx.2/, /g.2/

Table 5.5: Diphthong and stop phone sets.

This modified phone set removes the need for the separate closure phonemes in Ta-

ble 5.4, which can now be replaced by the initial closure phones of stops, without their

associated releases. After the deletion of these phonemes a set of 56 phonemes remains®

8For ease of description, the term “phoneme” will be employed in this dissertation for collectively
referring to these phonetic units, and “phone” will be used only when specifically referring to the sounds
listed in Table 5.5.
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which are used to characterise articulatory positions® 1.

5.3.3 Dictionary Construction

A phonetic dictionary comprises a list of all the words in the vocabulary of a given corpus,
along with one or more phonetic pronunciations per word, and is used to convert word-level
transcriptions to phonetic transcriptions. The UW corpus has a vocabulary of 440 words,
for which a dictionary of phoneme-level pronunciations was constructed using the RM
corpus phoneme set in Table 5.4, excluding closure phonemes. The subsequent conversion
to phone-level transcriptions using the phones in Table 5.5 is not performed until the
acoustic waveforms are aligned to their transcriptions, as described in Section 5.4.

The advantage of this technique is that it is not necessary to maintain separate pro-
nunciation entries in the dictionary for words ending in stops, according to whether the
word-final stop is released or not. For example, two dictionary entries would previously
have been required using the RM phoneme set for the word “hit”, representing the alterna-
tive pronunciations /hh ih t/ and /hh ih td/. Now only the former entry is required,
and according to the particular acoustic realisation encountered during alignment the
phoneme /t/ can be replaced with either the closure /t.1/ or the closure and release
/t.1t.2/.

The dictionary was constructed using entries taken directly from the RM corpus dic-
tionary wherever possible. Pronunciations for words in the UW corpus which did not
appear in the RM dictionary were derived by “translating” entries from the much larger
LIMSI-ICST Wall Street Journal dictionary to RM phoneme-set pronunciations. Multi-
ple pronunciations of many words were provided, where these alternative forms usually
resulted from the reduction of vowels to the neutral schwa /ax/, such as the reduction
of /dh iy/ to /dh ax/ in “the”. Selection between these alternative pronunciations is
automatically performed during the alignment process.

5.4 Generation of Alignments

The phone-level alignment of the acoustic waveforms in the training set to their word-
level transcriptions involves both the selection of the most suitable pronunciation for each
word from the alternatives provided in the phonetic dictionary, and the determination
of the most probable locations for the corresponding phonetic boundaries. In this case
the alignments were automatically determined using HTK, and in this section both the
choice of the HMMs used to perform this alignment and the alignment process itself are
described.

9 Although the flap /dx/ is assumed here to comprise a closure and subsequent release which are acous-
tically dissimilar, in practice this phoneme is articulated as a fricative, and the data for the phones /dx.1/
and /dx.2/ are recombined when training the acoustic models on the UW data, as described in Sec-
tion 7.3.1.

Examples of each of these sounds as they appear in English words, along with their corresponding
International Phonetic Association (IPA) symbols, are given in Appendix A.
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5.4.1 Model Set

To construct a set of HMMs which model the speaker-dependent acoustic data in the UW
corpus, the following characteristics must be specified:

e The number of models to be used and the lexical tokens which they represent.

e The composition of these models in terms of a discrete set of “states”.

The number of parametric output distributions to be associated with each of these
states.

The set of features to be modelled by these distributions.

The process of model building can be accelerated by using an existing model set as a
starting point and re-estimating the parameters of these models on the new data. This
approach was adopted here by modifying a set of models which had originally been trained
on the speaker-independent portion of the Resource Management (RM) corpus!!. In
this section the selection of a suitable initial RM model set is described, along with the
techniques subsequently used to re-estimate its parameters on the speaker-dependent UW
data.

Model Type and Number of Parameters

The choice of the number and type of HMMs to be used is constrained by the relatively
small amount of data available in the UW corpus. Since the parameters of the initial RM
models are to be re-estimated using the UW data, the total number of parameters used
must be relatively small. In practice, this constraint prevents the use of triphone HMMs,
and a set of multiple-mixture monophone models was used instead.

The use of monophone models is expected to yield a less accurate model of acoustic
variations due to the phonetic context than would a triphone system trained on a larger
data set. It is hoped however, that by using 5 Gaussian distributions to model the acoustic
observations in each state of the monophone models, some of the variations due to the
phonetic context will be characterised. This will be achieved if different Gaussian mixtures
are used to model the acoustic observations according to the phonetic contexts in which
the monophone model appears.

Feature Set

A total of 39 acoustic features were modelled by the Gaussian distributions in each HMM
state. The first 13 of these comprised 12 MFCC values along with a normalised log
energy coefficient, computed from the windowed acoustic segment being modelled. In
addition, 13 parameters representing the differences between successive MFCC vectors are

" These models were chosen since the RM corpus phoneme set listed in Table 5.4 also forms the basis
for the UW model set. A more detailed description of the RM corpus itself can be found in Chapter 6.
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provided (“delta” parameters), as are the differences between successive delta parameters

(“acceleration” parameters)'?

Model Composition

As discussed in Section 5.3.2, the phone set used to transcribe the UW data is obtained
from the RM phoneme set listed in Table 5.4 by deleting the closure phonemes /dd/, /kd/,
/pd/ and /td/, and sub-dividing the stop and diphthong phonemes into their component
phones. Since the speaker-independent monophone RM HMMs used as an initial model
set correspond to the phonemes listed in Table 5.4, these models must first be modified
to permit the phones in Table 5.5 to be identified during the alignment process. This is
achieved by an approximation which involves a simple modification to the original RM
models.

Each HMM in the original RM set contains three “emitting” states'®. If the three-state
HMMs for stops and diphthongs are replaced with two-state models and the HMMs are
then re-trained, the acoustic output vector distributions of these two states are observed
to model the initial and final voiced sections of diphthongs, and the closure and release
sections of stops respectively. By retaining information regarding the alignments of these
individual HMM states during the alignment process, the approximate locations of the
phone-level boundaries within stop and diphthong phonemes can be deduced.

Since the release of each of the stops except /ts/ is optional, the HMM state sequences
for these stops are also modified to allow transitions from the initial closure state straight
through to the first state of the following phoneme, thus optionally by-passing the state
modelling the release of the stop'*. In the models for diphthongs and /ts/ however, each
of the two component states must be used to model at least one frame of acoustic data.

Background Models

As described in Section 5.2.2, a tone is played at the start of the recording of each ut-
terance, and background comments such as “good” and “rep” are present at the end of
many utterances, which would interfere with this alignment process. Separate three-state
monophone HMMs corresponding to this tone and to each of the two most common back-
ground comments were therefore optimised, using parameterised speech vectors extracted
from examples of each sound which were identified by hand. While the tone waveform is
spectrally static and therefore well represented by a single HMM, the use of a single model
for the background words “good” and “rep” is a simple approximation which is used to
ensure that non-silent frames following the end of an utterance are not considered part of
the utterance’s transcription.

12The use of these latter 26 parameters represents an attempt to model the short-term acoustic context,
as described in Section 1.2.2.

13 Emitting states are those states in the model which have acoustic output distributions associated with
them, as opposed to the “entry” and “exit” states which are used to link successive HMMs together.

14 This model for stops is similar to one proposed by Lee [93].
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Model Optimisation

The initial speaker-independent 5-mixture monophone RM model set was modified as
described above, to provide two-state models for stops and diphthongs. The parameters of
these models were re-estimated on the speaker-independent RM data, and combined with
the 5-mixture monophone models for the background tone, and “good” /“rep” comments.
The resulting models were then used to perform an initial alignment of the UW acoustic
data to the corresponding hand-edited transcriptions.

This alignment was subsequently used as the basis for training a set of speaker-
dependent 5-mixture monophone models on the UW data. In this case however, the
initial model set comprised the 5 mixture background models together with single mixture
speaker-independent monophone RM models, with the usual two-state stop and diphthong
representations. While it would be simpler to start with 5-mixture speaker-independent
RM models and simply re-estimate their parameters using the initial alignment described
above, improved results are obtained by starting with a single-mixture model set, and
then increasing the number of mixtures during the re-estimation process.

Accordingly, 5-mixture background models and single-mixture RM models were ini-
tially used, and training consisted of alternately re-aligning the data and re-training the

1

models with an increasing number of mixtures'®, until a set of 5 mixture speaker-dependent

HMDMs optimised on the UW corpus were obtained.

5.4.2 Alignments

The speaker-dependent UW models were used with the word-level transcriptions and the
phonetic dictionary to determine the optimum state-level alignments of the UW data
using HTK. The word-level transcriptions include the specification of a mandatory tone
at the start of each utterance, and optional trailing background comments. The state-level
information is used to distinguish between the component phones of stops and diphthongs,
but is disregarded in the case of other phonemes.

An example alignment of the spectrogram for the phrase “put these two” spoken by
jw18 is shown in Figure 5.1. The phonetic transcription is listed above the utterance, and
the log energy at each frequency and time is proportional to the darkness of the plot.

The stop burst for the first occurrence of /t/ at =~ 0.3s has been omitted by the
speaker, although the characteristic high-frequency noise pattern for /t.2/ can be seen in
the second example of /t/ at 0.7s.

While the alignments are generally quite good, errors are made for some phonemes
such as /dh/ at =~ 0.4s and /z/ at = 0.6s in this example, each of which has a longer
marked duration than is actually the case. The consequences of alignment errors such
as these when generating synthetic spectral vectors for performing speech recognition are
discussed further in Section 8.3.2.

'50nly the number of mixtures in the RM models was increased at each stage, as the 5-mixture back-
ground models had already been optimised on the UW data.
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Figure 5.1: Phonetic alignment of the spectrogram for the phrase “put these two” for the

speaker jw18. Automatically-generated boundaries between phonemes are indicated by
solid vertical lines.
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Chapter 6

Synthetic Data: Resource
Management

6.1 Introduction

While articulatory databases such as that described in the preceding chapter are extremely
useful for developing models of articulatory movements, in general such data are not
available and acoustic training data alone must be used. One solution to this problem
is to extract a set of statistics from an X-ray articulatory data set which are averaged
over many speakers, and which therefore represent a speaker-independent description of
articulation, which can be used to infer approximate articulatory movements for new
speakers (Sections 7.2.1 and 7.4).

An alternative approach which has been used by many researchers for obtaining an
articulatory representation, is to infer articulatory movements and/or vocal tract shapes
directly from the acoustic signal (Section 2.2.2). This chapter describes the implementation
of such a system, which uses an explicit vocal tract model to construct a codebook of
[articulatory vector, acoustic vector| pairs, and which employs dynamic programming to
predict articulatory trajectories given an acoustic vector sequence.

Many different approaches to vocal tract simulation have been described in the litera-
ture (Section 2.3.4), most of which require the specification of a vocal tract cavity shape.
Since an articulatory representation is ultimately required to train the production model
described in Chapters 3 and 4 however, an initial specification in terms of a set of ar-
ticulatory variables is employed in this case. These are used to predict a corresponding
vocal tract shape, through which the appropriate excitation signals are propagated. The
components of the vocal tract model are therefore as follows:

o A set of articulatory parameters which are able to adequately describe the range of
vocal tract shapes observed during the production of speech.

e A mapping from these articulatory parameters to the corresponding vocal tract
shapes.

e Suitable excitation sources for the production of both voiced and unvoiced phonemes.
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e A model for simulating the propagation of these excitation signal(s) through the
specified vocal tract cavity.

Since the goal of implementing such a system is to provide data from which to train
a self-organising production model, and not the detailed study of vocal tract simulation
techniques, each of these components was implemented by adapting systems or sub-systems
previously described in the literature. Section 6.2 describes the input acoustic data taken
from the Resource Management database, along with the techniques used to train a set
of HMMs on this data and automatically align the waveforms at the sub-phonemic level.
The detailed implementation of the vocal tract model used to generate acoustic waveforms
from a specification of vocal tract cavity shapes and excitation sources is developed in
Appendix C.

Section 6.3 subsequently describes the construction of the codebook using this model,
starting from a set of 7 synthetic articulatory parameters from which vocal tract cavity
shapes are explicitly derived. Finally, Section 6.4 presents the dynamic programming
algorithm used to infer synthetic articulatory trajectories from acoustic vector sequences
using this codebook.

6.2 Model Set and Alignments

The acoustic data were taken from the speaker-dependent portion of the Defence Advanced
Research Projects Agency! (DARPA) Resource Management corpus. Data from one male
and one female speaker were used, whose backgrounds are detailed in Table 6.1.

Speaker Sex  Dialect  Age

dasl F  Northern 27
tab0 M  Western 26

Table 6.1: Resource Management subject details.

The training and test sets for each speaker comprise 600 and 100 sentences respec-
tively, drawn from a vocabulary of 991 words. The acoustic waveforms were recorded at
a sampling frequency of 16kHz, and were parameterised into both 12-dimensional MFCC
vectors and 24-dimensional log Mel-frequency log spectral vectors in an analogous man-
ner to the parameterisation of the University of Wisconsin (UW) data set described in
Section 5.2.2.

Model Set

The aim of training a set of HMMs on this data—as was the case for the UW dataset—
is to achieve the best possible acoustic modelling accuracy against which to assess the
performance of the SPM. The availability of a larger training data set in the RM cor-
pus enables a set of single mixture triphone models to be used here, in place of the

!Now known as the Advanced Research Projects Agency.
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5-mixture monophone models described in Section 5.4.1. Following the HTK Version 2.0
RM toolkit recipe [176], a set of single mixture monophone HMMs were trained on the
speaker-independent portion of the RM training data; these basic models were then cloned
to form a set of single-mixture cross-word triphones. The phoneme set used as the basis
for these HMMSs was not the standard RM phoneme set, but was the same as that used
for the UW data, as described in Section 5.3.2 and Appendix A.

The result of this process is a very large set of triphone models, the parameters of
which cannot be reliably estimated due to a lack of sufficient training data. By applying
the technique of state clustering however, in which each of the states assigned to any
given cluster share a common output distribution, it is possible to avoid this problem
while making efficient use of the parameters of the system. A decision tree-based clustering
technique was used [118, 177], in which all triphone contexts are initially grouped together,
and are then split into smaller clusters on the basis of questions regarding the phonetic
context. The cluster splits are selected such that the likelihood of the training data is
maximised, while ensuring that sufficient training examples are available to train each
clustered set. This technique has the additional advantage of enabling the use of cross-
word triphones, since models for previously unseen triphones can be synthesised using the
same tree-based categorisation process.

The parameters of these speaker-independent RM cross-word tree-clustered triphones
were then separately re-estimated on the 600 speaker-dependent training sentences for each
of the two speakers dasl and tab0. This yielded a set of speaker-dependent models suitable
for use in aligning the training data and recognising the test data at the sub-phonemic
level. In each case 39-dimensional MFCC vectors incorporating normalised log energy,
delta and acceleration parameters were used as described in Section 5.4.1, and a total of
5654 physical triphone models—representing 87077 logical models—were trained for each
speaker. These models were used to perform a forced state-level Viterbi alignment of the
training data to the supplied transcriptions, in an analogous manner to that used for the
UW data set?.

6.3 Articulatory-Acoustic Codebook Construction

In this section, a set of synthetic articulatory parameters are presented which are used to
generate oral and pharyngeal tract cavity shapes®. Once these shapes have been specified,
along with the size of the opening at the velum and the presence or absence of voiced
and/or fricated excitation, the vocal tract model described in Appendix C is used to
generate the corresponding acoustic waveforms. By sampling the space of the articulatory
parameters to generate a range of possible tract shapes to which different combinations of
excitation signals are applied, a codebook of [articulatory vector, acoustic vector| pairs is
constructed. This codebook can then be used to infer the approximate input articulatory
configurations which would produce a given acoustic output.

2In this instance however, it was assumed that the correct transcriptions had been supplied and that
the recordings were free of extraneous sounds.

3These two will collectively be referred to as the “oral” tract in this section for brevity.
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Finally, dynamic programming is used to find the optimum paths through articulatory
parameter space corresponding to acoustic vector sequences, using a cost function which
incorporates both the acoustic and articulatory (or “geometric”) errors. In this way a set
of synthetic articulatory trajectories can be obtained for an arbitrary speaker from the
acoustic signal alone, circumventing the need for X-ray data.

6.3.1 Synthetic Articulators

The articulatory model used is a modified version of that originally described by Meyer
et al. [108]. Their vocal tract model consists of an oral tract whose cross-sectional area
varies with time and with distance from the glottis, and a nasal tract with fixed cross-
sectional shape which is coupled to the oral tract at a point approximately 7cm from the
glottis.

The shape of the oral tract is defined by a set of articulatory variables, which are iden-
tified by parameterising area functions corresponding to X-ray images of the articulation
of vowels and consonants. In all, four parameters are used to control tongue shape, two
lip control variables are provided, and one parameter governs the size of the opening at
the velum (the coupling point of the oral and nasal tracts).

The first two articulatory parameters control the tongue body shape, and are found
by taking the eigenvalue decomposition of the X-ray area functions, and extracting the
first two eigenvectors. The resulting tongue body areas are then given by:

Apody = R+ a1V1 + a2V (6.1)

where Aypoqy is the piecewise constant area function approximating the cavity shape,
computed by adding a linear combination of the first two eigenvectors V1 and V5 to the
mean vocal tract shape, R. Each of these vectors comprises nine segments corresponding
to the cross-sectional areas of the vocal tract between the glottis and the lips, as shown
in Figure 6.1. The weights a; and ay are the first two articulatory parameters, and are
interpreted by the authors as controlling front-back and up-down movements of the tongue
body respectively.

Two further tongue control parameters, as and a4, are then used to model vertical
and horizontal movements of the tongue tip. This is achieved by computing a separate
nine-segment function Ay, to be added to Ayoqy, which takes values close to zero near
the glottis, but which defines constrictions of varying place and degree near the lips*:

—2a 1
Aiip(n; o, 8) = 3G-3) P T 1 (6.2)

fin) = exp{y(n—=p0)}+~v(n—-p)—-1, forn=1,...,9 (6.3)
a 0.8(as + 2.6) (6.4)
B = 0.03a4+8.595 (6.5)
v = §6—-1 (6.6)

40n page 525 of Meyer et al. [108], Equation 6.5 is incorrectly given as 3 = 0.03a4, and the caption in
Figure 2 on the same page should read: “Top: as = —2.5, bottom: a4 = 2.5.”
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Figure 6.1: Piecewise constant vocal tract area functions from the lips (1) to the glottis
(9) representing (a) Mean, or “neutral” vocal tract areas (b) First eigenvector (¢) Second
eigenvector.

A tenth area segment corresponding to the size of the lip opening is directly controlled
by a fifth parameter, a5, and in the original model lip protrusion and the opening at the
velum are controlled by two further variables, ag and a7;. The authors used a fixed vocal
tract length of 17.5¢m, comprising these ten area segments each of which had a uniform
cross-sectional area and a length of 1.75¢m. This simplified model was chosen for its ease
of implementation, but it suffers from the following disadvantages:

1. The fixed tract length means that the parameter ag—which nominally controls lip
protrusion—must actually be used to define an additional impedance at the lips to
simulate the effects of such a protrusion, which is not permitted by the model.

2. The use of only ten fixed cross-sectional area segments to approximate the smoothly-
varying area function of the human vocal cavity limits the ability of the model
to produce waveforms with the desired spectral resolution, as the length of these
segments determines the bandwidth of the signal produced®.

These difficulties are alleviated by decreasing the length of the fixed cross-sectional area
segments, and modifying the original model to permit a variable number of segments in the
oral tract. In this approach, the parameter ag is now used to represent this overall tract
length, rather than the lip protrusion in particular®. The seven articulatory parameters

5The relationship between segment length and signal bandwidth is described in Section C.4.1.

5These two quantities are closely related, since much of the variability in oral tract length is accounted
for by lip protrusion and retraction. Other factors which influence the length include the horizontal
extension of the jaw and the vertical displacement of the vocal cords.
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used and their approximate interpretations are summarised in Table 6.2.

Parameter Interpretation
a1 Front-back tongue body movement
as Vertical tongue body movement
as Vertical tongue tip movement
a4 Front-back tongue tip movement
as Lip opening
ag Oral tract length
ar Velum opening

Table 6.2: Synthetic articulatory parameters and their interpretations.

6.3.2 Generation of Vocal Tract Area Functions

Equations 6.1 to 6.6 were used to generate nine-segment oral tract area functions (ex-
cluding lip area), using 12 different quantised values for each of the parameters a; to as.
Since many parameter combinations lead to unrealistic tract shapes, area functions with a
minimum area less than 0.01¢m? or a maximum area greater than 20cm? were discarded.
The maximum area requirement imposes physical limits on the cavity size, while the use
of a minimum area greater than zero was chosen to exclude stop phoneme closures and
nasals. This latter restriction was imposed as stop phoneme closures are not included in
the codebook (Section 6.4.2), and the effects of the closed oral cavity are neglected during
the synthesis of nasal waveforms.

The result was a set of 6321 oral tract shapes, which were then quantised to remove area
functions which were extremely similar to one another’, using a logarithmic quantisation
similar to that described by Fant [43]. Taking k as the index of the quantised values Q,
then:

Qr = ko(e¥—1), fork=1,...,N (6.7)
]- Amax

= — 1 1 .

A N og( ko + ) (6.8)

where Apmax is the maximum permissible area in ¢m?, N is the total number of quantisation
steps, and the constant kg controls the shape of the curve, which is chosen to match Fant’s
data. The values of these parameters were:

Apax = 16cm? (6.9)

"Other authors, when constructing codebooks such as that described in this section, have initially re-
tained all the area functions produced in this way, and then generated the corresponding acoustic vectors
before applying a quantisation in the frequency domain [151]. Since quite different articulatory configura-
tions can result in very similar acoustic outputs however (Section 6.4.1), a quantisation in the articulatory
domain, which takes into account the non-linear relationship between articulatory positions and acoustic
output is preferred.
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N = 64 (6.10)
ke = 05 (6.11)

The resulting logarithmic quantisation curve is shown in Figure 6.2. For each quantised
articulatory shape vector g;, if there are m; synthesised articulatory shape vectors which
are closer (in the logarithmic domain) to g; than to any other quantised vector g;, only
that synthesised articulatory vector which is closest to g, is retained.

g o
e 9

S
Q

N
o

Quantisedwsample index
o

'_\
o

=2

5 10 5 15
Cross-sectional area, cm

Figure 6.2: Logarithmic quantisation curve for area function data.

The non-linear quantisation used reflects the fact that changes in oral tract areas will
have a greater effect on the resulting acoustics when the absolute size of the area concerned
is small. For example, during the production of the fricatives /s/ and /sh/, only a slight
difference in tongue tip position at the point of maximum constriction (and hence minimum
oral tract area) leads to sufficient spectral distortion to ensure discrimination between the
two sounds. Where the area function is relatively large during the production of these
sounds, eg. in the mid and back-tongue sections, considerable variation in articulatory
positioning is possible without greatly affecting the spectral characteristics of the output.

Approximately half of the oral tract shapes were removed by this quantisation process,
leaving 3309 distinct area vectors. To each of these a quantised set of lip opening values
was added, representing a tenth oral tract segment as in Meyer’s system. The logarithmic
quantisation scale defined in Equations 6.7 and 6.8 was used once again, but in this case
the number of distinct quantisation values, N, was set to 12 and the first two resulting
values were discarded to enforce a lower bound on lip area of ~0.7¢m?, with a maximum of
16¢m? as before. A smaller number of quantisation values was used at the lips than for the
computation of the other areas, since most lip area values lead to valid oral tract shapes,
and larger values of N lead to the generation of excessive numbers of oral tract shapes.
Lip area values were considered plausible if they fell within 10c¢m? of the penultimate area
function value, giving a total of 27651 basic shapes.

To implement a variable oral tract length, the resulting 10-dimensional vectors were
interpolated and re-sampled twice in the logarithmic domain, to yield sets of 15 and 16-
dimensional oral tract area function vectors respectively. As described in Section C.4.1,
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the length of each re-sampled segment was taken to be ~1.1¢m, so that the corresponding
oral tract lengths were = 16.4cm and 17.5¢m respectively, giving rise to 55302 distinct
oral tract shapes.

Voiced and unvoiced fricatives were generated from those oral tract shapes which
contained a constriction of less than 0.3cm? situated between the second section following
the glottis and the penultimate section before the lips—a restriction that reduced the
number of distinct oral tract shapes for fricatives to 15942. Finally, vocal tract shapes for
nasals were defined by neglecting the oral branch of the tract, and connecting the nasal
tract area function® at the end of the pharyngeal branch, approximately 8cm from the
glottis. These two branches were connected via an additional tube segment representing
the opening at the velum, the area of which took each of the quantised values 1, 3, and
5cm?. Since there were 5042 different pharyngeal tube shapes, this gave a total of 15126
tract shapes for nasal sounds.

6.3.3 Codebook Construction

Using the vocal tract model described in Appendix C, acoustic waveforms for each of the
vocal tract shapes in Section 6.3.2 were computed, for input excitation signals 21 pitch
periods in length. In each case, the resulting waveforms were parameterised® into 12-
dimensional Mel-frequency cepstral coefficients (MFCCs), using a Hamming window of

length 25msec and a step size of 10msec between frames'©.

This parameterisation was
chosen as it yields a compact representation of the speech spectrum, and hence provides a
smaller search space for the dynamic programming algorithm described in Section 6.4.2.

The final breakdown of the articulatory-acoustic codebook is given in Table 6.3.

Sound type No. of vectors
Non-fricated voiced sounds 55302
Voiced fricatives and bursts 15924
Unvoiced fricatives and bursts 15924
Nasal sounds 15126
Total 102276

Table 6.3: Breakdown of vectors in articulatory-acoustic codebook.

6.4 Articulatory-Acoustic Mapping Inversion

The inversion of a mapping from either articulatory parameters or vocal tract area func-
tions to acoustic vectors is a frequently-encountered problem in speech research. In this

8The area function of the nasal tract is illustrated in Figure C.4 in Section C.4.2.
9A more detailed description of this parameterisation process can be found in Section 4.2.1.

10 A pitch-synchronous encoding of the acoustic waveform could be obtained instead, by setting the step
size to 1/ Fy where Fy is the pitch period of the voiced excitation. This has very little effect on the resulting
MFCCs however, provided the number of pitch periods synthesised, Np>> 3.
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section, a brief review of existing inversion techniques is provided!'b 2.

The dynamic
programming approach taken in this dissertation is then described, and an example of a

synthetic articulatory trajectory generated in this way is presented.

6.4.1 Inversion Techniques

One of the central difficulties with any “inverse” mapping—one which takes acoustic vec-
tors at its inputs and predicts the values of the corresponding articulatory parameters
at its outputs—is the fact that quite different articulatory configurations can give rise to
very similar acoustic outputs [4, 94]. This implies that attempts to model the inverse
transformation using acoustic error alone [3, 61, 86, 122] are likely to produce discontinu-
ous articulatory trajectories. A continuity constraint should therefore be applied to such
trajectories, which may be implicit as in inverse filtering techniques [114, 115, 169], or
explicitly imposed via a restriction to critically damped second order transitions [155] or
the minimisation of geometrical distances [151, 157, 178].

In addition, the non-linearity of the inverse mapping, when combined with its non-
uniqueness, can result in non-convex target regions in articulatory space [53, 73], as illus-
trated in Figure 6.3.
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Figure 6.3: Hypothetical many-to-one non-linear mapping F(), illustrating the potential
drawback of using an averaging technique in the inverse mapping F~1(). If each point in
Y corresponds to many points distributed throughout X, then an inverse mapping F~ ()
which averages these points may yield an inverse image X’ which bears no resemblance to
the original region X.

In this figure, the region X is mapped by the non-linear many-to-one function F() onto
the region Y = F(X). An inverse mapping F () is then hypothesised, which maps Y back
into X-space, where each point in Y maps to a series of points with distributed locations
in X. Then if F~!() performs an averaging function on the images of the points from Y in

"'Many inverse mappings have been developed explicitly for the purpose of performing speech recogni-

tion, and these were discussed in Section 2.2.2 [37, 122, 134, 136, 137, 138, 155, 178].

12A more detailed description of the various techniques which have been proposed in this area can be
found in the review articles by Strube [162] and Schroeter and Sondhi [151].
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X-space, the inverse image X’ =F~!(Y) may bear no resemblance to the original region
X, as shown.

Thus gradient-based algorithms which average over a number of training vectors,
whether a single neural network [3, 122, 178], Jacobian computation [74] or unconstrained
optimisation [94], may converge to an average which does not lie within the target class,
resulting in an incorrect inverse model. This problem can be avoided either by subdividing
the input space into regions in which the non-linear mapping is unique [133], or by jointly
optimising a [forward, inverse] model pair to restrict the inverse model to a particular
solution [52, 123].

6.4.2 Dynamic Programming

The inversion technique implemented in this dissertation is similar to that proposed by
Schroeter and Sondhi [150, 151], and employs a dynamic programming (DP) algorithm
to compute the optimum articulatory trajectory corresponding to a given acoustic vector
sequence using a cost function which incorporates both acoustic and articulatory, or “ge-
ometric”, error terms. Since the DP algorithm is well described in the literature'?, only a
very brief outline of the technique is provided here.

DP algorithm

Suppose that an acoustic vector sequence is provided, which is to be decoded in terms of a
corresponding sequence of articulatory vectors. At each point during the decoding process
a set of best “paths” are maintained, where a path comprises the sequence of indices which
identify those codebook vectors which have resulted in the best match to the partial input
acoustic sequence seen thus far.

In the general case N, such paths must be maintained at any given time, where N, is
the number of vectors in the codebook, since a separate path is stored for the best index
sequence currently culminating in each distinct codebook vector. Although some of these
partial paths will have relatively high errors associated with them, in the optimum search
strategy they are all retained since a path with a high intermediate error may eventually
develop into the best solution.

At each stage of the DP algorithm, the next input acoustic vector is compared with
each of the acoustic vectors in the codebook. In addition, the corresponding articulatory
codebook vectors are compared with the final articulatory vectors in each of the active
paths. Each path is then extended by one step, and the weighted sum of these two
errors is added to the previous total path errors. Whenever two paths meet at the same
“node” (where a node represents a codebook vector pair) the path with the higher cost is
discarded, since it can never represent the optimum solution. This process continues until
the final acoustic vector has been processed, at which time the best path can be traced
back from the final frame to the first.

13For a description of the dynamic programming algorithm as applied to speech recognition, see for
example Holmes [63].



CHAPTER 6. SYNTHETIC DATA: RESOURCE MANAGEMENT 83

Implementation

In practical implementations using large codebooks such as that described in Section 6.3,
it is usually necessary to reduce the computational load by relaxing the constraint that all
possible paths be maintained. One technique for achieving this is to use a “beam” search,
in which paths whose intermediate error exceeds that of the current best path by a certain
amount are discarded, on the basis that an intermediate path with extremely high error
is very unlikely to develop into the optimum solution.

An alternative sub-optimal technique is to consider only the C' codebook entries yield-
ing the best acoustic match to the incoming vector when determining the succeeding
vectors for each of the currently active paths. This approach was adopted here, where C
was set to 500. In addition, the speed of the algorithm was greatly enhanced by restricting
the codebook search according to the four broad sound categories (excluding silence) listed
in Table 6.3. As an example, when an input acoustic vector was identified by automatic
alignment as a voiced fricative, only the best 500 codebook pairs from the 15924 voiced
fricative entries were considered in the algorithm.

Since suitable articulatory positions corresponding to periods of silence in the input
cannot be determined using codebook lookup alone, the DP algorithm was applied only to
the contiguous non-silent sections of the input speech, and articulatory parameter values
in the intervening silence periods were determined by linear interpolation'®.

The cost function, E, used was a weighted sum of the acoustic and articulatory errors,
given by:

E=K %(M)2+K %(MY (6.12)
T i=1 Im ’ i=1 Ta '

where m is an MFCC vector of dimension V,,, a is an articulatory parameter vector of
dimension N, and K,, and K, are the weighting constants for the acoustic and geometric
errors respectively. Each term in the cost function was scaled by its global mean and
standard deviation (pm,, pe and o, o, respectively) computed over all of the vectors in
the codebook, so that the error computation was not dominated by contributions from
parameters with large absolute values. Ideally, optimum values of the ratio K,,: K, could
be determined according to the identity of the acoustic vector being considered at each
step. In this case a fixed value was used however, which was empirically set to 0.2.

The use of codebook look-up in the algorithm guarantees that a particular inverse
solution to the articulatory-acoustic mapping is chosen at each point in time, and the use of
geometric constraints in the DP search ensures that articulatory continuity is maintained,
thus satisfying the requirements set out in Section 6.4.1.

'Since the purpose of performing the codebook inversion is to obtain a set of synthetic articulatory
trajectories which can be sampled at points corresponding to the midpoints of phonemes, any inaccuracies
in the positions of the articulators during periods of silence will not be significant.
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Synthetic Articulatory Trajectories

The MFCC vectors corresponding to the 600 training sentences for each speaker were used
as inputs to the DP algorithm, which was used to decode articulatory trajectories for the
first 5 articulatory parameters in Table 6.2, which control the positions of the tongue and
lips.

The parameter ag, which controls the length of the oral tract, was excluded from the
inversion process since its value is binary, merely indicating whether the tract contained
15 or 16 equal length segments. As a result, generating a sequence of values for ag corre-
sponding to an acoustic input file, and sampling the resulting trajectories at the midpoints
of phonemes as described in Section 3.2.2 would not lead to readily interpretable results.
The exclusion of this parameter is unlikely to have a significant impact on the performance
of the production model however, as the acoustic mapping used is phoneme-specific. Since
a separate mapping from articulatory to acoustic space is provided for each phoneme, the
synthesis of spectral values for phonemes which require a lengthening of the oral tract will
automatically take this effect into account, as a longer tract will implicitly be specified for
all the articulatory data for these phonemes!®.

Similarly, the parameter a;—which controls the size of the opening in the velum—is
also excluded from the inversion algorithm. While the value of this parameter at the mid-
points of phonemes can be sampled and interpreted as a continuous variable, these values
will be non-zero only for the phonemes /en/, /m/, /n/ and /ng/, since the nasalisation of
vowels or fricatives is not permitted by the model. As a result, the co-articulation model
described in Chapter 3 will be unable to predict suitable variations in the value of this
parameter during the production of nasals, and as in the case of ag the specification of a
mean value is superfluous if this value is constant over all examples of these phonemes.

An example of a decoded articulatory trajectory corresponding to movements in the
articulatory parameter a4 for the phrase “the constellations” for the speaker tab0 is shown
in Figure 6.4. In this figure, phonetic boundaries taken from the HTK-produced label file
(Section 6.2) are marked as dotted vertical lines, and the phonetic labels are derived from
the DARPA-supplied word-level transcription of the utterance.

'5This ignores any contextual effects whereby the amount of oral tract lengthening may be a function
of the neighbouring phonemes. Degrees of partial lengthening such as this cannot be specified in the vocal
tract model however, the length of which is quantised to two distinct values.
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Figure 6.4: Synthetic articulatory trajectory for a4 during the phrase “the constellations”
for the speaker tab0. The automatically-generated boundaries between phonemes are
indicated by dotted vertical lines.



Chapter 7

Production Model Evaluation

7.1 Introduction

This chapter presents an evaluation of the performance of the self-organising production
model when applied to data from both the University of Wisconsin and Resource Man-
agement corpora. Sections 7.2 and 7.3 provide an analysis of the performance of the
articulatory and acoustic models developed in Chapters 3 and 4 respectively, as applied
to the University of Wisconsin database. In Section 7.2, the utility of the articulatory
sampling technique and associated co-articulation model are assessed by comparing the
predicted synthetic articulatory trajectories with the corresponding X-ray traces. In ad-
dition, a method for obtaining a set of speaker-independent articulatory statistics is pre-
sented, which is used as an alternative technique for synthesising articulatory trajectories
for the acoustic data from the Resource Management corpus.

Section 7.3 describes the detailed implementation of the artificial neural network-based
acoustic model of Chapter 4, and presents the results of using both this model and linear
regression to predict normalised log spectral vector sequences from both synthetic and
X-ray articulatory trajectories. Finally, in Section 7.4, the performances of both the
articulatory and acoustic models when trained on data from the Resource Management
corpus are assessed. A technique for re-estimating the synthetic articulatory statistics
resulting from the codebook inversion algorithm of Section 6.4 is presented, and results are
described for the use of both this re-estimated articulatory set and the speaker-independent
X-ray articulatory data as a basis for synthesising acoustic vector sequences.

7.2 Articulatory Model: UW Data

In this section the results of using the articulatory positional sampling technique described
in Section 3.2.2 are presented, and the relative discriminatory usefulness of the resulting
statistics are examined for each of the 16 articulatory parameters. In addition to obtaining
statistics describing articulatory movements for each of the six speakers studied, a set of
“speaker-independent” statistics are computed from the data for all six speakers.

The validity of the use of Gaussian parametric models to represent both positional and
curvature variations is subsequently assessed using the Kolmogorov-Smirnov statistic. The
utility of the curvature measure in the prediction of articulatory positional variations at

86
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the midpoints of phonemes is then examined, in terms of the correlations observed between
these two variables. Finally, the accuracy of the articulatory trajectories synthesised both
with and without the explicit co-articulation model is evaluated by comparing them with
the corresponding X-ray articulatory traces.

7.2.1 Articulatory Positional Variations

As described in Section 5.2, approximately three quarters of the data from each speaker
were used as a training set to optimise the parameters of the system, and the remainder
were retained as an independent test set for evaluating the models.

The result of the positional sampling algorithm is a set of values describing articulatory
positions at the midpoints of phonemes for each articulator and each phoneme. Both x
and y values are sampled for each of the eight articulatory pellets to yield 16 sampled
articulatory variables', where both the absolute magnitude of the variation observed and
the discriminatory usefulness of this variation vary greatly from articulator to articulator.

Articulatory Ranges

The greatest range of movement is seen in the z, or horizontal position of the tongue
tip, which has a maximum range of movement of ~ 3c¢m, as compared with horizontal
movements in the incisors of the lower jaw which exhibit the least displacement, at only
~ 3mm. In general terms, the tongue variables and those describing vertical motion in
the jaw and lower lip vary more widely than do those describing horizontal lip and jaw
movements, as shown in Figure 7.1 for the speaker jwl8.
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Figure 7.1: Bar graph showing approximate maximum ranges of articulatory movement
for the speaker jwl8.

Except in the case of speaker jw29, for whom only 14 articulatory parameters could reliably be esti-
mated, as discussed in Section 5.2.3.
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Inter-Articulator Correlations

Although the model of articulatory movement treats the 16 articulatory parameters in-
dependently (Section 3.2.3), the positions of many of the articulators are actually highly
correlated. Table 7.1 lists the inter-articulator correlation coefficients computed from the
X-ray articulatory vectors corresponding to all of the phonemes in the training and test
sets for jwl8, excluding silences.

ULx ULy LLx LLy Tix Tily T2x T2y T3x T3y T4x T4y MIx MIy MMz
ULy .61
LLx 41 -.09
LLy .05 -.14 .47
Tiz -.27 -.06 -.30 -.17
T1y .24 .24 .08 .38 -.36
T2 -.22 .00 -.36 -.16 .95 -.26
T2y 0 .16 -.02 -.03 -.08 .46 -.04
T8z -.20 .04 -.37 -.15 .86 -.10 .94 -.04
T3y -.03 .11 -.20 -19 .40 -.03 .48 .68 .41
Tjx -.15 .08 -.33 -.14 .7 .24 .62 .36 .74 .33
T}y -01 .09 -14 -12 .45 -.12 .54 .38 .48 .88 .13
MIzx .15 .03 .55 .32 .03 .00 .01 -.03 .02 -.07 .06 -.06
My .22 .20 .27 .80 -05 .51 .02 .08 .03 -.03 .02 .03 .16
MMz -08 .00 .24 .18 .04 -.02 .01 -01 .06 -.06 .15 -.07 .43 .05
MMy .28 .14 .27 .70 -.09 .47 .00 .05 .01 -.05 -.03 .02 .13 .86 -.03

Table 7.1: Inter-articulator correlation coefficients, computed from X-ray articulatory po-
sitional vectors (excluding silence) in the training and test set files for jw18. Correlations
with magnitudes of 0.2 or more are shown in bold.

Several trends can be observed in these correlation data. As expected, the horizontal
tongue parameters T1z to T4z are highly (positively) correlated with one another, as are
the corresponding vertical parameters T1y to T4y, although in the latter case the increased
flexibility of the tongue tip in the vertical direction means that T'1y is correlated only with
T2y, and not with either of the posterior tongue height parameters. In addition, extension
of the tongue tends to accompany a raising of the tongue dorsum (eg. during /1/), as
evidenced by the positive correlations between each of T3y and T4y, and the parameters
T1z, T2x and T3z.

The pellets MI and MM are strongly correlated in both the x and y directions due to
being fixed to the rigid mandible, and in addition the height of the jaw (MIy and MMy)
is correlated with the heights of the lower lip (LLy) and tongue tip (T1y). Similarly, the
horizontal position of the lower incisors, Mz, is strongly correlated with that of the lower
lip, LLz, as the lip is attached to the jaw near this point. In terms of the lip parameters
themselves, the x and y positions of each of the upper and lower lips (UL and LL) are
positively inter-correlated (each lip is elevated when extended), and their corresponding
horizontal positions ULz and LLz are also positively correlated (both lips are usually
extended together, eg. during /w/). Finally, these horizontal lip positions are negatively
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correlated with the horizontal position of the tongue (7T1z to T4z), so that extension of
the lips tends to coincide with retraction of the tongue (eg. during /u/).

The existence of these correlations indicates that alternative articulatory parameter
sets could be derived from the X-ray data which might provide more efficient articulatory
representations. Transformations of parameter space could also potentially provide a more
natural framework for modelling compensatory articulations, in which movement in one
articulator (eg. jaw height) compensates for inaccuracy in the position of a second artic-
ulator (eg. tongue height). Finally, modelling the movements of articulatory structures
along axes other than the fixed horizontal and vertical directions used in this study should

lead to a more accurate model of co-articulatory behaviour?.

Discriminatory Usefulness

The degree to which an articulator’s position is likely to discriminate between two different
sounds varies greatly, with the articulators exhibiting the greatest range of movement also
proving the most discriminatory. For example, the range of horizontal movement observed
at the back of the jaw, MMz, is almost identical across all phonemes, with similar mean

positions and a standard deviation of ~ 1.2mm being observed in each case?

. In fact, a
value of 3.15mm for MMz in the data for speaker jw18 falls within one standard deviation
of the mean MMz position for every phoneme sampled, and hence the discriminatory
power of this variable is extremely low?.

By contrast, both the mean and standard deviation of the vertical positional samples
for the tongue tip vary greatly from phoneme to phoneme, so that this articulatory vari-
able is extremely useful for discriminating between phonetic identities. This is as expected,
since the position of the tongue tip has a very strong influence on the shape—and hence
the acoustic properties—of the vocal tract, as compared with the slight extension and re-
traction of the jaw. These differences in discriminatory ability are illustrated in Figure 7.2,
which plots two standard deviations for each articulatory variable for the speaker jwl8.

The first of these is the mean standard deviation for the variable concerned, measured
at the midpoints of each phoneme p:

where N, is the total number of phonemes, and o), is the standard deviation of the artic-
ulator’s positional samples at the midpoint of the phoneme p. The standard deviation of
the distribution of the mean values of each variable at these midpoints is then computed
as:

2The potential for future research in this area is discussed in Section 9.5.1.

3 Although on average, the jaw extends slightly further during /ch/, /£/ and /sh/, and retracts slightly
for /ey.1/ and /ey.2/.

4Hence it is expected that the absence of this articulatory parameter for jw29 may not have a significant
adverse effect on the performance of the model for this speaker.
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Figure 7.2: Bar graph showing comparisons of standard deviations of mean articulatory
positions o, (unshaded) against average articulatory positional standard deviations o,
(shaded), as measured at the midpoints of phonemes for the speaker jw18.
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where p, is the mean value of the articulator’s positional samples at the midpoint of
phoneme p, and y is the mean of the IV, mean positions:

1
w= Fp z_: Hp (7.3)
p=1

Relatively large values of o, (unshaded) indicate that the mean position of the artic-
ulator varies significantly from phoneme to phoneme. When the value of oy, (shaded) is
less than o, as is the case for the tongue parameters, the articulator’s positions are also
relatively tightly constrained during the production of each individual phoneme, compared
with the variations in mean position observed between different phonemes. This in turn
means that on average, the positions of these articulators are relatively highly specified,
and hence discriminatory between phonemes.

Where 04, is relatively large compared with o, however, the position of the articu-
latory variable concerned is less likely to be strongly correlated with the identity of the
phoneme, as is the case for MMz as previously described. From Figure 7.2, the articu-
latory trajectories corresponding to the tongue, lower lip, ULy and MIy parameters are
expected to be of greater relevance (on average) to the computation of acoustic outputs
than those corresponding to the remaining parameters.

Speaker-Independent Statistics

Although a central goal of this dissertation is the development of a set of speaker-dependent
models of speech production from X-ray articulatory data, the ability to extend the tech-
nique to speakers for whom such data are not available is highly desirable, as discussed
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in Chapter 6. One approach to providing synthetic articulatory data for such speakers, is
to develop a set of speaker-independent statistics from the available X-ray data, and use
these as a set of bootstrap parameters from which to train models for the new speakers.

This can be achieved by combining all of the articulatory data from each of the six
UW speakers® sampled at the midpoints of each phoneme p. Since the geometry of each
speaker’s vocal apparatus is variable, as is the exact placement of the reference pellets on
the subject’s head during recording (Section 5.2.3), the articulatory samples taken from
each speaker must be normalised before they can be meaningfully combined in this way.

Each articulatory parameter value a was therefore scaled by its mean pu, and standard
deviation o4, computed over the entire data set for the speaker concerned:

a— Ha
Oa

Since different speakers may use significantly different articulatory strategies during

speech production, this scaling procedure does not guarantee that the combined articula-

tory statistics describe plausible articulations. Some measure of confidence in the resulting

values can be gained however, by comparing the scaled parameter distributions for the

various speakers. Figure 7.3 shows a comparison of the means and standard deviations of

the normalised positions of the articulatory parameter 72y, during production of the first
seven phonemes® by the six speakers in the UW database’.
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Figure 7.3: Plot showing normalised mean and standard deviation statistics for the artic-
ulatory parameter T2y during production of the first seven phonemes.

As can be seen from the figure, there is reasonably good agreement between the nor-
malised parameters across the six speakers for this articulator and phoneme subset. While

5With the exception of the articulatory parameters MMz and MMy, for which the data from the 5
speakers excluding jw29 were combined.

5Strictly speaking the results are shown for the first six phonemes, where one of these is composed of
two distinct phones.

"Only a small fraction of the total number of these statistics is shown, since in all there are 5264 such
means and standard deviations, which far exceeds what can practically be represented.
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the more detailed study of possible differences in the articulations used by various speak-
ers is a topic of great interest, such a study lies outside the scope of this dissertation. It
is therefore assumed here that the normalised data set combination technique described
above can be applied to the data for each phoneme and articulator as a first approximation
to a speaker-independent articulatory model.

7.2.2 Parametric Positional and Curvature Models

Given a set of positional statistics, the corresponding articulatory trajectory curvatures
at the midpoints of the phonemes are estimated as described in Section 3.4.1. The distri-
butions of both positional and curvature values are then modelled using a single Gaussian
distribution for each [articulator, phoneme]| pair, thus characterising the range of variation
seen in each case by just two parameters, namely the mean and variance of the Gaussian
concerned.

The quality of the match between the probability density function of the sampled
data and that of the corresponding parametric model can be assessed using a variety of
statistical tests. The Kolmogorov-Smirnov, or K-S, test was employed here [158], which
predicts the probability that the observed data could have been drawn from a hypothesised
distribution, by measuring the maximum absolute difference D between the cumulative
distribution function of the data, Cp(z) and that of the hypothesised model, Cps(z):

D= max |Cp(zr)—Cu(z)] (7.5)

—oo<zr<0oo
Since the distribution of this statistic can be computed for multiple random data
sets drawn from the same distribution, the significance of an observed value of D can
be computed by comparing it with this distribution of D values for like data sets. The
probability that a measured value of D is less than that which would be obtained from a

random data set generated by the hypothesised model, Dy, is then approximately given
by:

oo
P(D <Dy) =23 (-1)"" exp(—2k?[D (0.12 + VN + 0.11/VN)]?) (7.6)
k=1
where N is the number of data points. High values of P indicate a high probability that
the data could have been drawn from the hypothesised distribution.

This expression was computed for each of the positional and curvature distributions
of the 16 articulatory variables® during the production of each of the 56 phonemes, to
give a set of 1792 K-S probabilities per speaker. The resulting percentage proportions of
positional and curvature statistics which have greater than 90%, 50% and 10% probability
respectively of being drawn from single Gaussian distributions are given in Table 7.2.
Statistics corresponding to the speaker-independent data are also provided, for the speaker
jwAvg?. In general terms, the positional variables have a much better fit to Gaussian
distributions than do the curvature measures, and although relatively few distributions

814 variables in the case of jw29.

90r “Joe Average”.
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have greater than 90% probability of having been drawn from single Gaussians, a minority
have extremely poor fits.

Positional models (%) with ~ Curvature models (%) with

probabilities greater than: probabilities greater than:
Speaker 90% 50% 10% 90% 50% 10%
jwl6é 17 56 87 3 18 52
w27 17 59 89 2 17 52
w29 17 52 89 2 20 56
jwl8 19 56 86 2 17 54
w24 17 56 88 3 18 55
jwéb 19 56 84 4 18 53
JwAvg 8 36 68 0 2 11

Table 7.2: Percentage proportions of articulatory positional and curvature distributions
with greater than 90%, 50% and 10% probability respectively of being drawn from a single
Gaussian distribution.

By plotting histograms for the articulatory distributions which yielded poor matches,
it was observed that these were typically either caused by skews on the distributions,
or distribution tails which fell away at non-Gaussian rates. Example plots showing the
positional sample values, as well as the computation of the K-S probability from cumulative
distributions, and comparisons of the corresponding Gaussian and histogram shapes are
given in Figures 7.4 and 7.5 for two articulatory positional distributions for the speaker
jwl8.

Figure 7.4 shows the positional distribution for My during the phoneme /s/, in which
the fit to a Gaussian model is relatively good. Figure 7.5 shows the distribution of ULy
for /s/, which yields a very low K-S probability due to the very different shapes of the two
tails of the histogram above and below the median position, where a “harder” positional
limit is imposed in the positive direction. As discussed in Section 3.2.3, skews such as
this are due to both the limited variety of contexts available in the UW data, and to the
physiological limitations imposed on articulatory positions in the vocal tract.

Since all six speakers were reading from the same text during data acquisition and
used similar articulatory strategies, these difficulties are not reduced when the data are
combined in the speaker-independent case. In fact, since the number of points in each
distribution is now much larger, the skews observed on the data are considered less likely
to have been produced by random effects, and hence the K-S probabilities for jwAvg are
significantly lower than those for the individual speakers.

Finally, for some data sets poor fits to Gaussian distributions may result indirectly from
errors in the automatic alignment of the training data by HTK and/or mis-tracked pellet
samples which were not identified in the database. Errors such as these will typically lead
to outliers in the articulatory positional sample distributions for the phoneme concerned,
which are poorly modelled by the single Gaussian assumption. In these cases however,
a poor fit to the articulatory data is desirable in order to exclude erroneous data points
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Figure 7.4: Plots of (a) Positional samples (b) Comparison of data histogram with Gaus-
sian distribution and (c¢) Kolmogorov-Smirnov probability computation from the cumu-
lative distribution functions of the data and the hypothesised Gaussian model, for the
positional distribution of MIy during production of /s/ by jw18.
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sian distribution and (c¢) Kolmogorov-Smirnov probability computation from the cumu-
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positional distribution of ULy during production of /s/ by jwl18.
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from the statistical models!®.

7.2.3 Correlation Coefficients

Correlation coefficients for pairs of curvature and positional statistics were computed as
described in Section 3.4.2. Before using these to predict the positional variations at the
midpoints of phonemes from the curvature estimates however, their statistical significance
was first assessed, since relatively small data set sizes were available for the less frequent
phonemes.

Significance Testing

Student’s T-test [87] can be used to compute the significance of a correlation coefficient
p computed over N data points from two Gaussian distributions. The constant ¢y is first
computed as:

N -2
1—p?

to=p (7.7)

Then to test the hypothesis p = 0 against the possibilities that p > 0 or p < 0 at
the significance level a (eg. a=0.05 at the 5% significance level), Student’s cumulative
T-distribution with NV — 2 degrees of freedom is used to compute the probability P of
Student’s T variable taking a value less than or equal to ty. Significance at the level «
requires:

P(T<t) 2 1-3 (7.8)

Figure 7.6 shows a plot of the regions of acceptance for the hypothesis p =0 against
p # 0 for @ =0.05, as the number of data points NV and the absolute magnitude of the
correlation coefficient p are varied.

Correlation coefficients which are not significant at this level are therefore set to zero,
and the remainder are retained. Table 7.3 shows the number of correlation coefficients
excluding those with absolute values less than 0.1 which were set to zero when this signifi-
cance test was applied to both the speaker-dependent and speaker-independent data sets.
As expected, due to the larger data set sizes in the speaker-independent case, far fewer
coefficients are judged insignificant compared with the speaker-dependent data sets.

Correlation Magnitudes

Strong positive correlations were observed between the positional and curvature estimates
for most articulators during the production of the different phonemes. A large positive
curvature value—corresponding to a local minimum in an articulatory trajectory, where
the articulator’s direction of motion is changing rapidly—will therefore tend to result in a
positional value greater than the mean position and vice-versa, as discussed in Section 3.4.

10 An example of this effect is described in Section 7.3.3.
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Figure 7.6: Regions of acceptance for the hypothesis p=0 against p#0 at a significance
level of 5%.

Speaker  Insignificant values (%)

jwl6 174
w27 18.8
jw29 19.3
jwl8 20.2
jw24 22.8
jwab 18.3
JwAvg 6.0

Table 7.3: Percentages of correlation coefficients set to zero by Student’s significance test
with «=0.05, excluding those with absolute values less than 0.1.

The mean significant correlation coefficients obtained for each articulator and averaged
over all phonemes are illustrated in Figure 7.7 for the speaker jwl8, and in Figure 7.8 for
the speaker-independent data.

Once again there is good agreement between the statistics for the speaker-dependent
and speaker-independent data sets, reflecting the consistent results obtained across all six
speakers. The x and y positions of the four tongue pellets show the greatest degree of
correlation between curvature and position, with the horizontal positions of the two jaw
pellets, MIz and MMz showing considerably less correlation than the other articulators.

This is as expected, since as described in Section 7.2.1 the amount of variation in
the degree of protrusion of the jaw is not only small in magnitude with respect to the
other articulatory variables, but is also rarely discriminatory between phonemes. Much
of the variation for these two variables will therefore be random rather than systematic,
and hence is not correlated with the curvature measure which is assumed to be predictive
only of systematic positional variations. This lack of correlation for randomly varying
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Figure 7.7: Bar graph of mean significant correlation coeflicients for each articulator over
all phonemes, for the speaker jwl8.
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Figure 7.8: Bar graph of mean significant correlation coefficients for each articulator over
all phonemes, for speaker-independent data.

parameters allows the removal of a great deal of the random movement seen in actual
X-ray articulatory traces when synthesising articulatory trajectories, as will be discussed
in Section 7.2.4.

Figure 7.9 shows an example of the correlation coefficients for the x and y positional
values of the 8 articulatory pellets for jwl8, sampled at the midpoints of all examples of
the phoneme /s/, where the correlation coefficients for T3z, MIr and MMz have been set
to zero as their values were insufficiently large to be considered significant.

The relatively low correlation coefficients for lower lip, jaw and tongue tip positions in
this figure reflect the fact that these articulators are highly constrained in position for the
production of /s/. By contrast, the tongue back and upper lip are relatively free to move
into positions dictated by neighbouring phonemes, as evidenced by the larger correlations
for UL and T2 to T4.
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Figure 7.9: Correlation coefficients for the phoneme /s/ for jwl8.

7.2.4 Articulatory Trajectories

As described in Section 3.4, variations in articulatory positions at the midpoints of phone-
mes due to co-articulatory effects can be predicted by computing the estimated curvature
¢ of the articulatory trajectory from a linear interpolation between successive mean ar-
ticulatory positions, and then using this curvature value to determine the most probable
positional value, given by:
Op

E[P|C=c] = NP“‘PCPE(C—NC) (7.9)
where pp, 0p and ue, oo are the means and standard deviations of the positional and
curvature distributions respectively, and pgop is the correlation coefficient between these
two distributions. Since these correlations arise from systematic variations in articulatory
positions, the values at the midpoints of phonemes predicted by this model will contain
less random variation than would be seen in actual X-ray traces.

Complete articulatory trajectories were generated by linear interpolation between the
co-articulated time-aligned midpoint positions of successive phonemes, as described in
Section 3.4.3. To enhance the system’s robustness to unusual contexts given the small size
of the training data set, a low-order low pass filter was applied to the resulting trajectories.
This filter’s effect on standard articulatory trajectories is very slight, and its purpose is to
remove very sharp articulatory movements which are otherwise observed in approximately
0.3% of phonetic contexts.

The training and test set data in the UW corpus were aligned to their corresponding
transcriptions using HTK, to yield a time-aligned phonetic string for each utterance. Syn-
thetic articulatory trajectories were then constructed from these, both with and without
modifying positions at the midpoints of the phonemes using the explicit co-articulation
model'!. The errors between synthetic training and test set trajectories were computed

"The trajectories generated without using the explicit co-articulation model nevertheless incorporate
strong co-articulatory effects, as discussed in Section 3.4.3.
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at all points with respect to the corresponding X-ray traces, and in each case the co-
articulation model gave a reduction in the articulatory errors computed over entire utter-
ances. Figure 7.10 shows six bar graphs representing a breakdown by articulator of the
mean error obtained over the 51 utterances in the test sets for each of the UW speakers,
both with and without the explicit co-articulation model'?.

The error for each parameter has been scaled by that articulator’s standard deviation
over the entire training set to give a more meaningful comparison, since the absolute
magnitudes of the positional variations of the articulators vary greatly (Figure 7.1). As
shown in Figure 7.10, each individual articulator’s positional error decreases when the
co-articulation model is used. The errors in tongue position are generally less than those
for lip and jaw position, with the x position of the front and back of the jaw (MIz and
MMz) being most poorly modelled.

The poor performance obtained for these latter articulators is not surprising, since
horizontal movements of the jaw have relatively little effect on the acoustic signal, as
previously described. As discussed in Section 3.4, this implies that much of the variation
seen in these variables will be random movement, as evidenced by the correspondingly low
mean correlation coefficients in Figures 7.7 and 7.8. Since these random variations cannot
be modelled, the co-articulation model has relatively little effect on the errors obtained
for these articulators, as demonstrated in Figure 7.10. This is a desirable result, since it
implies that the co-articulation model has the greatest beneficial effect on the positions of
the articulators which are most significant acoustically.

An example of the effects of the explicit co-articulation model when synthesising an
articulatory trajectory is given in Figure 7.11. This figure shows both synthesised and X-
ray articulatory traces for the articulator T4y, corresponding to part of a test set utterance
for the speaker jwl8.

Synthetic trajectories generated both with and without using explicit co-articulation at
the midpoints of the phonemes are shown, and a phoneme-level transcription is provided
in which phonetic boundaries determined using HTK are shown by vertical dotted lines.
The principal effects of using the explicit co-articulation model when synthesising the
articulatory trajectory are as follows:

e The tongue back is raised to form an occlusion at the rear of the oral tract during the
production of /n/ and /g/, as evidenced by the relatively large tongue back heights
around frames 200 and 260 respectively. The use of the explicit co-articulation model
to modify articulatory positions at the midpoints of these phonemes results in a more
accurate approximation to these positional extrema.

e An economy of articulatory movement is achieved by the tongue back during the first
syllable of “program”. The mean positions of T4y at the midpoints of the phonemes
/r/ and /ow/ can be deduced from the synthetic articulatory trace produced with-

12These trajectories were synthesised using speaker-dependent articulatory statistics. The speaker-
independent statistics derived from the UW data are used in Section 7.4 to generate articulatory trajectories

for the RM speakers.



CHAPTER 7. PRODUCTION MODEL EVALUATION 101

o
o)

o
o))

o
[N

mean squared scaled error

o

o © o ©
[N i o)) 3]

mean squared scaled error

o

o
o))

mean squared scaled error

o
N

— Co—art. model
~*No co-art. model
XYXYXYXYXYXYXYXY

UL LL T1 T2 T3 T4 Ml MM
articulator

@

—Co art. model
~*No co-art. model

il

XYXYyXYyXVyX XYyXyXxy

UL LL T1 T2 T3 T4 Ml MM
articulator

(©)

o
N

— Co—art. model
-*No co—-art. model —

Il

XYXYXYXYXYXYXYXY

UL LL T1 T2 T3 T4 MI MM
articulator

()

mean squared scaled error

o

o
N

mean squared scaled error

o

mean squared scaled error

o

o
o)

o
o

o
~

o
[N

— Co—art. model
~*No co-art. model

xyxyxyxyxyxy y Xy

UL LL T1 T2 T3 T4 MI MM
articulator

(b)

o
e

o
o

©
~

—Co art. model o
~*No co-art. model

i

XYXYXYXYXYXYXYXY

UL LL T1 T2 T3 T4 MI MM
articulator

(d)

o
o)

o
o

©
~

o
[N

— Co—art. model
-*No co—art. model

XYXYXYXYXYXYXYXY

UL LL T1 T2 T3 T4 MI MM
articulator

(f)

Figure 7.10: Normalised test set errors by articulator, with and without co-articulation
model: (a) jwl6 (b) jw27 (c) jw29 (d) jwl8 (e) jw24 (f) jw4b5.
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responding X-ray trace. Automatically-generated phonetic boundary positions are shown
by vertical dotted lines.

13 The achievement of these mean positions requires relatively

out co-articulation
rapid changes in the direction of motion of T4y—and hence relatively large muscular
effort—between frames 240 and 260, as evidenced by the dashed curve. Since these
phonemes are largely articulated using movements in the tongue tip however, the
height of the back of the tongue is relatively underspecified, and hence is free to
follow a trajectory which requires less articulatory effort, as seen in both the X-ray

trace and that synthesised using the explicit co-articulation model.

Overall, the use of the explicit co-articulation model results in a significantly closer
approximation to the X-ray articulatory trace, and it is hoped that this will then translate
into a reduced error at the outputs of the acoustic models, as described in the following
section.

7.3 Acoustic Model: UW Data

In this section an evaluation of the acoustic model as applied to the UW data set is
presented. The methods used for preparing the data to be used in training both the
artificial neural networks and a set of linear models are discussed, and the implementation
of the network training algorithm and the selection of network architectures are described.

Results are presented for the prediction of log spectral vector sequences using both
linear regression and MLPs, and a comparison is made between the performances of the
networks when trained on both X-ray and synthetic articulatory data.

13The model excluding explicit co-articulation uses a linear interpolation between successive articulatory
mean positions.
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7.3.1 Data Preparation

The inputs to the MLPs used to approximate the acoustic mapping are 16-dimensional
articulatory variable positions, and the target vectors produced at their outputs are 24-
dimensional log spectral vectors, as described in Section 4.2. The signal supplied to a
node j in the hidden layer of a network is a weighted sum of the outputs of the nodes in
the input layer, added to a constant “bias” value:

Z(wijyi) +b; (7.10)
i
where y; is the i* network input value, b; is the bias for hidden node j and w;; is the
weight on the connection between nodes ¢ and j.

The parameters w;; and b; are therefore used to scale these inputs according to both
their magnitudes and their relevance to the estimation of the network’s outputs. To restrict
the values of these parameters to manageable sizes, the data for each articulatory variable
were normalised to a mean of zero and a standard deviation of one before training the
networks.

Log Spectral Vector Scaling

The use of log spectral vectors for the acoustic signal representation at the network outputs
raises an additional scaling problem, since an increase in the volume of a speaker’s voice
will lead to a corresponding increase in the magnitudes of these spectral vectors. This
is an undesirable effect, as the target vectors presented to the networks will then have a
random—and hence unpredictable—bias.

Each individual log spectral vector was therefore scaled by computing the mean energy
in its 24 coefficients and subtracting this mean value from each of them. The result of
this energy scaling is that the outputs of the MLPs no longer represent actual log spectral
vectors, but rather spectral “shapes”, which are independent of the amplitude of the
acoustic signal. The mean and standard deviation of the energy in each log spectral
coefficient for each phoneme were therefore also computed over the entire training set, to
provide a separate model of absolute spectral energy levels!4.

Figure 7.12 shows the results of this energy scaling process for the vowel /iy/ and the
fricative /s/, for the speaker jwl8. In this figure, the 24-dimensional log spectral vectors
from the training data sets for /iy/ and /s/ have been overlaid, both before and after
subtraction of every vector’s mean value from each of its coefficients.

In both cases the removal of the mean bias enables the characteristic spectral shape to
be more easily identified. In the data for /iy/, this reduction in the spread of log spectral
values is fairly even across the frequency range (coefficients 1 to 24). For /s/ however, the
technique is more successful at mid and high-frequencies, with a small increase observed
in the spread for coefficients 1 to 5 (up to ~500Hz).

The cause of this increase is the very uneven distribution of energy in the frequency
domain for /s/. Since frication energy is concentrated at high frequencies, the plot of raw

14The use of these two different spectral measures in the scoring of re-synthesised log spectral vectors
when performing recognition is detailed in Section 8.3.1.
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Figure 7.12: Effect of subtracting each log spectral vector’s mean value from each of its
coefficients over the entire training set for the speaker jwl18, for /iy/ and /s/: (a) /iy/
before scaling (b) /iy/ after scaling (c) /s/ before scaling (d) /s/ after scaling.

vector magnitudes shows greater amplitude variation at these frequencies—due to changes
in the volume of the speaker’s voice—than at low frequencies, where the energy level is
close to that of the background noise!®. The values of the higher log spectral coefficients
will therefore dominate the mean log energy calculation, so that the log energy scaling
results in a reduction in the spread of values seen in these higher coefficients, with an
associated increase in the spread for the first 5 coefficients.

Data Set Merging

Finally, although the cross-validation training technique described in Section 4.4.1 theo-
retically ensures that the MLPs used for the acoustic mapping do not over-train during

15Typical values for the first 5 raw log spectral vector coefficients during silences lie in the range 5.7 to
7.0 for this data set.
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optimisation, the effectiveness of this technique in practice is dependent upon the nature
of the training, cross-validation and test sets.

In particular, for successful training each of these three data sets should be represen-
tative of the input articulatory space for the mapping concerned. If this constraint is
satisfied, then by ensuring optimum performance on a separate cross-validation set during
training, near-optimum performance will also be obtained on the independent test set'®.
In this case, the prediction of acoustic outputs for unseen articulatory inputs will involve
an nterpolation based on the mapping learned from the training data.

If the training data are not representative of the spaces spanned by the cross-validation
and test sets however, a greater proportion of acoustic outputs will be determined by
extrapolation. In this case the network’s performance on the cross-validation set will be
a less reliable indicator of the optimum stopping point during training, and the results
obtained on the cross-validation and test sets are more likely to be divergent.

As described in Section 5.2, approximately three quarters of the data for each phoneme
from each speaker were used to train the MLPs, and the remaining one quarter were used
as a test set. One third of this training data was set aside in turn for cross-validation,
leaving half of the original data for optimising the parameters of the networks.

Due to the small size of the X-ray microbeam database, this partitioning results in
very small data set sizes—defined here as less than 100 training set vectors—for a few
of the least frequent phonemes. To reduce the problem of unrepresentative data sets
described above, the data for these infrequent phonemes were therefore merged with those

corresponding to more common, and acoustically similar phonemes!”.

/en/ + /n/
/dx.1/ + /dx.2/
/ts.1/ + /t.1/
/ts.2/ + [/s/

Table 7.4: Data sets corresponding to very infrequent phonemes and phones (left column)
which were merged with acoustically similar data sets (right column).

The data sets which were merged are summarised in Table 7.4. As discussed in Sec-
tion 5.3.2, the flap /dx/ was originally sub-divided into the two phones /dx.1/ and /dx.2/
on the assumption that it is articulated as a brief closure between the tongue and hard
palate, with a subsequent acoustically dissimilar release. In practice, such a closure is
rarely achieved and /dx/ is articulated as a fricative, with the result that the frames
which are aligned to /dx.1/ and /dx.2/ are very similar acoustically. After data set
merging, the number of distinct phoneme-specific MLP mappings was reduced from 56 to
52 for each UW speaker.

16 A rough guide to the validity of this assumption in practice can be obtained by comparing the network’s
mean performance on the cross-validation and test sets, which should be similar.

"When merging data sets in this way it is important to avoid combining data with similar articulatory
representations but dissimilar acoustic patterns (eg. /s/ and /z/), as vectors which are proximate in the
input space should also be proximate in the output space, to ensure a smooth mapping from inputs to
outputs
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7.3.2 Network Architecture Selection

As described in Section 4.4.2, a separate MLP was used to model the mapping from nor-
malised articulatory positions to normalised log spectral vectors for each of the phonemes.
The network parameters were initialised to random values in the range —0.01 to 0.01, and
resilient back-propagation was used to optimise their values over a training data set, using
cross-validation on a separate data set as a stopping criterion to prevent over-fitting to
the training data (Section 4.4.1).

Since each hidden unit in the MLP architecture is able to compute a separate non-
linear function of the network’s inputs, one approach to network architecture selection is
to provide a very large number of hidden nodes—and hence a very powerful network—and
to rely on the technique of cross-validation to prevent over-fitting.

As the computation time required to train a large MLP can be very long however,
in practical implementations it is desirable to identify the smallest network architecture
which can adequately model the data. This is achieved by training a set of neural networks
of increasing size on the same data set, until the cross-validation error ceases to decrease
significantly.

Figure 7.13 shows a plot of the final network training and cross-validation errors ob-
tained for MLPs trained on the data from the phone /ow.1/ for the speaker jwl8, when
the size of the network’s hidden layer was set to 1, 2, ..., 9, 10, 12, 15, 20, 25 and 50
nodes respectively.
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Figure 7.13: Final training set and cross-validation set errors for networks trained on the
data from the phone /ow.1/ for the speaker jwl8, as a function of the number of hidden
nodes used.

In each case, the network was trained from a random initial starting point, and training
was terminated once optimum performance on the cross-validation set was obtained. As
can be seen from the figure, both the training and cross-validation errors decrease as
the number of hidden nodes is increased from 1 to 25, but little or no improvement is
seen when this number is increased to 50. Since a network with 25 hidden nodes yields
approximately the same cross-validation performance as one with 50 nodes, the smaller
architecture is therefore retained.



CHAPTER 7. PRODUCTION MODEL EVALUATION 107

Figure 7.14 shows a histogram of the network architectures chosen using this method,
for networks trained on the data sets incorporating the explicit co-articulation model. The
data from all six UW speakers and across all phonemes are plotted'®, and the sizes of the
networks are represented by the number of hidden layer nodes, where the number of input
and output nodes were fixed at 16 and 24 respectively!'?.
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Figure 7.14: Histogram showing the frequencies of networks with various hidden layer sizes,
representing all of the networks trained on data incorporating the explicit co-articulation
model, for the six UW speakers.

As can be seen from the figure, the median hidden layer size selected was 12 nodes,
and a maximum size of 25 nodes was used. The minimum number of hidden nodes was
set to 5, since networks of this size trained very rapidly, and no further size reduction was
necessitated by speed constraints.

Multiple Random Initialisations

Since the initialisation of the network parameters is a random process, multiple training
runs using the same network architecture will typically produce slightly different results.
An improvement in performance can therefore often be obtained by training several net-
works from different random initialisations, and selecting the network which yields the
best performance on the cross-validation set.

A further improvement can then be obtained by observing that the network which
gives the best performance on average usually does not produce the best output for every
input vector. As a result, averaging the outputs predicted by a set of different networks
will result in a lower error rate than selecting that of any individual network. Once the
optimum network architectures had been selected, three networks were therefore trained
from different random starting points, and the averages of their outputs were used both
as the best estimates of the predicted log spectral vectors, and in the computation of the
networks’ output error variances (Section 4.4.1).

®Hence 6 * 52=2312 networks are represented.

19Except in the case of jw29, for whom 14 inputs were used.



CHAPTER 7. PRODUCTION MODEL EVALUATION 108

7.3.3 Acoustic Vector Prediction

The result of training the acoustic models described in the preceding sections on the data
from each of the 52 distinct phonemes is a set of:

o Network parameters defining the phoneme-specific mappings from scaled articula-
tory vectors to energy-normalised acoustic vectors, where these vectors represent
quantised scaled spectral energies.

e Variances associated with each network output, which characterise the confidence of
the network’s predictions for each log spectral vector?°.

e Mean and variance statistics describing the variations observed in the raw log energy
in each spectral vector coefficient for each phoneme, computed over all of the spectral
vectors in the training set before these vectors are scaled for use in training the MLPs
(Section 7.3.1).

The use of the last two sets of statistics in the computation of acoustic errors for synthe-
sised spectral vector sequences is described in Section 8.3.1. In this section, the results of
training both MLPs and linear regression systems on the scaled articulatory-acoustic data
are presented, in terms of the errors observed between the target and predicted acoustic
vectors for each phoneme.

Network Error Computation

The MLPs trained on the UW data typically achieved a minimum cross-validation error in
less than 1000 optimisation iterations, where an iteration is defined as a single presentation
of the entire training set to the network. A measure of the accuracy of the resulting MLP
(or linear) mappings can then be obtained by computing the weighted root mean square
(RMS) error over the training, cross-validation and test sets. The error at the output of
the MLP for the phoneme p is computed over n vectors and at k output nodes as:

1
By =323 5Wnk— tn)” (7.11)
n k

where ¢, 1, is the target output and y,, ; is the output value predicted by the network. The
combined weighted RMS error over all phonemes is then defined as:

Z honemes 2Ep
Erus = L 7.12
s \l N thonemes Np ( )

where N, is the total number of data points for phoneme p and N =24 is the total number
of network outputs, which is independent of p.

20These variances are not local to the spectral vector being predicted, but are globally computed over
the training data set, as described in Section 4.4.1.
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Linear Regression Versus MLPs

Phoneme-specific acoustic mappings were trained using both MLPs and linear regression?!

for each of the UW speakers. Figure 7.15 shows a bar graph of the resulting combined
weighted RMS errors for the speaker jwl8, obtained using the linear system, a single MLP
network, and the average of three MLP networks trained from different random starting
points, respectively.
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Figure 7.15: Bar graph showing the combined weighted RMS acoustic errors obtained for
the speaker jwl8 on the training, cross-validation and test data sets. Results are shown
for the use of linear regression, one MLLP per phoneme, and the average of 3 MLPs trained
from different random starting positions on the data for each phoneme, respectively.

Several trends can be observed in this figure. Firstly, the MLP mappings outper-
form linear regression on each of the data sets, and taking the average of three separate
MLP mappings consistently yields slightly less error than using a single mapping alone.
Secondly, the differences between the performances of the linear and MLP mappings are
greater on the cross-validation data than the training data, and greater still on the test
data set. This increasing discrepancy is largely due to poor performance by the linear
system on phonemes for which the available data are relatively sparse. As discussed in
Section 4.3, the linear system uses a (linear) interpolation to predict acoustic output for
articulatory input vectors in the cross-validation and test sets which lie beyond the range
of values seen in the training data. By contrast, the thresholding non-linearity used in
the MLP mapping (Equation 4.10 in Section 4.4.1), makes it more robust to such outliers
since the magnitudes of the network’s outputs will be finite even in the extreme case of
infinite input values.

Finally, the error for each mapping increases from the training set to the cross-
validation set, and from the cross-validation set to the test set. The least error is expected
to be obtained on the training set, since this is the data on which the network parameters
have been optimised; any significant discrepancies between the errors obtained using the
cross-validation and test sets will then be due to the degree to which these sets are truly

21The parameters of the linear systems described in this section were estimated using the least mean
squared error criterion, as described in Section 4.3.
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representative of the input space. If this constraint is not satisfied, then optimising perfor-
mance on one independent set (the cross-validation data) may not exactly correspond to
optimum performance on a second such set (the test data). For the MLP mappings shown
the three errors obtained are quite similar to one another, supporting the hypothesis that
the networks are adequately trained.

Impact of Co-articulation Model

To assess the impact of using the explicit co-articulation model to generate articula-
tory trajectories—as opposed to using linear interpolation between mean articulatory
positions—three MLP mappings were trained per phoneme on the data for each of the six
UW speakers using two separate data sets. In each case the same acoustic target vectors
were used, but the articulatory representations differed as to whether the explicit model
of co-articulation had been applied. The results obtained are illustrated in Figure 7.16,
for the test data sets.
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Figure 7.16: Combined weighted RMS acoustic errors obtained on the test sets for the six
UW speakers using 3 MLPs per phoneme, for systems trained on articulatory data with
and without the explicit co-articulation model.

As shown in the figure, the combined weighted output errors obtained using articula-
tory data to which the explicit co-articulation model had been applied are less than those
obtained using the data sets without the model for every speaker except jw45, and in
this last case the two values obtained are very similar. The explicit co-articulation model
therefore not only results in more accurate articulatory modelling by comparison with
X-ray data (Section 7.2.4), but it appears to yield articulatory trajectories from which the
mapping to acoustic vectors is more accurately approximated by the acoustic model.

Performance on X-ray Data

The intended purpose of the production model described in this dissertation is the predic-
tion of acoustic vector sequences from synthetic articulatory trajectories, since this allows
acoustic outputs to be generated for any arbitrary input phonetic sequence. For compara-
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tive purposes however, the acoustic modelling performance obtained by training on actual
X-ray data traces was also examined.

For the speaker jw16 a set of 3 MLPs were trained per phoneme using X-ray articulatory
data—excluding vectors which had been labelled as mis-tracks—in an analogous manner
to the previously described models trained on synthetic data. The resulting combined
weighted RMS errors obtained on the training, cross-validation and test sets using X-ray
data, and synthetic data generated both with and without the explicit co-articulation
model are illustrated in Figure 7.17.
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Figure 7.17: Bar graph of combined weighted RMS acoustic errors for the speaker jwl6
on training, cross-validation and test data sets. Results are shown for the average of 3
MLPs trained from different random starting positions on X-ray, synthetic co-articulated
and synthetic non-co-articulated data.

The use of X-ray traces at the network inputs results in slightly lower training and
cross-validation errors than are obtained using either of the synthetic data sets, but the
similarity in the errors obtained using the X-ray and synthetic inputs indicates that the
degradation in performance from using synthetic trajectories over X-ray trajectories may
not be great. Indeed, for this speaker the use of X-ray data yields an error on the test set
which exceeds that obtained using co-articulated synthetic data. The high test set error
in this case is largely due to the unusually high errors obtained for the phonemes /jh/,
/ng/, /v/ and /z/. The cause of these errors is illustrated in Figure 7.18, which shows a
histogram of the horizontal positions of the tongue tip, T1z, for each of the test set vectors
for the phoneme /z/.

The position of the tongue tip is expected to be highly constrained during the produc-
tion of /z/, as evidenced by the majority of articulatory samples which fall in the range
—17mm to —13mm in the figure. Due to errors in the automatically-generated alignments
and/or mis-tracked pellet samples which were not labelled during preparation of the UW
database, a significant number of outlier samples are also included in this data set, and
these are responsible for the high error rate.

In the case of the synthetic data sets however, the use of a single Gaussian distribution
to model articulatory positions will exclude such outliers from the resulting synthetic
trajectories, so that the large error contribution due to these vectors is removed.
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Figure 7.18: Histogram of horizontal tongue tip (7T'1z) positions in the test set data for
the production of /z/ by the speaker jwl6.

7.4 Articulatory and Acoustic Models: RM Data

Two separate models were implemented for each of the RM speakers dasl and tab0.
The first of these used the synthetic articulatory trajectories obtained by inverting an
articulatory-acoustic codebook (Section 6.4) to obtain positional and curvature samples,
from which 5-dimensional articulatory trajectory vectors corresponding to the acoustic
RM data were generated. In the second system, the 16-dimensional articulatory parame-
ter set derived by combining the X-ray data from the six UW speakers (Section 7.2.1) was
used to generate these trajectories.

In this section, the results of using the codebook inversion trajectories to derive articu-
latory parameter statistics are described?? and the results of using both these statistics and
those obtained from the UW speaker-independent data to generate synthetic articulatory
trajectories and acoustic vector sequences are presented.

7.4.1 Articulatory Statistics from Codebook Inversion

The result of applying the dynamic programming algorithm described in Section 6.4.2
to the 600 speaker-dependent training data utterances for each of the RM speakers, is a
set of 5-dimensional synthetic articulatory trajectories corresponding to each utterance.
By using HTK to perform an automatic alignment of the acoustic data to the supplied
transcriptions, these trajectories were then sampled in an analogous manner to the X-ray
trajectory sampling employed for the UW data set.

Articulatory Positional Variation

Since these synthetic articulatory parameters do not directly represent the positions of
physical structures in the vocal tract, but are derived by fitting a mathematical model

22The corresponding results for the UW speaker-independent data set were described in Section 7.2.1.
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to a set of vocal tract shapes (Section 6.3.1), the observed parameter ranges correspond
to those values which yield plausible vocal tract cavity shapes when substituted into
Equations 6.1 to 6.6.

The ranges of the parameters a; and ao—which control the tongue body shape through
a linear combination of vocal tract area function eigenvectors—are determined by limiting
acceptable vocal tract cavity areas to positive values less than 20cm?. The ranges of the
parameters ag and a4 however—which control the position of the tongue tip—are set to
arbitrary values by appropriate scaling in Equations 6.2 to 6.6.

Similarly, the value of the parameter as—which determines the area of the opening
at the velum—is scaled to yield a range comparable to those of a3 and a4. The resulting
ranges of the 5 synthetic articulatory parameters are summarised in Table 7.5.

—09<a; <06
—20<ay <04
—25<a3<25
—25< a4 <25
—25<a5<2.5

Table 7.5: Approximate ranges of the 5 synthetic articulatory parameters used to generate
articulatory trajectories for the RM data.

Discriminatory Usefulness

Due to significant mis-matches in the acoustic signals generated by the synthetic vocal tract
model and those produced by the speakers dasl and tab0, the quality of the articulatory
trajectories obtained by codebook inversion is poor by comparison with the X-ray data
set. The variations observed in the mean positions taken by a given articulator across the
set of 56 phonemes were generally not found to be significantly greater than the range of
articulatory positions seen during the production of any given phoneme.

This difficulty is illustrated in Figure 7.19, which compares the standard deviations
of these mean articulatory positions o, (unshaded), against the average articulatory po-
sitional standard deviations o, (shaded), for each of the five articulators for the speaker
tab0.

As can be seen from the figure, the value of o, is comparable to that of o4, for a1, as
and as, is smaller for a3, and considerably smaller for a4. Overall, these initial articulatory
statistics provide quite poor discrimination between phonemes, and the application of the
explicit model of co-articulation would therefore be of little benefit?3.

Re-estimation of Articulatory Statistics

This situation can be improved by using the mean articulatory positions described above
to generate a set of bootstrap articulatory trajectories, from which an improved set of

23When Gaussian distributions are fitted to the resulting positional and curvature statistics, the
Kolmogorov-Smirnov probabilities computed for these fits are almost uniformly less than 1%, and the
corresponding correlation coefficients are on the whole close to zero.
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Figure 7.19: Bar graph showing comparisons of the standard deviations of the mean
articulatory positions o, (unshaded), against the average articulatory positional standard

deviations o, (shaded), measured at the midpoints of phonemes for the articulatory data
produced using codebook inversion for the speaker tab0.

statistics can be derived. A set of synthetic articulatory trajectories were initially gen-
erated without using the explicit co-articulation model, by simply interpolating between
successive mean articulatory positions. The resulting trajectories were then used as in-
put training data for a simple acoustic model comprising a separate 10 hidden-node MLP
for the data from each phoneme, which were optimised using the RPROP algorithm and
cross-validation.

While the log spectral target vectors used were scaled in the usual way, the correspond-
ing articulatory input vectors used were unscaled, since if the positions of scaled articu-
latory vectors are re-estimated, where this scaling is applied on a phoneme-by-phoneme
basis, the re-estimated statistics from the various phonemes will no longer be related in a
manner that allows them to be meaningfully re-combined to generate continuous articu-
latory trajectories. The result of this process is a set of:

e Unscaled synthetic input articulatory trajectories, whose values at the midpoints of
phonemes have an uncertainty defined by the initial standard deviation statistics
described above.

e Normalised acoustic vector predictions from the MLPs, along with their associated
global network error variances.

e Optimised MLP parameters defining the mapping from articulatory to acoustic
space.

These three sets of parameters can then be used to re-estimate articulatory positions
at the midpoints of phonemes using a technique which is equivalent to applying linearised
Kalman filtering on a point-by-point basis. Define:
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z, = Initial estimate of the articulatory positional vector x,, at the
midpoint of phoneme p

>

Covariance matrix for &,

O
hp() = MLP mapping from articulatory to acoustic space for the phoneme p
R, = Output error covariance matrix for hy/()

H, = Jacobian matrix for the mapping h,()

z, = Target acoustic vector at the midpoint of the phoneme p

where the Jacobian matrix H), is the matrix of partial derivatives of the MLP’s outputs
with respect to its inputs. This matrix represents a linearisation of the MLP mapping
in the region of an articulatory input vector, and can therefore be used to compute an

approximate local inverse of this mapping. Such an inverse mapping H, can then be
: »
(zp — hp(#p)) and the covariance matrices R, and P,. The optimum value of &, in the

used to predict a re-estimated articulatory positional vector &,, using the acoustic error

linear sense is found from the linearised Kalman Filtering equation [9, 24, 30]:

:ﬁ; =&p + ppHpT(prpHpT + R:D)_l(zp - hp(‘%p)) (7.13)

This equation was used to re-estimate the positional samples for each articulator at
the midpoints of each of the phonemes. Figure 7.20 shows a bar graph of the standard
deviations of the re-estimated mean articulatory positions o, (unshaded), and the average
re-estimated articulatory positional standard deviations 0,4, (shaded), for the resulting set
of positional samples.
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Figure 7.20: Bar graph showing comparisons between the standard deviations of the mean
articulatory positions o, (unshaded), against the average articulatory positional standard
deviations o4, (shaded), for the re-estimated synthetic articulatory midpoint data for the
speaker tab0.

By contrast with Figure 7.19, the average articulatory positional standard deviations
are now considerably less than the standard deviations of the mean articulatory posi-
tions computed across all phonemes, yielding a discriminatory set of articulatory statistics
suitable for use as input to the explicit co-articulation model.
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Parametric Positional and Curvature Models

These re-estimated positional articulatory statistics were used to generate a corresponding
set of trajectory curvature estimates from the RM transcriptions, and the distributions of
the resulting positional and curvature values were modelled using single Gaussian func-
tions, as was the case for the UW data.

The probabilities that the statistics being modelled could have been drawn from these
Gaussian distributions was once again assessed using the Kolmogorov-Smirnov test, and
the results obtained are summarised in Table 7.6.

Positional models (%) with  Curvature models (%) with

probabilities greater than: probabilities greater than:
Speaker 90% 50% 10% 90% 50% 10%
dasl 12 41 76 0 7 33
tab0 11 43 7 1 5 30

Table 7.6: Percentage proportions of articulatory positional and curvature distributions
with greater than 90%, 50% and 10% probability respectively of being drawn from a single
Gaussian distribution, for the RM speakers dasl and tab0.

The probabilities obtained are lower than those corresponding to the UW data in
Table 7.2, but are consistent between the two speakers. As observed previously, the cur-
vature statistics have a poorer match to Gaussian distributions than do the corresponding
positional statistics.

Correlation Coefficients

The correlation coefficients between the positional and curvature statistics were computed
in an analogous manner to those computed for the UW data. A total of 12.1% and 12.9%
of the correlation coefficients for dasl and tab0 respectively were found to be insignificant
at the 5% significance level using Student’s T-test, excluding coefficients with absolute
values less than 0.1.

Since the deviations from mean articulatory positions observed in this data set were
generated by a re-estimation technique based on linearised Kalman filtering, they no longer
represent physiologically interpretable movements. Unlike the results obtained on the UW
data therefore, both positive and negative correlations are observed, where the direction
of the positional adjustment chosen is that which reduces the error at the output of the
MLP mapping concerned, rather than that which minimises the articulatory effort.

Figure 7.21 shows the mean significant correlation magnitudes for each of the artic-
ulators, averaged over all of the phonemes for the speaker tab0. In each case, a mean
correlation coefficient magnitude close to 0.4 is observed, by contrast with the variable
correlations seen for the UW articulators.
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Figure 7.21: Bar graph of mean significant correlation coeflicient magnitudes for each of
the articulators over all phonemes, for the speaker tab0.

7.4.2 Acoustic Vector Prediction

Both 5-dimensional and 16-dimensional articulatory trajectories corresponding to each of
the 600 training sentences for dasl and tab0 were generated using the explicit model of
co-articulation, from the re-estimated synthetic articulatory statistics and the speaker-
independent X-ray statistics respectively. Since X-ray trajectories corresponding to the
RM data are unavailable, a direct evaluation of the accuracy of these articulatory rep-
resentations is impossible. The accuracy of the predicted acoustic vector sequences was
therefore evaluated, and used as an indirect measure of the utility of the two representa-
tions.

As was the case for the UW data set, a separate MLP was used to approximate
the mapping from articulatory vectors to acoustic vectors for each phoneme, and both
the articulatory and acoustic data were scaled before training the networks. Due to the
increased size of the RM training data set, it was not necessary in this case to combine
phoneme-specific data sets to ensure the networks were adequately trained.

Network Architecture Selection

Networks with 5, 10, 15, 20, 25, 30, 40 and 50 hidden nodes were trained using RPROP
to determine the optimum network size for each phoneme, with the results illustrated in
Figure 7.22.

This figure shows histograms of the number of hidden nodes used in the MLPs trained
on the data from the two RM speakers, using both articulatory trajectories derived from
speaker-independent X-ray data, and those derived from the re-estimated synthetic data.
The network sizes chosen were greater on average than those used in the acoustic model
for the UW data, indicative of an increase in the complexity of the mapping—one cause of
which is the relative inaccuracy of the articulatory data supplied at the inputs, compared
with the UW speaker-specific X-ray articulatory data.

While the performance of some of the networks indicated that a further reduction
in output error could be obtained by using more than 50 hidden nodes, this value was
imposed as an upper limit in order to restrict training times to manageable durations,
hence the high frequency of network architectures of this size.
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Figure 7.22: Histograms showing the frequencies of the networks chosen in terms of hidden
layer size, representing all networks used on the data for both RM speakers: (a) networks
trained on speaker-independent X-ray data (b) networks trained on re-estimated synthetic
data.

Network Performance

Once the appropriate network architectures had been identified, three MLPs were trained
on the data for each phoneme, and their outputs were averaged. Due to the larger sizes
of the network architectures, an average of approximately 3000 RPROP iterations were
required to obtain optimum performance on the cross-validation set for each phoneme.

The resulting combined weighted RMS errors were computed on the training, cross-
validation and test data from each speaker using the two different articulatory input sets.
The results obtained for dasl are shown in Figure 7.23, and those obtained for tab0 in
Figure 7.24.
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Figure 7.23: Bar graph of combined weighted RMS acoustic errors computed on the train-
ing, cross-validation and test data for the speaker dasl, using both speaker-independent
X-ray articulatory trajectories and re-estimated synthetic articulatory trajectories.

As can be seen from the figures, the networks trained on articulatory data generated
from the speaker-independent X-ray statistics yield a lower error than do those trained on
the speaker-dependent re-estimated synthetic statistics. In addition, the errors obtained
are similar in magnitude to those observed for the networks trained on the UW data sets
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Figure 7.24: Bar graph of combined weighted RMS acoustic errors computed on the train-
ing, cross-validation and test data for the speaker tab0, using both speaker-independent
X-ray articulatory trajectories and re-estimated synthetic articulatory trajectories.

illustrated in Figure 7.16.

It is therefore anticipated that the acoustic models trained using speaker-independent
X-ray articulatory data are likely to yield better recognition accuracy when used in a
recognition-by-synthesis framework than the corresponding synthetic models.

7.5 Non-linearity of Acoustic Models

As can be seen from Figures 7.14 and 7.22, in many cases the number of hidden nodes
used in the MLP mappings is less than the dimensionality of the networks’ output spaces.
Since the networks are being used as function approximators, the activation function at
the output nodes is the identity function, while that at the hidden nodes is a sigmoid
function whose output is limited to the range (0,1) as described in Section 4.4.1.

This implies that the ability of these networks to model non-linearities in the mapping
from articulatory positions to parameterised acoustic vectors will be severely limited, since
the networks’ outputs are computed as linear sums of lower-dimensional representations
in hidden-unit space, which in turn are restricted to the range (0, 1) in each dimension. As
a result, it is expected that in these cases a linear system should approximate the acoustic
mapping at least as accurately as the MLPs, so that the acoustic model employed here is
in fact only partially non-linear?*.

The application of both the UW and RM models to the task of augmenting the per-
formance of a standard continuous speech recognition system is the topic addressed in
Chapter 8.

24The fact that the use of larger MLP architectures did not yield significant improvements in acoustic
modelling accuracy in these cases supports the hypothesis that for the phonemes concerned the MLPs did
not discover useful non-linear properties in the mapping.



Chapter 8

Recognition System

8.1 Introduction

This chapter describes the application of the articulatory speech production model to the
task of speaker-dependent continuous speech recognition. The recognition framework in
which the SPM is used was illustrated in Figure 1.1, and is repeated in Figure 8.1 below
for ease of reference.

Spectral
W“ —  vector ———= | HMM
representation

Input

speech \b ¢
Compare vector Textual hypotheses
strings and re-order as time-aligned
hypotheses phonemic strings
Synthetic ﬁ ¢
speech Spectral
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representations

Figure 8.1: Recognition system overview.

The HMM-based recogniser provides an ordered list of NV hypothesised transcriptions
for each of a set of input utterances, along with their phonetic time-alignments. From
these, parameterised speech vectors are synthesised by the SPM. By computing the errors
between the synthetic and original speech vectors in the spectral domain, the N-best lists
are re-ordered, such that those entries yielding the least spectral error are selected as the
most probable transcriptions. Recognition accuracy will improve if:

1. The most probable transcriptions hypothesised by the HMM (the n = 1 entries)
contain errors for some subset of the utterances being recognised.

2. For a subset of the instances where these n=1 transcriptions are erroneous, better
transcriptions appear in the hypothesised lists for n=k, where 1<k<N.

120
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3. The SPM or a combined SPM-HMM system is able to provide a sufficiently accurate
acoustic model to identify these improved transcriptions.

In Section 8.2, the techniques used to generate N-best transcription hypothesis lists
using the HTK HMM-based recognition system are described. Section 8.3 subsequently
presents the methods employed for re-synthesis of parameterised vectors, and the spectral
error measure used to compare these vector sequences with those of the original input
speech. Finally, Section 8.5 describes the results obtained when using the combined system
to recognise test utterances taken from the UW and RM corpora described in Chapters 5
and 6 respectively.

8.2 Initial Recognition Phase: HMMs

During the initial recognition phase, an HMM-based system is used to transcribe a set
of utterances represented by MFCC-parameterised acoustic vectors. Since the aim is to
compare the acoustic modelling ability of the HMMs with that of the SPM, a “null”

grammar! is used when performing recognition?

. The HMMs used for recognition were
the same models which were used to align the training data as described in Sections 5.4
and 6.2. This section describes the techniques used to generate N-best hypothesis lists for

the test data using these model sets.

8.2.1 Depth of N-best Lists

During the decoding of an acoustic signal within an HMM-based system, a partial search
of the space of all possible word strings is performed. In the conventional approach, only
the most probable hypothesised transcription identified by the decoder is retained at the
end of this search. The recognition algorithm can easily be modified however, to retain
the best N transcription hypotheses in order of decreasing estimated probability® [176].
The amount of linguistic diversity observed in the resulting N transcriptions will be
dependent upon—amongst other factors—the length of the acoustic vector sequence at
the input to the recogniser. For example, in a recognition task with a vocabulary of N,
words, the total number of possible transcriptions of length [ is N!, which can be a very
large number. If the utterance is segmented into two sub-sections of length m and p
respectively where [ = m + p, then recognition hypotheses can be independently generated
and re-scored for each sub-section. In this latter case only N;* + NP different possibilities

'A null grammar is one in which each word in an utterance is followed by any word in the vocabulary
with equal likelihood. While the grammar used for the RM corpus was a true null grammar, that used on
the UW data was slightly modified to require a tone at the start of each utterance, followed by an arbitrary
word string with optional trailing background comments (Section 5.2.2). The term “null” will be retained
when describing the grammars used for both systems however, for ease of reference.

2A side effect of this constraint is to increase the number of errors made by the HMM-based system,
which otherwise would be very low due to the relatively small vocabularies used in the UW and RM
corpora.

3A review of some N-best search algorithms and their relative performances can be found in the articles
by Schwartz et al. [152, 153].
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need be considered, which typically yields a considerable reduction in the size of the search
space for large values of N, and [.

While each utterance in the RM test set is limited in length to a single sentence, many
of the utterances in the UW corpus comprise multiple sentences. Before generating N-
best lists, the longer UW test set utterances were therefore hand-segmented into individual
sentences*. In each of the experiments described in this chapter, the value of N was set
to 100, and a maximum of 10 partial paths terminating in any given node (representing

an HMM model or a word end) were retained during the decoding of each utterance®.

8.2.2 Grammar Scale Factor

The N textual hypotheses for each test set utterance were generated using the HTK Ver-
sion 2.0 Viterbi decoder [176]. This decoder determines the most probable transcriptions
of an utterance by combining the probability scores predicted by an acoustic model with
those produced by a syntactically-based language model (Section 1.2.2). The acoustic
model predicts the probability® P, that the observed acoustic vectors could have been
produced by a given textual hypothesis, while the language model predicts the a priori
probability of the transcription, Pj.

The use of a null grammar to generate these hypotheses implies that P, will be a
function only of the number of words in the utterance, w, and will be independent of the
identities of these words’. In a vocabulary of N, words, the probability of seeing any given
word at a particular location in the utterance is therefore 1/N,,, and the overall a priori
probability for an utterance comprising w words is:

This value is combined with the corresponding acoustic probability P, to yield an
overall score for the utterance, Phym,. Since the values taken by both P, and P, can be
extremely low, these probabilities are typically computed in the logarithmic domain to
render their numerical values tractable.

By scaling P, to increase or decrease its value relative to P, in this computation, it is
possible to bias the recogniser in favour of shorter or longer transcriptions as follows:

4A further increase in efficiency could be made by computing a lattice of possible transcriptions for an
utterance, and then re-scoring parts of the lattice, as described in Section 9.5.3.

50stendorf et al. have described an N-best re-scoring system in which only N =20 hypotheses were
generated for each utterance, as these were found to be sufficient to include the correct transcription 98%
of the time [119]. This system used a statistical class grammar however, and the use of a null grammar in
the current system necessitates a deeper list of hypotheses.

81n fact the acoustic model does not compute a true probability, but rather a value which is propor-
tional to this probability, estimated from the appropriate acoustic pdfs. This does not affect the recognition
performance however, which is a function of the relative probabilities of the different hypothesised tran-
scriptions; the term “probability” will be retained in this discussion for ease of description.

"This is only approximately true for the UW data, since the grammar in this case also specifies an oblig-
atory tone at the start of each utterance and optional background comments following the utterances, as
described in Section 5.4. The effects of these restrictions on the corresponding language model probabilities
are slight however, and will be neglected in this discussion.
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log(thm) = log(Pa) + G log(]DZ) (8'2)

where G is a weighting constant known as a grammar scale factor. Larger values of G,
will tend to result in shorter® hypothesised transcriptions at the output of the recogniser,
as the penalties resulting from the use of additional words will then be greater.

The use of a grammar scale factor G5 > 1 frequently yields a significant increase in
recognition accuracy. This effect is due to the high incidence of spurious short words
(such as “a”) inserted into the hypothesised transcriptions when recognition is based
predominantly on the acoustic error. These words are typically inserted at locations in
the utterance where they provide a good short-term match to the acoustic signal. For
example, the lack of a glottal stop in the RM phoneme set (Table 5.4) means that a word
such as “utterance” may be transcribed as “a utterance”, where the additional “a” is
used as an approximation to the otherwise unmodelled stop release. By contrast, if the
value of G used is too large, valid words will be deleted from the transcriptions produced
(eg. by replacing a correct word string such as “in the mission” with the acoustically less
accurate but shorter “intermission”). The value of G required for optimum recognition
performance is task-specific and in general must be determined empirically.

8.3 Secondary Recognition Phase: SPM

This section describes the methods used to perform spectral comparisons between the
synthetic parameterised acoustic sequences generated by the SPM and the vector sequences
corresponding to the original speech. Both the absolute spectral energy and the normalised
spectral “shape” of the acoustic vectors are compared, and a partial compensation for
transcription alignment errors produced by HTK is provided.

8.3.1 Re-scoring N-best Transcriptions

The acoustic model described in Chapter 4 uses a separate set of MLPs to predict energy-
normalised log spectral vector shapes for each phoneme on a vector-by-vector basis. A
global error variance is computed over the training data set for each MLP output, which is
subsequently used as a confidence measure for these acoustic vector predictions. A scaled
log spectral error measure Es; , can therefore be computed as:

2
Yip — (ti — 37 Liz1 ti
B, =2 (6= o t) (8.3)

S
” Oy; D
)

where t is the target (unscaled) log spectral vector corresponding to the original speech, Yp
is the energy-normalised log spectral vector predicted at the output of the MLP mapping
for the phoneme p, and oy, , is the error variance for the it coefficient of Y,- The vector
t is scaled by subtracting its mean value from each of its 24 coefficients, to match the
acoustic representation used in the MLP mappings.

81n terms of the total number of words used.
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This error measure is well suited to comparing the relative concentrations of energy
with frequency in an acoustic vector, but does not characterise the raw log spectral energy
in each of the vector’s coefficients. As described in Section 7.3.1, the energy normalisation
applied to the data used in the MLP mappings is more effective in identifying characteristic
spectral shapes for some phonemes (eg. vowels) than others (eg. fricatives). As a result, a
separate error measure based on the raw spectral energy, E, , is also computed as follows:

— s 2
E. = (M) (8.4)

O¢;p

where t; is the i** coefficient of the target log spectral vector ¢, Me;, 1s the mean en-
ergy computed from the i** spectral coefficient of each of the training set vectors for the
phoneme p, and o, , is the corresponding standard deviation. The statistics pe,, and

oe, . are therefore broadly indicative of the raw log spectral energy which is expected to

be ,(T;bserved at any given frequency during the production of a particular phoneme. Since
there is considerable variation in this energy level due to both the phonetic context and to
fluctuations in the intensity of the speaker’s voice, the values of o, , are typically large,
and this raw energy-based error measure is less useful for discriminating between different
acoustic representations than the spectral shape measure defined in Equation 8.3.

These two scaled errors are then combined in a weighted sum of squares to yield an
overall error measure, which is computed over all of the vectors in the two sequences being

compared:

24 24
E= )Y |K» E, +K > E., (8.5)
=1 =1

vectors

The constants K, and K, are weighting factors on the error terms, where K; > K,
since Ey, , is more useful in discriminating between hypotheses than E.; ,, due to the larger
number of parameters used in its estimation and the fact that its computation is local to
the vector concerned®. If the distributions describing both the spectral energy variations
and the errors at the outputs of the MLPs are themselves modelled as Gaussians, a simple
modification to this measure leads to a probabilistic interpretation of the spectral errors.
The logarithm of a Gaussian pdf with mean p and standard deviation ¢ for a random
variable z is given by:

~Liog(ano?) - (27 (5:6)

which has a form similar to the expressions in Equations 8.3 and 8.4, apart from an
additional constant term related to the variance of the distribution. The effect of adding
this constant to the basic scaled squared difference term is to attach greater significance
to those errors computed from distributions with lower variances, since these distributions
are assumed to be more accurately determined. The logarithm of the probability that

91n fact only the normalised coefficients predicted by the MLP are local to the vector in question, while
the standard error deviations are global to the phoneme. This contrasts with E.
from means and standard deviations which are both global to the phoneme.

which is computed

€i,py
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a hypothesised transcription corresponds to an observed acoustic vector sequence can
therefore be estimated by the SPM as:

—log(P, Z Z [ (log 271'0 ) + Esim) + K, (10g(27‘l’0’§i,p) + Eei,p)] (8.7)
vectors 1=1
where P, is proportional to the actual acoustic probability as before. As in the case of the
HMM-based system, a language model probability P, weighted by a grammar scale factor
G5 can be combined with this expression to obtain an overall logarithmic probability:

log(Pspm) = log(Ps) + Gslog(F) (8.8)

Finally, rather than discarding the HMM-produced logarithmic probability scores as-
sociated with each transcription in an N-best list, and re-ordering the list based on the
SPM-produced score alone, these two scores can be combined in a weighted sum:

log(Peomp) = (1 = 3)1og(Phix) + 510g(Pepm) (8.9)

so that when =0 the HTK-computed score alone is used and when f=1 only the SPM-
generated score is employed, and 3 is a constant whose optimum value must be determined
empirically!?

8.3.2 Boundary Alignment Errors

Since the phonetic alignments automatically generated by HTK are imperfect, the phonetic
labels associated with the observed acoustic vectors are often incorrect in the region of
phonetic boundaries. The mis-placement of these boundary positions by one or more
frames frequently leads to large acoustic error contributions from the frames concerned.
These errors arise from presenting the articulatory input vectors for incorrectly labelled
frames to the inputs of the wrong MLPs, and from computing FE.,

P
statistics. As a result, both E,, ~and E.,  are initially dominated by errors within one

using the incorrect

frame of phonetic boundaries.

This problem is particularly pronounced in the case of stops and nasals, where the
acoustic signal either has low energy, is rapidly changing, or both. For example, even a
one-frame error in the position of a boundary demarcating the release of a stop closure
(and hence the onset of the associated burst waveform) will lead to a large spectral error
in one of the two frames adjacent to the boundary.

To alleviate this problem, boundaries delimiting stops and nasals are permitted to shift
by one frame during the error computation if this results in a local error reduction. To
move a phonetic boundary in this way would nominally require the generation of a new
set of articulatory trajectories and the re-synthesis of the corresponding acoustic vectors
for each possible boundary configuration. Such an approach would involve an impractical

10Gince neither the HMM-produced or SPM-produced “probability” estimates represent actual proba-
bilities, the magnitudes of Pjy, and Pip,, will in general be highly dissimilar.
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amount of computation however, and hence an approximate technique is used which avoids
this computational overhead.

A boundary shift of one frame to the right of the HTK-designated position between
two neighbouring phonemes p; and py involves the deletion of the first frame of phoneme
po and its replacement with an additional p; frame added to the end of the existing p;
sequence. As a first approximation to a suitable set of coefficients to use for this new
frame, the coefficients of the vector at the end of the previous p; sequence can be copied
into the new vector position'!. Using this technique, a one-frame shift of each stop and
nasal boundary to the left or right is hypothesised. If one of these shifts would result
in an error reduction and the other in an error increase, the boundary is considered to
be mis-aligned, and is moved one frame in the appropriate direction. In all other cases
the boundary’s position is left unchanged. The result of this approximate re-alignment
process is a significant reduction in the contribution to the total error from frames in the
vicinity of phonetic boundaries.

8.4 Assessing Recognition Performance

This section defines the measures used to evaluate the performances of both the HMM-
based speech recogniser and the combined HMM-SPM recognition system.

8.4.1 Performance Measures

A simple measure of the performance of a recognition system is the percentage of labels
correctly identified, computed as:

100(L — D —S)
L
where L is the total number of labels, D is the number of labels in the correct transcription

(8.10)

which did not appear in the recognition sequence (“deletions”) and S is the number
of substituted labels. Since spurious labels can also be introduced into the recognition
sequence however, it is more usual to report the percentage “accuracy”, defined as:

100(L—-D—-S—-1)
L
where I is the number of these insertions. This latter performance measure was employed

(8.11)

in all cases, where word-level labels were selected as the recognition units used.

8.4.2 Homonyms

The use of a null grammar in both the SPM and HTK recognition algorithms implies
that random errors may be introduced as a result of homonyms in the task vocabularies.
For example, the three words “to”, “two” and “too” are acoustically indistinguishable,
and in the absence of a grammar to preferentially select between them according to the

"' Numerous alternative approximation methods could be employed here: for example, a linear extrapo-
lation from the last two p1 vectors.
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context, a label selection will be made arbitrarily during recognition. This effect gives
rise to a random component in the error rate, which is undesirable when attempting to
compare the acoustic modelling accuracies of the two systems based on their recognition
performances alone.

Accordingly, homonyms such as these were grouped into equivalence classes during
recognition, in an attempt to remove these random effects. Although this approach re-
moves the majority of the random component in the error rate, a similar effect caused
by phrases with identical phonetic transcriptions remains. For example, the much-quoted
phrases “I scream”, “eyes cream” and “ice-cream” each have identical (or nearly identical)
acoustic realisations, but are not rendered equivalent by the simple homonym equivalences
described above. Fortunately however, in the relatively small task vocabularies used in
the UW and RM corpora, such acoustically equivalent phrases are very rare, and the use
of homonym equivalences suffices'?.

8.5 Recognition Results

In this section the results of using the SPM to re-order N-best hypothesised transcription
lists generated by HTK are presented, for data drawn from both the UW and RM cor-
pora. In each case, the error rates achieved when re-scoring the transcriptions using both
the SPM log probability measure and the combined measure given in Equation 8.9 are
presented. In addition, typical recognition results obtained using the simple probabilistic
model described in Appendix B are illustrated.

8.5.1 University of Wisconsin Data

The baseline (N =1) word recognition accuracies achieved by the speaker-dependent HTK

systems for each of the UW speakers are listed in Table 8.1. The HMMs used were 5-

13

mixture monophone models—ie 5 distinct Gaussian distributions™ were used to model

the 39 acoustic parameters in each of the 3 “emitting” states of each HMM!. Separate

HMDMSs were used to represent the 47 phonemes in Tables 5.4 and A.1, and additional

15

models were provided for silences, inter-word spaces™, and the “tone” and background

comment models described in Section 5.4.1'®. This yields a total of ~ 60000 parameters
used in the UW HMM-based acoustic models.

In each case the grammar scale factor G5 was set to a value of 11, which was empirically

120ne technique for removing all such random effects from the computed recognition accuracy would
be to report phoneme recognition errors rather than word recognition errors. Since phrase-level effects
are not significant in the UW and RM databases however, a word-level system coupled with homonym
equivalences was retained here.

3Bach characterised by two parameters specifying the mean and variance of the distribution respectively.
'0Or two emitting states in the case of stop and diphthong phonemes.

15The inter-word space, or “sp” model contains only one emitting state, by contrast with the 3 emitting
states used in the standard models.

16 A small number of additional parameters were also used to model the transition probabilities between
the component states of each of these HMMs.
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Speaker Baseline accuracy

jwlé 78.9%
w27 69.2%
w29 74.4%
jwis 80.1%
w24 65.5%
jw4s 70.3%

Table 8.1: Baseline word recognition accuracies for UW speakers, using speaker-dependent
HTK models.

found to yield the best recognition results!”. As can be seen from the table there is
considerable variation in the recognition performance between speakers—in this case, up
to a 15% difference in the absolute recognition accuracies. Variations such as these are
frequently encountered in speech recognition tasks, and arise from differences in factors

such as the speaking rate, intelligibility and recording environment!'8.

SPM-based Re-scoring

Figure 8.2 shows a plot of the recognition results obtained by using the SPM-computed
log probabilities to re-order transcriptions up to a depth of N = 100 for the six UW
speakers. A grammar scale factor of 30 and a K,: K, ratio of 5 were used in each case!?,
and the articulatory trajectories were synthesised using the explicit co-articulation model
described in Chapter 3.

In this figure, recognition accuracy is plotted against the depth, M, of the hypothesis

list for four separate recognition systems, where 1 <M < N. In the plot for each speaker:

1. The uppermost curve represents the best possible recognition accuracy which can be
achieved at a given depth M by hand-selecting the optimum transcription n, where
1<n<M. This curve is monotonically increasing, since as M increases there is an
increasing chance of observing the correct transcription at a depth less than or equal
to M. This provides an upper limit for the performance that could be achieved by
any re-scoring algorithm.

2. The lowest curve represents the mean performance obtained over 100 repetitions of
selecting a transcription n at random for 1<n<M at a given depth M. This curve

"Ideally the optimum value of G should be determined based on the recognition performance achieved
on a separate cross-validation set. Due to insufficient data in the corpora used in this initial evaluation
however, G values were determined based on test set performance. While this is expected to yield slightly
higher recognition rates than would otherwise be achieved, only the relative recognition rates achieved by
HTK and the SPM are of interest to this study.

'8 Although the recording environment was nominally identical for each of these speakers, slight differ-
ences in variables such as the microphone placement relative to the lips and nostrils are inevitable.

190nce again, these parameters should ideally be determined based on the performance on a separate
cross-validation set, but in this case they were obtained based on test set performance. Further perfor-
mance increases could be obtained by optimising separate phoneme-specific values for the ratio K, : K.
(Section 9.5.3).
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Figure 8.2: Word recognition accuracy as a function of the depth of the N-best list used
as input to the SPM for the UW speakers: (a) jw16 (b) jw27 (c) jw29 (d) jw18 (e) jw24 (f)
jw4b. In addition to the performances achieved by HTK and the SPM, the best achievable
performances and the performances achieved by randomly selecting transcriptions are also
shown.
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will in general decrease monotonically, since as M is increased, the number of errors
on average in the M™ transcription is expected to increase.

3. The HTK curve simply represents the baseline performance as a reference for as-
sessing the performance of the other models. It is independent of M since the HTK
system always selects the M =1 transcription.

4. The fourth curve represents the recognition accuracy achieved by re-ordering the
transcription lists according to the log probability scores computed by the SPM.

A significant improvement in recognition accuracy is observed using SPM-based re-
scoring as M increases from 1 to 5 for each speaker except jw29—for whom an improvement
is not obtained until 7< M <12. The performance for the speakers jwl6, jw29, jwl8 and
jw4b tails off as M increases to 100, and in the case of jwl6 and jw29 the recognition
accuracy for M =100 is actually worse than that of HTK.

In each case the curves appear to be converging to the “true” recognition performance
that would be achieved by the SPM if all possible hypotheses were re-scored (ie as the
total number of transcriptions available, N — co). While the performance of the SPM
is significantly better than that achieved by randomly selecting transcriptions from the
N-best list, it reliably matches or exceeds the performance of HTK only for values of M
less than 30—and in the case of jw29 the performance is actually worse than that of HTK
for some values of M in this range.

Finally, the re-scoring performance of the SPM appears to be negatively correlated
with the absolute recognition performance of HTK. This is demonstrated by the larger
and more sustained recognition accuracy improvements obtained for jw27, jw24 and jw45,
for whom the baseline recognition accuracy achieved by HTK is relatively poor. This
result is not surprising, since the poor recognition performance achieved by HTK for these
speakers is assumed to be attributable to relatively poor acoustic modelling; hence it is
more likely that the SPM will be able to provide improved acoustic discrimination. The re-
scoring algorithm therefore appears to have the desirable property of being more effective
for those speakers for whom it is most needed.

Simplified Probabilistic Model

The deterioration in recognition performance observed as M — N for the majority of the
speakers in Figure 8.2 can be explained by considering the expected performance of the
simplified probabilistic re-scoring algorithm described in Appendix B.

Following the development in this appendix, let M denote the depth of the list re-
ordered so far, and k& be the index of the best transcription hypothesised by the proba-
bilistic model for 1 < k< M, with associated error Ej. Then the probability of selecting
the (M +1)* transcription as the most likely hypothesis when the depth of the list to be
re-scored is increased by one, is determined by the choice of the constants used in Equa-
tions B.3 and B.4. As an example of the typical recognition performance obtained using
such a model, these values were set to:
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P (choose(M + 1) | Epjy1 < E) = 0.5 (8.12)
P (choose(M + 1) | Epr41 > Ey) = 0.02 (8.13)

These conditional probabilities were then used to compute the values of Ppeyer and
Pyorse, which are the probabilities that the recognition accuracy will increase or decrease
as a result of the addition of the (M +1)% transcription, respectively. Figure 8.3 shows a
plot of the average recognition performance obtained from 100 simulation runs, in which
this simplified probabilistic model was used to re-score the transcriptions for the speaker
jwl18 as M was increased from 1 to 100. As was the case in Figure 8.2, the best possible
recognition accuracy, the baseline HTK performance and that obtained over 100 iterations
of random transcription selection are graphed for reference purposes.
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Figure 8.3: Word recognition accuracy as a function of the depth of the N-best list used as
input to a simplified probabilistic model of transcription re-scoring for jw18. In addition
to the performances achieved by HTK and the probabilistic model, the best achievable
performance and the performance achieved by randomly selecting transcriptions are also
shown.

As can be seen from the graph, the performance of the probabilistic model exceeds that
of HTK up to M =50, but is inferior for larger values. For low values of M (eg. 2< M <5),
the value of P (Ejp+1 < Ey) is relatively high, so that Ppegrer > Pyorse and recognition
accuracy increases. For high values of M however, P (Ej41 < Ej) becomes very low,
and hence Ppeyrer < Pyorse and recognition performance deteriorates. In this example,
performance improves rapidly for 2< M <5, is approximately steady for 5< M <20, and
degrades thereafter.

In a practical re-scoring algorithm, the value of P(choose(M +1) | Epr41 > Ey) should
decrease as M becomes very large, so that performance ceases to degrade as M — N, where
N is the total number of transcription hypotheses available. This is in agreement with the
results observed for jwl8 in Figure 8.2, which exhibit a gain in accuracy compared with
HTK for 2< M <5, steady or deteriorating performance for 5< M <40 and approximately
constant recognition accuracy for larger values of M.
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Combined HTK and SPM-based Re-scoring

A significant performance improvement can be obtained by combining the separate log-
arithmic probability scores computed by HTK and the SPM according to Equation 8.9.
Since these scores are typically of very dissimilar magnitudes, this necessitates the em-
pirical determination of an additional parameter 3, which was also obtained in this case
by assessing the algorithm’s performance on the test data?’, due to the absence of a
cross-validation set?!.

The results obtained for each of the UW speakers, including the § values used, are
illustrated in Figure 8.4. In this figure, the baseline HTK performance curves and the best
achievable recognition curves are shown as before, but the accuracy achieved by randomly
selecting transcriptions has been omitted for clarity. In each case two combined HTK-SPM
system curves are plotted, where these correspond to synthesising articulatory trajectories
in the SPM both with and without the explicit co-articulation model, respectively.

When the HTK-computed scores are combined with those predicted by the SPM, two
effects are clearly apparent:

1. There is no longer a significant degradation in recognition performance as M in-
creases.

2. The recognition improvements obtained for low values of M are substantially higher
than those achieved using the SPM-generated scores alone??.

As was the case in Figure 8.2, the majority of the improvement in recognition accuracy
is observed for 2 < M <5. In addition, with the exception of the speaker jw29, the rate
of improvement in this range is close to the best that could be achieved by any re-scoring
algorithm. For values of M greater than 10 however, little or no further improvement is
seen, since HTK and the SPM appear to be making similar acoustic scoring errors. The
absence of a continued degradation in recognition performance at large M is due to the
very low probability scores assigned to these transcriptions by HTK, which prevent them
from erroneously being selected as the best transcription hypotheses during re-scoring.

With the exception of the speakers jw27 and jw45, the recognition accuracies achieved
when re-scoring from articulatory trajectories synthesised with the explicit co-articulation
model are higher than the corresponding results obtained without this model. In the case
of the two former speakers, the differences between the recognition performances observed
with and without the co-articulation model do not differ significantly. The results obtained
therefore indicate that the more accurate articulatory modelling achieved using the explicit

20Kannan has proposed techniques for automatically optimising the parameters used to combine mul-
tiple probability scores for N-best hypothesis re-ordering, based on the minimisation of the average word
error [77]. In this case however, suitable values were determined by a random sampling of parameter space.

?'Schwartz et al. have suggested that a cross-validation set containing as many as 300 utterances may be
required to determine reliable values for the parameters used to combine the various acoustic and language
model probability scores in such a re-scoring algorithm [153].

22This is consistent with the N-best re-scoring performance reported by other authors, who found that
a re-scoring algorithm whose performance was worse than that of a standard HMM-based system when
used alone, yielded an increase in word accuracy when combined with the HMM-generated scores [5, 119].
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Figure 8.4: Word recognition accuracy as a function of the depth of the N-best list used as
input to the combined HTK-SPM re-scoring algorithm, for the UW speakers: (a) jw16 (b)
w27 (c) jw29 (d) jwl8 (e) jw24 (f) jwd5. The performances of the model using articulatory
trajectories synthesised both with and without the co-articulation model are illustrated,
along with the baseline HTK performances and the best achievable performance curves.
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co-articulation model results in improved recognition accuracy when used as a basis for
the re-scoring of N-best transcriptions.

Combined HTK-SPM weighting parameter

The optimum value of 3 for each speaker is negatively correlated with the baseline recog-
nition performance achieved by HTK. Thus the § values for jw27, jw24 and jw45—for
whom the baseline recognition rates are relatively low—are significantly larger than the
corresponding values for the other speakers. This is to be expected from the nature of
the combined score log(Peymp) defined in Equation 8.9, in which the value of 5 determines
the relative weight that is given to the SPM-computed scores. When the recognition per-
formance achieved by HTK is relatively poor, there is greater scope for improving this
performance through the use of the SPM-generated log probabilities, as illustrated in Fig-
ure 8.2. Thus the optimum values of § will be higher in these cases, reflecting an increased
confidence in the SPM-computed scores relative to those generated by HTK.

The value of § used will also affect the number of utterances whose transcription lists
are re-ordered by the re-scoring algorithm. For very low values of 3 the combined score
will be very similar to the HTK-produced log probability, and relatively few transcriptions
are likely to be re-ordered. As (3 increases, it is expected that a corresponding increase
in the number of transcriptions which are re-ordered will be observed. The number of
transcriptions re-ordered in this way for the data from each of the UW speakers are listed
in Table 8.2, for both the optimum value of § and the use of the SPM score alone (5=1).

Fraction re-ordered, Fraction re-ordered,

Speaker optimum (3 g=1
jwl6 37.3% 86.3%
w27 72.5% 82.4%
jw29 51.0% 86.3%
jwils 43.1% 74.5%
jw24 76.5% 88.2%
jw4b 66.7% 84.3%

Table 8.2: Percentages of test set utterances for each UW speaker whose N-best transcrip-
tion lists were re-ordered using both the combined HTK-SPM probability scores (optimum
() and the SPM scores alone (f=1).

As expected, the number of utterances whose hypothesis lists are re-ordered is higher
when using the SPM score alone than when using the optimum value of § to combine the
HTK and SPM scores. In addition, the higher optimum values of § for jw27, jw24 and
jw4b lead to a greater number of re-ordered transcriptions than is the case for the other
speakers.

By varying the value of 8 from 0 to 1, the sensitivity of the recognition performance to
the relative weights attached to the HTK and SPM scores can be determined. Figure 8.5
shows a plot of the recognition accuracy achieved as a function of § for the re-scoring of
an N-best list of depth 10 for the speaker jwl8, using articulatory data synthesised with
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the explicit co-articulation model.

(0]
a

oo
N

[00]
w

(o]
=

Word recognition accuracy, %
(o]
N

(0]
o

~
O
or

0.2 0.4 0.6 0.8 1

B

Figure 8.5: Word recognition accuracy as a function of 3, the weighting constant for the
HTK and SPM scores, where 0 =0 corresponds to using the HTK score alone, and =1
to using only the SPM score. The curve shown corresponds to re-scoring an N-best list of
depth 10 for the speaker jwl8, as beta is stepped from 0 to 1 in intervals of 0.01.

When $=0 the baseline HTK performance is obtained. As ( increases, an increasing
weight is placed on the SPM-generated score, and recognition accuracy increases sharply
until 8x0.07. Accuracy subsequently declines more steadily, to a value corresponding to
the use of the SPM score alone. While there is a relatively narrow band of # values which
yield recognition accuracies above 83%, any value of 8> 0 yields improved performance
compared with HTK for an N-best list of this depth.

The final relative error rate reductions achieved by re-scoring N =100 transcriptions for
each of the 51 test set utterances®® for each of the UW speakers are listed in Table 8.3. The
articulatory data were synthesised using the explicit co-articulation model, and combined
HTK-SPM probability scores computed from the optimum [ values were employed in the
re-scoring algorithm. In each case a significant reduction in the recognition error rate was
obtained.

8.5.2 Resource Management Data

The baseline word recognition accuracies achieved by the speaker-dependent HTK systems
for the RM speakers dasl and tab0 are listed in Table 8.4. The grammar scale factor G
was set to 13 for dasl and 17 for tab0, and the resulting word recognition errors are
considerably less than those listed in Table 8.1 for the UW data.

This significant performance improvement is largely due to the more accurate acoustic
modelling provided by the RM HTK models. A total of 5654 distinct cross-word tree-
clustered triphone models were used in the RM system, each with 3 emitting states?* and

2 Comprising a total of 390 words.

24Two emitting states for stops and diphthongs.
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Baseline Combined Relative
Speaker HTK error HTK-SPM error Improvement
jwl6é 21.1% 16.8% 20.4%
jw27 30.8% 26.6% 13.6%
jw29 25.6% 22.0% 14.1%
jwls 19.9% 16.3% 18.1%
jw24 34.6% 28.6% 17.3%
jwéb 29.7% 26.2% 11.8%

Table 8.3: Relative reductions in word recognition error rates for the UW speakers,
achieved over the baseline HTK performance by using combined HTK-SPM scores.

Speaker Baseline accuracy

dasl 91.51%
tab0 91.43%

Table 8.4: Baseline word recognition accuracies for RM speakers, using speaker-dependent
HTK models.

a single Gaussian distribution to model each of the 39 acoustic parameters. Including the
parameters used to model transition probabilities between states, this yields a total of
~ 1.2 million parameters in the RM acoustic models. This represents a 20-fold increase
in the number of parameters used compared with the UW system, and hence the baseline
recognition performance achieved is greatly improved.

SPM-based Re-scoring

The results obtained when using the SPM-computed log probabilities to re-score utterance
hypothesis lists of length N =100 are shown in Figure 8.6. A K;: K, ratio of 10 was used
for each speaker, and grammar scale factors of 25 and 15 were used for dasl and tab0
respectively. A higher K, : K. ratio is used for the RM speakers compared with the
UW speakers since more data are available to train the MLPs in the RM corpus, and
the corresponding acoustic error variances used to compute Es, , are lower; hence greater
significance is attached to the log probabilities computed based on Es,; , than E., .. As
in the case of the UW data, the values of these parameters were empirically determined
based on test set recognition performance. The articulatory representation used for each
speaker was that generated from the speaker-independent UW statistics using the explicit
co-articulation model.

While the error rates achieved by the SPM are consistently above those achieved by
randomly selecting transcriptions, there is only a very slight improvement in recognition
accuracy in both cases for 2< M <5. In general, the performance achieved by the SPM is
almost uniformly inferior to that of HTK for both speakers.
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Figure 8.6: Word recognition accuracy as a function of the depth of the N-best list used
as input to the SPM for (a) dasl (b) tab0. In addition to the performances achieved by
HTK and the SPM, the best achievable performances and the performances achieved by
randomly selecting transcriptions are also shown.

Simplified Probabilistic Model

Figure 8.7 shows a plot of the recognition performance obtained by using the simplified
probabilistic model described in Appendix B to re-score transcriptions up to a depth
of N =100 for the speaker dasl, where the conditional probabilities in Equations 8.12
and 8.13 have been retained in this example.
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Figure 8.7: Word recognition accuracy as a function of the depth of the N-best list used as
input to a simplified probabilistic model of transcription re-scoring for dasl. In addition
to the performances achieved by HTK and the probabilistic model, the best achievable
performance and the performance achieved by randomly selecting transcriptions are also
shown.

As was observed in Figure 8.3, the recognition accuracy improves for 2< M <5. In
this case however, the performance starts to degrade at a lower depth (M =20), and the
rate of degradation is also considerably increased. This behaviour is due to the decreased
probability of encountering the best transcription of an utterance at any given depth
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M >1, since many more utterances are correctly transcribed by the M =1 entries in the
case of the RM data, as compared with the UW results.

Combined HTK and SPM-based Re-scoring

The results obtained for each of the RM speakers using combined HTK-SPM log proba-
bility scores, including the 3 values used, are illustrated in Figure 8.8. Although N =100
transcriptions were re-scored for each test set utterance®, the plots show only the results
obtained up to M =20, in order to provide additional detail at low values of M; both the
combined system curves remain unchanged for M > 20.
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Figure 8.8: Word recognition accuracy as a function of the depth of the N-best list used
as input to the combined HTK-SPM re-scoring algorithm, for (a) dasl (b) tab0. The
performances of the model using articulatory trajectories generated from both re-estimated
synthetic statistics and the speaker-independent UW statistics are illustrated, along with
the baseline HTK performances and the best achievable performance curves.

In this figure, the baseline HTK word recognition accuracies and the best achievable
recognition curves are indicated, but the accuracies achieved by randomly selecting tran-
scriptions have once again been omitted for clarity. In each case two combined system
curves are plotted. These correspond to synthesising articulatory trajectories in the SPM
from re-estimated synthetic articulatory statistics and speaker-independent X-ray statis-
tics drawn from the UW data respectively. In each case the explicit model of co-articulation
was used during trajectory generation.

As was the case for the UW data, the recognition performance of the combined HTK-
SPM system exceeds that of the SPM-based system alone. For both of the speakers
shown the error rate achieved using articulatory trajectories synthesised from speaker-
independent X-ray statistics is less than the corresponding error using re-estimated syn-
thetic statistics. This difference is consistent with the significantly lower acoustic errors
obtained at the outputs of the MLPs used to approximate the acoustic vectors from
speaker-independent X-ray articulatory data, as illustrated in Figures 7.23 and 7.24.

2 This was true of all the test set utterances with the exception of two utterances for tab0, for which only
2 and 39 hypotheses were generated respectively, due the small number of words in their transcriptions.
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For both speakers the combined system trained on speaker-independent X-ray data
achieves an improvement in recognition accuracy compared with HTK. The magnitudes
of these improvements are less than those achieved for the UW data, supporting the
hypothesis that greater performance improvements are achieved when the absolute recog-
nition accuracy achieved by HTK is low. Relatively small values of § are used, and once
again the reduction in recognition error rates is achieved when M <10, while recognition
accuracy is steady for larger values of M.

Combined HTK-SPM weighting parameter

The number of transcriptions re-ordered for the data from each speaker are listed in
Table 8.5, for both the optimum value of 3 and the use of the SPM score alone (f=1). In
each case the values correspond to the use of speaker-independent articulatory statistics
for generating articulatory trajectories. As observed with the UW data, the number of
utterances whose hypothesis lists are re-ordered is higher when using the SPM score alone
than when using the optimum value of 3 to combine the HTK and SPM scores.

Fraction re-ordered, Fraction re-ordered,

Speaker optimum (3 g=1
dasl 10% 68%
tab0 16% 75%

Table 8.5: Percentages of test set utterances whose NN-best transcription lists were re-
ordered by the combined HTK-SPM re-scoring algorithm for the RM speakers. Values are
given for the optimum [ value and for f=1.

Figure 8.9 shows a plot of the recognition accuracy obtained as a function of the param-
eter (3 for the re-scoring of an N-best list of depth 10 for the speaker dasl, using articulatory
data synthesised using the explicit co-articulation model from speaker-independent X-ray
statistics.

When =0 the baseline HTK performance is obtained. As [ increases, an increasing
weight is placed on the SPM-generated score, and improved recognition accuracy is ob-
tained for 0 < (3 <0.4. Recognition performance subsequently declines for larger values of
0, to a level significantly below that achieved by HTK when g=1.

The final relative error rate reductions achieved by re-scoring N =100 transcriptions

for each of the 100 test set utterances®

6 comprising 848 and 898 words for dasl and
tab0 respectively are listed in Table 8.6. The articulatory data were generated using
the explicit model of co-articulation from speaker-independent X-ray statistics, and the
combined HTK-SPM probability score computed using the optimum [ value was used to
re-order the transcriptions. In each case a reduction in the relative error rate is achieved,
although the magnitudes of these reductions are considerably less than those achieved for

the UW corpus.

Z6Except in the case of the shortened lists for the two tab0 utterances as described previously.
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Figure 8.9: Word recognition accuracy as a function of 3, the weighting constant for the
HTK and SPM scores, where 0 =10 corresponds to using the HTK score alone, and =1

to using only the SPM score. The curve shown corresponds to re-scoring an N-best list of
depth 10 for the speaker dasl, as beta is stepped from 0 to 1 in intervals of 0.01.

Baseline Combined Relative
Speaker HTK error HTK-SPM error Improvement
dasl 8.49% 7.90% 6.9%
tab0 8.57% 8.06% 6.0%

Table 8.6: Relative reductions in word recognition error rates for the RM speakers,
achieved over the baseline HTK performance by using combined HTK-SPM scores.



Chapter 9

Summary and Conclusions

9.1 Introduction

This dissertation has described the design and implementation of a novel self-organising
articulatory speech production model suitable for use in a continuous speech recognition
framework. In this chapter, the design and implementation of the component models are
briefly reviewed, and the results obtained from evaluations performed on two separate
speech databases are summarised. Finally, some recommended future areas of research
are identified, and a concluding overview of the dissertation is presented.

9.2 Articulatory Model
The approach taken to articulatory modelling in the SPM can be summarised as follows:

e The model focuses on articulatory positions at the midpoints of phonemes, which
are characterised by smoothly-varying parametric pdfs during system training, and
directly predicted from time-aligned phonetic strings during articulatory synthesis.

e Systematic co-articulatory effects are assumed to be motivated principally by a de-
sire to achieve an economy of articulatory movement during periods of maximum

articulatory effort, within allowable perceptual constraints.

e The amount of articulatory effort required in a particular context is proportional to
the acceleration of the articulator concerned. This acceleration is estimated by a
simple approximation to the curvature of an articulatory trajectory.

e Correlations between this curvature measure and the distribution of positional values
are used to predict co-articulated articulatory positions at the midpoints of phone-
mes, from which articulatory trajectories are constructed by linear interpolation.

The model uses a set of exemplar articulatory trajectories to automatically extract
suitable values for each of its parameters, and the resulting system is used to predict
articulatory movements corresponding to time-aligned phonetic strings.

141
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9.2.1 Initial Articulatory Trajectories

In the UW corpus, explicit X-ray articulatory trajectories are provided which can be used
to train the articulatory models. By contrast, the RM corpus provides only acoustic
data, and hence initial articulatory trajectories were synthesised for this data set both
from speaker-independent statistics extracted from the UW corpus, and by using dynamic
programming to invert an articulatory-acoustic codebook.

Synthetic Trajectories from Codebook Inversion

A codebook containing approximately 100,000 [articulatory vector, acoustic vector| pairs
was generated by using a set of synthetic articulatory parameters to define piece-wise
constant vocal tract shapes. These shapes were used to control an explicit Kelly-Lochbaum
vocal tract model, through which the appropriate excitation signals were propagated to
synthesise the corresponding acoustic waveforms.

Dynamic programming was then used to determine the most probable articulatory
vector sequence given an acoustic vector string, based on both the acoustic and articula-
tory errors. The resulting synthetic articulatory trajectories yielded poor discrimination
between the phonemes, and an improved articulatory set was therefore computed using
linearised Kalman filtering.

9.2.2 Positional Characterisation

The articulatory parameters were characterised by sampling their positions at the mid-
points of phonemes, the temporal locations of which were determined from automatically-
generated phonetic alignments. As a first approximation to articulatory behaviour, the
positional variations observed in each articulatory parameter were modelled independently,
and single Gaussian distributions were used to model positional variability at the midpoints
of phonemes for each [articulator, phoneme] pair. The resulting probabilistic distributions
provide an appealing model of articulatory movement compared with fixed point targets
and window models, since the need for context-dependent targets is greatly reduced or
eliminated, and a statistically-based model of co-articulation based on most probable ar-
ticulatory positions is possible.

The positional sample distributions for the UW X-ray data and the re-estimated syn-
thetic RM data were generally found to be unimodal. When the Kolmogorov-Smirnov
statistic was used to assess the probability that the observed data were drawn from the
hypothesised parametric distributions however, the use of a single Gaussian to model each
data set was found to be an accurate representation in only a minority of cases, due to
skews on the sample data sets.

Sources of Variability

Both random and systematic effects give rise to the positional variations observed in
the resulting samples, and the articulatory model seeks to characterise those systematic
components which are correlated with the phonetic sequence. These in turn arise from
both prosodic and co-articulatory effects, and only the latter are explicitly modelled in



CHAPTER 9. SUMMARY AND CONCLUSIONS 143

the system, while the former are treated as additional random effects since they are more
strongly correlated with the phrase structure than the identities of the individual words
uttered.

9.2.3 Explicit Co-articulation Model

Co-articulation is the allophonic variation in a phoneme according to its phonetic context.
Both carryover and anticipatory co-articulatory effects are observed in speech, whereby
the articulatory constraints of preceding and following sounds influence the articulation
of a given sound, respectively. These context-driven positional variations are assumed
to be motivated principally by a desire to achieve an economy of articulatory movement
during periods of maximum articulatory effort. They are constrained in magnitude by the
degree of specification of the articulator concerned, since the perceptual constraints for
the phoneme being produced must also be satisfied.

The articulatory effort required in a particular context is therefore assumed to be cor-
related with the achieved articulatory position. The required effort itself is proportional
to the acceleration of the articulator in question, which in the SPM is modelled indepen-
dently of those of the other articulators as a first approximation. Relative accelerations are
estimated from the relative curvatures of the articulatory trajectories, which are approx-
imated by computing the differences between the linear interpolation gradients leading
into and out of the midpoints of the phonemes.

Correlations between Positions and Curvatures

Correlations between articulatory positions and accelerations (and hence trajectory cur-
vatures) are then used to predict co-articulatory positional variations at the midpoints of
phonemes. Strong correlations were observed between these two variables at the midpoints
of phonemes for most [articulator, phoneme] pairs. Both positive and negative correlations
were observed for the RM data, since the articulatory trajectories in this case were esti-
mated using linearised Kalman filtering, and were not based on physiological constraints.
For the UW corpus however, the correlations were almost uniformly positive, and were
interpretable in terms of the expected degree of articulatory specification. For both the
UW and RM data sets, the significance of each correlation coefficient was assessed using
Student’s T-test, and insignificant coeflicients were set to zero before using the correlations
to predict positional variations.

9.2.4 Synthesis of Trajectories

Complete articulatory trajectories were synthesised from time-aligned phonetic strings by
specifying co-articulated articulatory positions at the midpoints of the phonemes, and
interpolating linearly between them. This technique provides an implicit model of co-
articulatory effects, since the phonetic context will strongly influence the rate of change
in an articulator’s position leading into and out of a phoneme. Even in the absence of
the explicit model of co-articulation at the midpoints of phonemes, strong co-articulatory
effects will therefore be observed.
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A direct assessment of the articulatory modelling accuracy achieved was only possible
for the UW data set, as reference articulatory trajectories were unavailable for the RM
corpus. Articulatory trajectories were therefore synthesised both with and without using
the explicit model of co-articulation, for each of the UW test set utterances. For all six
UW speakers, the error contribution from each articulator decreased when the explicit
co-articulation model was applied, and the overall articulatory error computed on an
utterance-by-utterance basis was also reduced in every case.

9.3 Acoustic Model

The role of the acoustic model is to predict parameterised acoustic vectors from syn-
thetic articulatory trajectories. The key features of the acoustic model described in this
dissertation are the provision of:

e A robust partially non-linear mapping from articulatory space to acoustic space
which is used to predict the most likely parameterised acoustic vector sequence
corresponding to a set of articulatory trajectories.

e A characterisation of the expected acoustic variability at each frequency and at each
point in time, in terms of both the raw log spectral energy and the distribution of
energy as a function of frequency within each acoustic vector.

e A separate mapping from articulatory vectors to acoustic vectors for each phoneme
in the input set.

e A modelling paradigm in which the values of the parameters of each acoustic model
were extracted automatically during optimisation on a training data set.

Separate multi-layer perceptron models were used to approximate the mapping from
articulatory vectors to acoustic vectors for each phoneme.

9.3.1 Data Preparation

The articulatory input data were normalised to a mean of zero and a standard deviation
of one before presentation to the networks. This reduced the need for scaling of the
input values by the first layer of the MLP, and restricted the magnitudes of the MLP’s
parameters to relatively small values.

The acoustic signal was parameterised using 24 Mel-scaled log spectral coefficients for
each speech frame. The relatively high dimensionality of these acoustic vectors permitted
accurate acoustic matching to be performed, and the use of a parameterisation in the log
frequency domain was chosen to approximate the signal analysis which takes place in the
human cochlea.

The log spectral target vectors were also scaled, by subtracting the mean of each
individual vector from its coefficients. This energy normalisation was used to remove biases
on the raw acoustic vectors, which result from changes in the intensity of a speaker’s voice.
The method was most successful in removing biases where the energy was distributed
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across the frequency range (such as in vowels) than when it was concentrated in a frequency
sub-band (such as in the unvoiced fricatives). The expected raw log spectral energy at
each frequency for a given phoneme was modelled separately, by computing the mean
and variance of each log spectral vector coeflicient over all of the acoustic training vector
examples for each phoneme.

9.3.2 Network Training

A separate set of MLLPs was used to approximate the acoustic mapping to normalised log
spectral vectors for each phoneme!. This greatly reduced the complexity of the modelling
task for each acoustic model, and obviated the need to explicitly specify the excitation
sources during synthesis, since these are implicitly defined by the phoneme’s identity.

The parameters of the MLPs were optimised using the RPROP algorithm, and cross-
validation was used to prevent over-fitting to the training data. The number of hidden
nodes used in each network’s hidden layer was selected based on the network’s performance
on the cross-validation set, and three networks were trained on the data for each phoneme
from different random initialisations. The outputs of each set of three networks were
averaged when predicting normalised log spectral vector values, and the error variances
at the network outputs were computed over the training sets and used to characterise the
uncertainty in these predicted values?.

9.3.3 Acoustic Vector Prediction

The performance of the acoustic models in predicting normalised acoustic vectors was
assessed by computing a weighted sum of the root mean squared errors obtained on each
phoneme-specific data set. For each of the UW speakers, the MLP mappings were found
to outperform regression systems trained using a least mean squared error criterion. In
every case, averaging the outputs of three separate networks led to improved accuracy
compared with using a single network alone.

MLP mappings were trained on articulatory trajectories synthesised for each of the
utterances in the UW corpus both with and without the explicit model of co-articulation.
The data incorporating the co-articulation model yielded a reduced acoustic error for
every speaker except jw45, for whom the two errors were very similar. The acoustic errors
obtained when training the networks on both synthetic and X-ray articulatory data were
also compared for one UW speaker. Similar errors were obtained in each case, with the
models trained on synthetic data generated with the explicit co-articulation model actually
achieving less error than the equivalent X-ray system on the test data. This last effect
was found to be due to outliers in the X-ray articulatory data set, which were excluded
by the parametric models used in the synthetic case.

Acoustic models were then optimised for the RM corpus, using both the synthetic re-
estimated articulatory data and articulatory trajectories generated from speaker-indepen-

'Except in the case of the UW corpus, in which some of the individual phonetic data sets were merged
with acoustically similar sets before training the models.

2These error variances were also used in the re-estimation of articulatory positions using linearised
Kalman filtering for the synthetic RM data set.
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dent UW statistics. Significantly greater acoustic accuracy was obtained using the speaker-
independent UW statistics, indicating that this technique was more successful than the
inversion of the articulatory-acoustic codebook for generating articulatory trajectories for
speakers for whom X-ray data are unavailable.

9.4 Recognition System

The SPM was used to augment the performance of the HTK speaker-dependent continuous
speech recognition system according to the following algorithm:

e HTK was used to generate N hypotheses as to the probable transcription of each
test set utterance, along with their phonetic time-alignments.

e From each of these transcriptions a parameterised acoustic representation was syn-
thesised by the SPM, comprising both the most probable acoustic vector sequence
and the associated variance predictions.

e The parameterised acoustic vectors corresponding to each of the N hypothesised
transcriptions were compared with those of the input speech, and the transcription
which yielded the best acoustic match was chosen as the most likely hypothesis.

The goal of using the SPM in this way was to provide a more accurate description of
contextual effects in the acoustic signal by explicitly modelling co-articulation in the ar-
ticulatory domain. The conventional system was retained in this framework as it provides
both an efficient method for searching for likely hypotheses, and a technique for generating
initial probability estimates for each of the resulting transcriptions.

9.4.1 Generation of N-best Lists

The HMM-based system used both an acoustic model and a language model to generate
transcription hypotheses. Since the goal of implementing the combined recognition system
was to compare the acoustic modelling accuracy of HTK with that of the SPM, a null
grammar was used when generating these N-best hypothesis lists. The language model
scores associated with the grammar were scaled by an empirically-determined constant
before being combined with the corresponding acoustic model scores, to reduce the number
of spurious words which were otherwise inserted into the transcriptions produced.

The N-best hypotheses were generated from word-level lattices, and the test set ut-
terances in the UW corpus were hand-segmented into sentence-length acoustic files before
performing recognition. A total of 100 transcription hypotheses were generated for the 51
test utterances per speaker in the UW corpus, and the 100 test utterances for each of the
two RM speakers dasl and tab0.

Aligning the Transcriptions

An alignment of the transcriptions at the sub-phonemic level was required to identify the
component phones of stop and diphthong phonemes. The HMMs used to model these
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phonemes were therefore modified to contain just two emitting states, which align to the
closure and burst sections of stops and the initial and final voiced sections of diphthongs,
respectively. The most probable alignment of each transcription to the individual states
of the corresponding HMMs was then automatically generated, and used to identify these
phone boundaries.

9.4.2 Re-scoring Transcriptions

The SPM was used to re-synthesise parameterised acoustic vectors corresponding to each
transcription, which were then compared with a parameterised version of the original
speech waveform. Two separate acoustic probability measures were computed, which
were combined in a weighted sum to yield an overall acoustic score. The first of these
was computed by comparing the normalised log spectral vectors predicted by the MLPs
with the normalised vectors corresponding to the original speech waveform. The squared
differences between these vectors were scaled by the error variances at the MLP’s outputs,
and converted to log probability scores.

The second measure was introduced to model the expected unscaled, or “raw” log
energy in each spectral vector, which was not modelled by the MLPs. The mean and
variance of each log spectral vector were computed over all of the vectors in the training
data set on a phoneme-by-phoneme basis. During acoustic scoring, the spectral vectors
corresponding to the original speech were then compared with the mean log spectral
vectors for the phonemes concerned, and probability scores were computed based on the
differences between the observed vectors and these means.

As was the case for the HMM-based system, the resulting acoustic scores were combined
with those predicted by a language model. The N-best transcription hypotheses were
then re-ordered, either based on the SPM-produced log probability scores alone, or using
a weighted sum of these scores and those originally estimated by HTK.

Compensation for Alignment Errors

Due to errors in the HTK-generated phonetic alignments, frames were occasionally mis-
labelled in the regions of phonetic boundaries. The result of this effect was a dispropor-
tionate contribution to the acoustic error from predicted acoustic vectors within one frame
of these boundary locations. This effect was particularly pronounced in the case of stops
and nasals, hence an approximate technique was developed for re-aligning the boundaries
of these phonemes by up to one frame. As a result of this boundary re-alignment algo-
rithm, the contributions to the total error from these vectors were reduced to levels similar
to those from other frames.

9.4.3 Recognition Results

Recognition performance was assessed by measuring the word recognition accuracies of the
various systems. Homonyms in the task vocabularies were grouped into equivalence classes
during recognition, since the null grammar was unable to distinguish between them, and
they otherwise gave rise to a random component in the computed error rates.
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University of Wisconsin Corpus

The baseline word recognition accuracies achieved by HTK on the test set utterances for
the six UW speakers varied from a low of 65.5% to a high of 80.1%. The N-best lists
corresponding to each of these utterances were initially re-ordered based on the SPM-
computed log probability scores alone. Significant increases in recognition accuracy were
observed for 2< N <5 for all speakers except jw29, but recognition performance was either
steady or declined for larger values of IV in each case. The relatively poor performance
at high values of N can be explained in terms of the decreasing probability of observing
the optimum transcription as N increases, as demonstrated by the use of a simplified
probabilistic re-scoring model.

The recognition accuracies achieved by the SPM at N =100 were significantly higher
than those achieved by HTK for two of the speakers, were significantly less for one speaker,
and were comparable for the remaining three. In addition, the performance of the SPM
was negatively correlated with that of HTK, so that performance increases were generally
greater for speakers for whom the baseline HTK recognition accuracy was relatively low.

The transcription hypothesis lists were then re-ordered based on a weighted combina-
tion of the SPM and HTK probability scores, where the weighting coefficient used was
empirically determined®. Significantly improved recognition accuracies were obtained, and
the performance gains achieved did not decline as IV increased. In the majority of cases
higher recognition accuracy was obtained when using articulatory data generated using
the explicit co-articulation model than without it, and maximum relative reductions in
the word error rates of between 10% and 20% were obtained across the six speakers.

Resource Management Corpus

The performance increases achieved on the RM data set were significantly smaller than
those obtained for the UW corpus, reflecting the much greater acoustic modelling accuracy
achieved by the RM HMMs. When the SPM-generated scores alone were used to re-order
the N-best lists, only very slight performance improvements were observed at low values
of N, and the SPM’s recognition accuracy at N =100 was significantly less than that of
HTK for both speakers.

The performance achieved using combined HTK-SPM probability scores was signif-
icantly better than the performance achieved using SPM-generated scores alone. SPM
systems were trained on articulatory data generated using both re-estimated synthetic
articulatory statistics and speaker-independent X-ray statistics, and improved recognition
accuracy was obtained in the latter case for both speakers?. Using the combined HTK-
SPM scores and an SPM system trained from articulatory trajectories generated from
speaker-independent X-ray articulatory statistics, maximum relative error rate reductions
of 6.9% and 6.0% were obtained for the two RM speakers studied.

3The recognition results were found to be sensitive to the value of this weighting coefficient when the
proportion of the SPM-generated score used was small, but were relatively insensitive to it when the
HTK-generated score was assigned the smaller weight.

“This result is as expected from the performance of the MLPs used in the RM acoustic models.
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Number of Parameters

The articulatory models used in the SPM comprise 224 parameters to model the means
and variances of the positional and curvature distributions over 56 phonemes for each
articulator. A further 56 correlation coefficients are provided per articulator to yield a
total of 280 parameters over 16 articulators, or 4480 parameters in the articulatory models
overall. The MLPs used in the acoustic model for the UW corpus contained a total of
~21, 000 parameters for each random initialisation across the 52 phonemes®, to give a total
of = 63,00 parameters in the acoustic models used to approximate log spectral shapes.
A further 48 parameters per phonetic data set were also used to model raw log spectral
vector magnitudes. The total number of parameters in the SPM trained on the UW corpus
was therefore approximately 67,000, which represents an increase of approximately 10%
over the ~=60,000 parameters used in the corresponding HTK system.

The articulatory model used in the SPM for the RM corpus contained the same number
of parameters as the UW SPM system, but due to the larger average size of the MLP
hidden layers used on the RM data, approximately 131,000 parameters were used in the
RM acoustic models, to yield a total of approximately 135,000 parameters. This represents
almost a 90% reduction compared with the 1.2 million parameters used in the HTK RM
system.

9.5 Future Work

The application of articulatory speech production models to the task of automatic speech
recognition is a field which is far from mature. A review of many attempts to incorporate
articulatory information into speech recognition algorithms was given in Chapter 2, and
much research remains to be carried out before the true potential of approaches such as
these can be determined. In this section some areas are identified which should prove
fruitful in the further development of the self-organising system described in detail in this
dissertation.

9.5.1 Articulatory Model

While the articulatory model presented in Chapter 3 has been shown to be successful in
capturing some of the systematic variability in articulatory positions due to co-articulatory
effects, this model is limited in many ways. Firstly, the assumption of independence
of articulatory movements is clearly implausible and there is considerable scope for the
development of alternative articulatory parameterisations®. The potential advantages to
be gained in this area include:

e The ability to model the inter-dependencies of articulators and the resulting com-
pensatory articulations.

5The reduced number of distinct phonetic sets in the acoustic models for the UW corpus are due to the
merging of 4 phonetic data sets with other acoustically similar sets.

S5Relatively straightforward approaches to deriving articulatory parameterisations of reduced dimension
include principal components analysis and linear discriminant analysis.
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e The identification of a transformation of the basic Cartesian articulatory parameter
space to a co-ordinate system in which co-articulatory effects are more naturally
represented.

Secondly, the current model explicitly predicts articulatory parameter values only at
the midpoints of phonemes, while a more complete description of articulatory positional
variability would specify articulatory positions at all times during the production of an
utterance. Future research into biologically-plausible articulatory models may have much
to offer in this area, since current biomechanical systems are typically limited to descriptive
models of articulatory movement and generally rely on the hand-tuning of parameters. In
the absence of a predictive, trainable biological model of articulation, the system described
in this dissertation seeks to predict co-articulatory variation from a statistically-based
descriptive model of articulatory positions. Refinements which could be made to this
positional model include:

e The use of more complex distribution shapes to model non-Gaussian articulatory
positional samples.

e The use of multi-modal distributions where multiple articulation strategies are pos-
sible.

o A systematic investigation of the validity of using the midpoints of phonemes to char-
acterise articulatory positions, and the possible identification of phoneme-specific
sampling points.

Given a descriptive model, the SPM attempts to predict deviations from mean artic-
ulatory positions from a knowledge of the time-aligned phonetic sequence alone. In the
current model this is achieved by using a simple approximation to the local curvature of
an articulatory trajectory. Further work in this area could include:

e A more accurate measure of articulatory effort than the current linear gradient-based
approach.

e The use of a larger phonetic context than the immediately neighbouring phonemes
when determining the most probable articulatory movements.

o The identification of additional features which are correlated with positional varia-
tions, such as articulatory velocities or prosodic effects.

Once features which are correlated with systematic articulatory positional variation
have been identified—such as the simple curvature-based estimate of articulatory effort
currently used—a more sophisticated technique for predicting co-articulated positions
would be likely to result in increased modelling accuracy. Specifically:

e The degree of co-articulatory deviation from mean articulatory positions need not be
symmetrical with regard to the preceding and following contexts, so that differing
emphases could be attached to carryover and anticipatory co-articulatory effects,
respectively.
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e Similarly, physiological limitations in the vocal tract lead to asymmetrical deviations
from mean articulatory positions in terms of lateral or vertical movements, and this
should be reflected in the degree of co-articulatory variation predicted by the model.

There is considerable scope for future research into the optimisation of articulatory
representations. In Section 7.4.1 a technique for re-estimating articulatory positions at the
midpoints of phonemes was briefly described, in which an inversion of the acoustic model
was used within a linearised Kalman filtering algorithm to derive updated articulatory
trajectory estimates. Future research along these lines could include:

e Iterative re-estimation of the parameters of the articulatory and acoustic models
until the optimum joint articulatory-acoustic performance is obtained.

e Re-estimation of articulatory positions at all sample points, rather than simply at
the midpoints of phonemes.

e Relaxation of the constraint that the articulatory parameters model physiological
structures in the vocal tract, to permit an appropriate articulatory representation
(or partial representation) to be learned. Preliminary experiments into the use of the
acoustic model in the SPM to hypothesise such an additional articulatory variable
have been described, although the general utility of this technique has yet to be
demonstrated [13].

Finally, the dissimilar acoustic modelling results obtained on the RM corpus when
using two different approaches to synthesising articulatory data from an acoustic repre-
sentation imply that the nature of the articulatory representation used in the absence of
X-ray training data is of considerable importance. For the techniques described in this dis-
sertation to have wider applications for speech recognition applications, reliable methods
for deriving accurate articulatory representations for speakers for whom X-ray articulatory
data are unavailable are required. Possible further research in this area could include:

e The use of improved articulatory-acoustic inversion techniques: eg. by hand tuning
the parameters of the vocal tract model used to construct the articulatory-acoustic
codebook, so that the resulting acoustic waveforms more closely match those of the
target speaker.

e Investigation of alternative techniques for developing speaker-independent articula-
tory representations from X-ray data sets.

e The further development of techniques for adapting an articulatory representation
to a particular speaker, eg. using the iterative re-estimation techniques suggested
above.

Despite the considerable advances made to date, there remain many unsolved problems
in the area of articulatory modelling, and it appears likely that it will be many years before
a reliable, accurate predictive model of articulatory movements will be developed.
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9.5.2 Acoustic Model

The acoustic model used in the SPM was chosen on the basis that it offers a self-organising,
robust partially non-linear mapping in which acoustic variability is explicitly modelled.
The disadvantage of this approach is that it fails to make use of information concerning
the nature of the human vocal tract. Future research into this component of the model
might therefore include:

e The development of automatically-trainable explicit vocal tract models, both in
terms of the derivation of a suitable set of control parameters and the automatic
adjustment of the parameters controlling the geometry of the tract.

o Investigations into the provision of a technique for characterising acoustic variability
in an explicit vocal tract model, either directly in acoustic space or indirectly through
the specification of articulatory uncertainty.

Given that a self-organising implicit acoustic model is to be used until such an explicit
vocal tract model is available, numerous alternative approaches to providing acoustic vec-
tor predictions are possible. Firstly, in terms of the sub-division of the articulatory input
space:

e A smaller number of distinct acoustic models could be employed, for example via the
use of separate models for broad phonetic categories rather than phoneme-specific
models. The combination of data sets would reduce the problem of discontinuities at
phonetic boundaries, and should lead to a reduction in the total number of parame-
ters in the system though parameter sharing. The drawback with such an approach
is the corresponding increase in the complexity of the individual acoustic models.

e A larger number of distinct models could be used, for example by using a hierarchical
mixture of experts to infer a further sub-division of the data for each phoneme, in
an analogous manner to the individual states used in HMM-based approaches.

In addition, different models could be used for the acoustic mappings themselves, such
as:

e Bayesian ANNSs, which use hyper-parameters instead of cross-validation to prevent
over-fitting during training.

e Recurrent neural networks, which could be used to model the inter-dependence of
successive articulatory vectors presented to each network mapping.

e Linear models which avoid the problems of over-fitting and non-robustness inherent

in least mean squared error regression.

Finally, alternative acoustic output vector representations could be used:
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e The use of MFCC parameters would provide a more compact spectral representation,
in which energy normalisation is automatically provided for all but the lowest-order
acoustic parameter. The disadvantages of such an approach are that it leads to a
more complex acoustic mapping, and to acoustic errors which are difficult to inter-
pret.

e Linear predictive coding (LPC) coefficients could be employed, since these represent
the response of an all-pole filter approximation to a vocal tract transfer function,
and hence are closely related to the parameters which directly control the vocal tract
shape. This technique is less appropriate for representing unvoiced speech frames
however, and does not provide the opportunity for Mel-scaling the frequency range
to match human auditory perception.

e Non-static acoustic parameters could be synthesised, such as the “delta” parameters
commonly used in HMM-based systems. The aim of the articulatory model in the
SPM is to capture the salient characteristics of articulatory motion however, so that
dynamic aspects of the spectral representation need not be explicitly modelled by
the acoustic model. Nevertheless, the provision of these parameters might serve to
partially compensate for any inadequacies in the articulatory model.

As was the case for the articulatory model, there are few aspects of the acoustic model
which might not benefit from further research, whether self-organising implicit models are
retained or more explicit knowledge-based approaches are implemented.

9.5.3 Recognition System

The defining characteristics of the combined HTK-SPM recognition system are the lengths
of the transcription units which are re-synthesised and the techniques used to score the
resulting synthetic acoustic signals. Possible modifications to the transcription units in-
clude:

e The use of fewer words in each utterance transcription. This would lead to increased
efficiency, as a given depth IV of the list of hypotheses generated will produce greater
linguistic diversity for shorter utterance lengths, and hence an increased chance of
observing the correct transcription.

o Alternatively, transcription lattices themselves could be re-scored. This would lead
to a further increase in efficiency, as the individual sub-lattices typically provide

relatively few word confusions’.

The acoustic scoring technique currently used provides separate models for raw log
energy coeflicients and energy-normalised spectral shape coefficients. Scaled acoustic dif-
ferences are converted to log probabilities, and an approximate boundary re-alignment

"Consider for example a very simple lattice for a two word utterance in which five different alternatives
are postulated for each word. In an N-best approach there are 5 x 5 = 25 possible transcriptions, but
if the initial and final sub-lattices are separately re-scored then only 5 + 5 = 10 different comparisons
need be made, where each of these comparisons is approximately half the length of the 25 utterance-level
comparisons.
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algorithm is used. Once again, there are numerous alternative strategies which could be
investigated. For example:

e An acoustic error based not only on static acoustic vectors but also on dynamic
spectral features could be used. As stated previously, this approach is somewhat
counter-intuitive in the SPM as dynamic characteristics are intended to be modelled
in the articulatory domain.

e The acoustic parameterisation used for acoustic comparisons need not be that di-
rectly synthesised by the acoustic model, but may be one derived from it. For
example, more complex auditory scene analysis techniques could be used, in which
energy concentrations in the acoustic signal are explicitly modelled.

e The boundary re-alignment algorithm could be extended to investigate boundary
shifts of greater than one frame, or additional context-dependent shifts where the
HTK-produced alignment was frequently observed to be inaccurate.

e The technique used to combine acoustic scores based on energy-normalised log spec-
tral shapes and raw log spectral energies could be refined by optimising phoneme-
specific weight parameters.

e The quality of the HTK-generated alignment itself could be improved, by providing
a secondary alignment pass at a higher frame rate where the acoustic features are
rapidly changing. In this way the duration and dynamics of events such as stop
bursts could be more accurately characterised.

Finally, the predicted articulatory representation itself could be used directly in a recog-
nition algorithm, for example by augmenting the acoustic observation vectors presented
to an HMM-based system with articulatory parameter vectors®.

9.6 Conclusions

This dissertation has described the design and implementation of a novel self-organising
articulatory speech production model suitable for use in a continuous speech recognition
framework. The principal features of the system are:

e The provision of an explicit predictive time-domain model of the articulatory mech-
anism in general, and co-articulation in particular.

e The synthesis of a probabilistic parameterised acoustic representation of the speech
signal.

e The computation of logarithmic probability scores from a comparison of the synthe-
sised acoustic output with that of an input utterance.

8 Alternatively the articulatory representation alone could be used to decode phonetic labels, as discussed
in Chapter 2.
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e The ability to extract all of the parameters of the articulatory and acoustic models
automatically from a set of training exemplars.

The explicit predictive model of co-articulatory variation yields a significant increase
in articulatory modelling accuracy over the use of interpolation between mean articula-
tory positions alone, and good approximations to X-ray articulatory trajectories can be
achieved.

In the absence of X-ray data, synthetic articulatory trajectories suitable for training
the system can be generated either by inverting an articulatory-acoustic mapping, or from
speaker-independent statistics extracted from the available X-ray data. The results of
evaluating these two techniques indicate that the latter approach yields a considerably
more useful articulatory representation in terms of the prediction of acoustic vectors.

The model was applied to the task of re-scoring N-best utterance transcriptions gen-
erated by HTK. The results obtained using articulatory models trained from X-ray data
indicate that given an appropriate articulatory representation, significant improvements
in word recognition accuracy are possible. More importantly, statistics extracted from the
X-ray data for a small set of speakers provide a suitable starting point for the prediction
of articulatory movements from textual transcriptions alone. Preliminary results indicate
that recognition performance improvements can be gained by using such a technique for
speakers for whom X-ray data are not available.

The fact that these performance improvements are obtained using relatively simple ar-
ticulatory and acoustic models—the latter production model uses only 10% of the number
of parameters of the HTK system—indicates that acoustic modelling accuracies signifi-
cantly better than those achieved by HMM-based systems should be attainable through
further optimisation of the system.

The recognition results obtained using the self-organising articulatory production model
described in this dissertation therefore support the hypothesis that the future of computer
speech recognition lies not within a purely acoustic paradigm, but rather at the interface
between the articulatory and acoustic domains.



Appendix A

Phoneme Set

The basic phoneme set used in this dissertation is derived from that originally described
by Lee [93]. This set comprises the 47 distinct phonetic units listed in Table A.1.

This table lists each of the phonemes, along with an example of their use in American
English words, and their corresponding IPA symbols. Apart from the standard vowels,
diphthongs, stops®, fricatives and nasals, three additional phonetic categories are repre-
sented:

e The alveolar flap /dx/ is explicitly included. This phoneme is itself a stop, and is
articulated by a fast tap of the tongue tip on the alveolar ridge.

e The compound /ts/ = /t/+/s/ is included as a separate aspirated fricative.

e The unreleased stops /dd/, /kd/, /pd/ and /td/ are also explicitly represented,
where these phonemes occur only word-finally.

As described in Section 5.3.2, this basic phoneme set is modified before being used in
the self-organising model of speech production:

e Each voiced and unvoiced stop phoneme is modelled as an obligatory closure followed
by an optional burst, so that explicit word-final closure phonemes are no longer
required.

e The diphthongs, the fricative /ts/ and the alveolar flap /dx/ are also each repre-
sented by two sub-phones, where both of these are mandatory in every context.

The presence or absence of a stop burst is not specified in the phonetic dictionary, but
is determined during the recognition or alignment of the acoustic waveform. For example,
if the final stop in an instance of the word “hit” is released, the /t/ phoneme will be
aligned as /t.1 t.2/ representing the separate closure and burst. If the /t/ is unreleased
however, it is replaced by the single phone /t.1/ during recognition or alignment.

!The phonemes referred to here as “stops” could more specifically be categorised as “plosives”, as they
comprise both a stop in the oral cavity and its subsequent “burst”, or release.
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Phoneme Example Symbol Phoneme Example Symbol
Vowels Voiced Stops®
/aa/ cot /a/ /b/ bet /b/
/ae/ bat [ee/ /d/ debt /d/
/ah/ but /A/ /dx/ ladder /t/
/ao/ bought /o/ /g/ get /8/
/ax/ about /a/ Closures®
/eh/ bet /e/ /dd/ hid /d/
/er/ bird /3r/ /kd/ hick /k/
/in/ bit N /pa/  Wp  fy/
/ix/ beating /3/ /td/ hit /t/
/iy/ beat /i/ Strong Fricatives
/uh/ book /U/ /dh/ that /0/
fuw/ boot /u/ /3n/ judge /ds/
Diphthongs /ts/ its /ts/
/aw/ bout /as/ /v/ van /v/
/ay/ bite /al/ /z/ Z0O0 /z/
/ey/ bait /el/ Weak Fricatives
[ow/ boat /o/ /ch/ church JA/
/oy/ boy /21/ /£/ fan /]
Liquids /hh/ hat /h/
/1/ led /1/ /s/ sue /s/
/r/ red /r/ /sh/ shoe ay
[a/ wed /w/ /th/ thin /0/
/y/ yet /i/ Nasals
Unwvoiced Stops /m/ met /m/
/k/ cat /k/ /n/ net /n/
/p/ pat /p/ /en/ button /n/
/t/ tat /t/ /ng/ thing /n/

Table A.1: The RM dictionary phoneme set as defined by Lee [93], along with standard
IPA symbols.

2The alveolar flap /dx/ is included as a voiced stop for simplicity.

3The closures are represented in the IPA alphabet as standard plosive stop phonemes which are unre-
leased.
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Probabilistic Re-scoring Model

In this appendix a simple probabilistic model for selecting amongst N-best transcription
hypotheses is presented, which can be used as a first approximation to the re-scoring
behaviour which might plausibly be expected to result when re-ordering N-best lists.

Suppose that N different transcriptions are available for a particular utterance, and
that the first M of these are to be re-ordered, where 1 < M < N. Once these M entries
have been re-ordered, the recognition performance of the system will be determined by the
identity of that transcription which is selected by the re-ordering algorithm as the most
probable. To predict the system’s performance it is therefore only necessary to determine
which of the M transcriptions will be chosen as this most probable entry.

Assume now that the re-ordering system has identified the n = k entry as the most
probable transcription up to a depth M in the list, where 1 <k <M. Since the hypothesised
re-ordering algorithm is imperfect, this may not in reality represent the most accurate
transcription up to depth M, but the argument is not affected. Consider then adding the
(M+1)™ transcription to the list of entries to be re-ordered, thus extending the depth of
the hypothesis list by one. The recognition performance of the re-ordering system based
on these (M +1) entries will differ from the performance of the depth-M system only if:

1. The n = M +1 entry is chosen by the re-ordering system as more likely than the
current best estimate, n=k.

2. The number of errors in the n =M +1 entry, Eary1, is different to the number of
errors in the n=~k entry, Ej.

This implies that the change in recognition performance (if any) caused by extending
the depth of the list by one entry will be determined by the two probabilities:

Pretter = P(ChOOSG(M+1) | EM+1 < Ek) .P(EM+1 < Ek> (Bl)
Pyorse = P(choose(M+1) | Epy1 > Ey). P(Epg1 > Ey) (B.2)
which are defined in terms of the conditional probabilities of selecting the n=M+1 entry
over the n =k entry, given that the number of errors in the former entry is less than or

greater than the number of errors in the latter entry, respectively. In any practical re-
scoring algorithm—such as the SPM described in this dissertation—these probabilities will
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be a function of the error magnitudes Ejs1 and Ey. As a first approximation to plausible
re-scoring behaviour however, a simplifying assumption can be made by setting each of
these conditional probabilities to constant values. For improved recognition performance,
the values chosen must satisfy the constraints:

P (choose(M +1) | Epy41 < Ex) > 0 (B.3)
P(ChOOSG(M + 1) ‘ EM+1 > Ek) < 1 (B4)

The expected recognition performance of such a re-scoring algorithm can then be
predicted by performing multiple random simulations in which the depth of the list of
hypotheses is iteratively extended from 1 to V. At each step:

e If the number of errors in the new hypothesis entry is equal to the number of errors
in the current best estimate, do nothing.

e Otherwise, determine whether the new entry will be selected as the new best estimate
using the pre-determined values for the probabilities in Equations B.3 and B.4.

The values of these conditional probabilities in reality will not be independent of M,
Eyr4+1 and Ey; as a result, the re-scoring behaviour of a practical re-scoring implementation
will deviate from this simplified model. For example, P (choose(M +1) | Epr4+1 > Ej) will
decrease as M increases, since for large M it is likely that Ejry1 > Ej and these very
poor transcriptions will seldom be selected in practice. By contrast, a proportion of these
transcriptions will continue to be selected by the simplified model described above, and
performance will deteriorate as M increases to large values.



Appendix C

Vocal Tract Model

C.1 Introduction

This appendix describes the design and implementation of an explicit vocal tract model
which can be used to generate acoustic waveforms from a specification of the vocal tract
area function and the corresponding excitation signals.

The task of modelling the human vocal tract is a complex one, but can be greatly
simplified if several assumptions are made, the most common of which are [151]:

1. The vocal tract can be straightened out and hence approximated as a variable-area
tube.

2. The wave motion in the tract is planar, ie pressure and velocity are constant in a
plane perpendicular to the straightened axis.

3. The linear wave equation is valid.

The vocal tract model used here is a variant of the Kelly-Lochbaum model [81], which
uses these assumptions to simulate the propagation of one or more excitation signals
through a vocal cavity represented by a series of cylindrical tubes of fixed cross-sectional
area.

The input excitation signals are explicitly defined in the time domain, and the transfer
function of the tract model is computed in terms of the reflection coefficients between
adjacent area function segments. The implementation of the model closely follows that
described by Rubin [145], with small differences in the treatment of impedances at the
glottis and lips, and the excitation signal for voiced fricatives.

C.2 Wave Propagation in Uniform Lossless Tubes

This section provides a brief description of plane wave behaviour at the boundaries of
adjacent uniform lossless tubes. More detailed derivations can be found in Flanagan [44]
and Rabiner and Schafer [132].

The simplifying assumption is made, that during speech production a plane wave
propagates along the axis of a concatenated series of lossless, uniform area tubes. The

160
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motion of such a wave within any given tube is then described by the partial differential

equations:
_ Op(x,1) _r ou(x,t) (C.1)
ox A ot ’
du(z,t) A Op(z,1) (C.2)
Ox ope2t ot '
where
= Cross-sectional area of the tube
p(xz,t) = Variation in sound pressure in the tube at position z and time ¢
u(z,t) = Variation in volume velocity flow at position z and time ¢
p = Density of moist air at 37°C
= 1.14% 10 3gm/cm?
c = Speed of sound in moist air at 37°C

3.5 % 10t cm /sec

The solution to these equations for a sound wave travelling in the k£** tube with cross-
sectional area A has the form:

pe(z,t) = pft—=z/c)+p, (t+x/c) (C.3)
up(z,t) = uf(t—z/c)—ug (t+x/c)
= 2 bt —a/0) - pi 4 /o) (C.4)

where p* and p~ denote the magnitudes of the plane progressive waves travelling in the
positive and negative directions respectively, and the volume velocity flow is related to the
sound pressure magnitude by the characteristic impedance of the tube, which for lossless
tubes is real-valued, and given by:

pr(z,t)
ug(x,t)

k

_ e
= £ (C.5)

Travelling sound waves are hypothesised in the k™ and (k—1)* tubes, each of which
has length [ as shown in Figure C.1. The boundary conditions:

pe(0,t) = pr—1(0,2) (C.6)
ug(0,t) = ug—1(0,1) (C.7)

are then enforced, to obtain the solutions:
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xé- x=0 xél
-1

Figure C.1: Propagation of an acoustic wave through cylindrical tubes.

P (t) = rmeoap (8) + 1 —re_1].pr_q(2) (C.8)
i) = [L—ra].pf(t) +rh-1pp (1) (C.9)

where 71 is the real-valued reflection coefficient for a pressure wave travelling in the
positive direction in Ay encountering the boundary between Ay and A; 1 at x =0. Its
value is given by:

Tk—1 =

= %1 20k (C.10)

Now consider the case where the k* tube represents the opening at the lips, nostrils or
glottis, and hence is coupled not to an adjacent lossless tube, but to a load with complex
impedance Zr,. In this case the complezr reflection coefficient I'y for a wave travelling in
the positive direction in the k** tube at the boundary to the load Z; will be given by:

_ 2L — %y,
C ZL+ Zo,

Expressions can then be obtained for both Z;,,, the impedance seen looking into tube
k from tube (k+1), and G, the gain across tube k in terms of I'y. Initially, observe
that if a positive-moving pressure wave p; (t +1/c) enters the left-hand end of tube k and
is reflected at the boundary between tube k and the load Zp, the reflected pressure and
volume flow waves at «x =—[ will be given by:

k (C.11)

pp(t—7) = Tppf(t—r1) (C.12)
ug (t—71) = —Tpuf(t—r1) (C.13)

where 7=1/c is the time taken by the wave to propagate through the tube segment in one
direction. Then:
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i+ T) +Tepl(t— 1)
uk+(t+7') — Ty uﬁ(t -7)

ink

(C.14)

and using Equation C.5 and taking Z-transforms the following expression is obtained:

1 +z_11“k) (C 15)

Zin, = 2o, - | ————
Equations C.10 and C.15 can then be used to define the complex reflection coefficient

I'y+1 at the left-hand boundary of tube k for positive-travelling pressure waves in tube
(k+1), in terms of I'y and ry as follows:

Ziny, — Z0k+1

Ty
A Zink + Z0k+1

re + 27Ty,
= - - 7 C.16
14+ 7z 1T ( )

Similarly, the gain G across tube k can now be computed as:

P (t) + pg (1)
pi(t+7)+p. (t—7)

1+T1%

G, =

= Z

Nl

These results greatly simplify the computation of the transfer function for a vocal tract
model comprising a concatenation of uniform length tubes, as described in Section C.3.
By repeated application of Equations C.15, C.16 and C.17, a vocal tract model consisting
of several distinct branches can be reduced to a set of equivalent input impedances and
gains, from which the required transfer functions can readily be computed.

C.3 Vocal Tract Transfer Functions

For the purposes of computing the transfer function for a wave travelling from the glottis to
the lips and /or nostrils, the vocal tract is divided into pharyngeal, oral and nasal branches
as shown in Figure C.2, after Rubin [145].

In this figure, nasals and nasalised vowels are represented by a three-branch vocal tract,
where the three branches join at the velum, the physical coupling point of the nasal cavity
to the vocal tract. Non-nasalised vowels and voiced and unvoiced non-nasalised fricatives
are modelled by a two-branch tract, which is split at the point of maximum constriction
in the case of fricatives, and at an arbitrary location for non-nasalised vowels.

The excitation at the glottis is represented by a volume velocity source ug;,; with source
impedance Zg,,,. The source of frication is assumed to be situated at the point where
the air flow emerges from the point of maximum constriction in the vocal tract, and is
represented as a pressure source pjpic-
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Figure C.2: Schematic diagram of vocal tract model for (a) nasalised sounds (b) non-
nasalised sounds.

and Zj,
tively, while the input impedances of the oral, pharyngeal and nasal branches are denoted

The output impedances at the lips and nostrils are denoted Zy,

oral

as TESDEC-
Zin s ZLingpey a0d Zi,,,, respectively. In the case of fricatives and non-nasalised vowels,
the first two impedances actually correspond to the input impedances of the “front” and
“back” cavities respectively, but the same notation is retained for simplicity.

1 2-port N
uglotT 89 ZSglot T pglot network, ppharT

1 gain Gohar

@

[ ° 1 2port
ZSglm Tpglot network, Pohar T 8PTugloteff

gan Gohar

(b)

Figure C.3: Transformation of pharyngeal branch (a) to its Norton equivalent circuit (b).

In both models the analysis is greatly simplified by replacing the branch nearest the
glottis with its Norton equivalent, as shown in Figure C.3. In this figure the pharyngeal
branch is represented as a two-port network with gain:

Gphar = Polot (018)
Pphar Uglot =0

and the oral and nasal branches have been replaced by an equivalent impedance Zj, for
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simplicity. The source wug,; can then be replaced with the effective source ¢, 5 where:

uglotﬁﬁ = Uglot - Gphar (C].g)

The transfer function H i of the three-branch network is then given byl:

Poral T Pnas
Uglot

Gphar(Goml + Gnas)
]‘/Zinoral + 1/Zinnas -I_ 1/Z1n

H’uoice =

(C.20)

phar

where G, and Gp,s are the gains in the oral and nasal sections respectively, given by:

Goml Poral (021)
Pphar Ugiot =0
Gray = Lo (C.22)
Pphar Uglot =0
Similarly, the transfer function Hp.;. for the fricative component is given by:
Hfric Poral
Pfric
Z.
= Goml . Poral (023)

Zln oral + Zinphar

C.4 Cylindrical Tube Model

The branches of the vocal tract model depicted in Figure C.2 are composed of concatenated
co-axial cylindrical tubes. While the cross-sectional areas of the tubes are variable, they
are chosen to be of uniform length, in order to simplify the analysis.

C.4.1 Tube Length

The value taken for the fixed tube length is significant, since it determines the maximum
sampling rate—and hence the bandwidth—of the synthesised signal. Retaining the nota-
tion of Section C.2, if 7 is the time taken for the sound wave to propagate through a tube
segment, then when an impulse is applied at the input of an N-segment model, the time
taken for the signal to reach the output will be N7, and successive outputs due to reflec-
tions will reach the output at multiples of 27, which therefore represents the maximum
sampling period, T, of the signal.

Since the frequency response of such a lossless tube model is periodic [132], the band-
width of the output signal will then be limited to:

11f the velum is closed, the effects of the nasal tract are neglected by setting Ziy,,, =00 and Gpas =0 in
Equation C.20.
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1 1 c
Fl< —=—=— .24
7] < 2T 47 4 (C.24)
and since throughout this dissertation speech sampled at 16kHz—corresponding to a band-

width of 8kHz—is used, this yields a segment length of:
1 =1.09375¢cm (C.25)

C.4.2 Tract Shapes

The nasal branch of the vocal tract is assumed to be of fixed shape, and ~ 12.5¢m in
length [43]. The nasal model used here therefore comprises 11 tube segments of fixed
cross-sectional area, as well as a 12 segment of variable area representing the opening at
the velum where the nasal, oral and pharyngeal branches meet.

The shape of the nasal cavity was determined by interpolating and re-sampling Fant’s
data, and is illustrated in Figure C.4.

ESﬂ
o
0 n n n n n n n n n n n
1 2 3 456 7 8 91011
Segment index

Figure C.4: Area function for fixed nasal tract, from nostrils (1) to velum (11).

By contrast, both the length and the shape of the tract between the glottis and the
lips vary with time during the production of speech. Variations in length are caused
by protrusions of the lips and jaw, as well as by the vertical displacement of the vocal
cords, and are difficult to model in a system using fixed-length tube sections. As a simple
approximation, a quantised variation in length was therefore implemented, by selecting a
variable number of fixed-length tube segments in the model. Specifically, both 15 and 16-
section models are used, to give overall tract lengths of ~16.4cm and 17.5¢m respectively,
chosen to approximate those of the human vocal tract.

The time-varying shape of this cavity is determined from a set of articulatory param-
eters as described in Section 6.3.1, and the nasal and pharyngeal-oral tracts are joined at
the tube segment boundary which is the minimum number of segments from the glottis,
while being at least 8cm distant from it.

C.5 Sources, Loads and Losses

The task of developing accurate models of the excitation sources and the excitation and
load impedances in the human vocal tract is a complex one, and the implementation
of practical vocal tract simulations such as that presented in this chapter relies on the
application of a number of simplifying assumptions [43, 44, 132]:

1. The voiced excitation at the glottis is only quasi-periodic and consists of pulses of
variable shape, but is approximated using a stable, periodic waveform.
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2. The coupling between the glottis and the vocal tract is dependent upon the size of
the glottal opening, and hence gives rise to a time-varying source impedance at the
glottis, and non-linear system behaviour. The weak nature of this coupling leads to
an approximation in which the excitation source and vocal tract model are decoupled
and linearised.

3. The noise source associated with frication and stop bursts is spatially distributed, has
a pressure which is dependent on the constriction area, has a non-white spectrum,
and gives rise to a non-linear turbulent flow. This source is approximated by a white
noise source placed at the point at which the air flow emerges from a constriction,
and a constant noise source amplitude is used.

4. The opening at the lips resembles an orifice in a spherical baffle of radius =~ 9cm,
whose radiation impedance is difficult to model. It is therefore approximated as an
opening in an infinite planar baffle; as is the opening at the nostrils.

While these assumptions permit the ready implementation of boundary conditions for
the vocal tract model, they nevertheless result in a significant degradation in the quality
of the resulting synthetic acoustic waveforms.

C.5.1 Voicing and Frication Sources
Flanagan’s small-signal equivalent source is adopted as the glottal model [44], which com-

bines viscous and kinetic resistive elements to yield a typical source resistance of:

Rgio; = 100 acoustic Ohms (C.26)

The glottal waveform for voiced sounds is then explicitly defined in the time domain
using Rosenberg’s approximation [143]:

2 Ny
g(n) = { cos(Zg) N <n< N +Ny (C.27)
0 N1+ Na <1 < Npaz

where the waveform is rising for 0 < n < Ni, falling for Ny <n < N;+ Ny and zero for
Ni+ Ny <n < Npag, where Ny,pp = 1/(Fp.T) is the number of sample points in a pitch
period, and the sample period of the resulting waveform is as described in Section C.4.1:

T=2r= = 62.5usec (C.28)

16kHz
If it is assumed that the pulse has a fundamental frequency Fy =120Hz, is non-zero

for 0.75 of a pitch period, and is rising for 0.7 of this time, then the following example
parameter values are obtained:

Ny = 70 samples (C.29)
Ny = 30 samples (C.30)
Npaz = 134 samples (C.31)
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Figure C.5 shows the resulting pulse shape, 21 pitch periods of which were used as the
input signal at the glottis for all voiced sounds. Two pitch periods are shown in the figure,
corresponding to 268 sample points.

1

Pulse magnitude
o
a1
i

0 1 | 1 1 1
50 100 150 200 250

Sample index
Figure C.5: Glottal pulse shape for voiced sounds.

In the case of fricatives and stop bursts, a white noise source is placed just anterior to
the point of maximum constriction as described in Section C.3, and the source impedance
used is the characteristic impedance of the tube segment representing the constriction.
When a fricative is also voiced, the noise source is not continuously applied, but is mod-
ulated by the glottal waveform so that frication occurs only when the glottal pulse is

non-zero.

C.5.2 Radiation Impedances

Approximating the openings at the lips and nostrils as circular holes in an infinite plane
baffle, the load impedance Zr,(s) can be expressed as a resistance Ry, in parallel with an
inductance Ly, where [132]:

128
R, = — C.32
L 972 ( )
&r
L; = — C.33
L 3me ( )

where r is the radius of the opening and ¢ = 3.5 x 10%cm/sec as defined in Section C.2.

The bilinear transform is then applied to obtain:

Zr(z) = Z(s)] 2(1,2_1)

Q

(206210%T 1 0,694) + (2064107 _ g 694) >~ (C.34)

where the sampling period T'=62.5usec as before?.

?Rubin uses the following expression in place of Equation C.34 [145]:
1—2z71

Z1(z) =
(2) (212107 4 0 694) — 0,694~
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C.5.3 Models of Vocal Tract Losses

Following Rubin, losses in the oral and pharyngeal sections of the tract are approximated
by introducing an attenuation factor a,lc/ % for a pressure wave travelling the length of the
k™ tube segment with cross-sectional area Ay, given by:

12 0.007

o’ =1- T (C.35)
so that Equations C.15, C.16 and C.17 become:
1+ oz~ 1Ty,
Zin Zy, ———————— C.36
k Oy — oz~ 1Ty, ( )
i+ apz Ty,

r = — C.37
kot 1+ rpagz— 1Ty ( )

_ 1+7T
Gr = o Y2,-1/2 + ok (C.38)

1+ agz— T

respectively. In the nasal tract, a constant attenuation factor of 0.99 is used, and additional
losses are modelled by inserting a lumped component impedance in the middle of the tract,
consisting of a series resistance and inductance:

Zmia = Rumiq + 8Lnia
= 10+10.6%1073s (C.39)

where these values are chosen to yield a -3dB frequency of 150Hz. Finally, a coupling
resistance of 50 acoustic Ohms is inserted at the point where the nasal branch joins the
oral and pharyngeal branches.

C.6 Vocal Tract Model Performance

Two example vocal tract frequency response curves and their associated time-domain
waveforms are shown in Figure C.6. The area functions used were taken from Fant’s
data for the vowel /aa/ and the voiced fricative /z/ respectively [43], and were used as
input to the Kelly-Lochbaum vocal tract model. In each case a sampling frequency of
16kHz was used, and three pitch periods using the glottal pulse waveform depicted in
Figure C.5 are shown. During synthesis of the acoustic signal for /z/, the noise source
at the point of maximum constriction was modulated by this glottal pulse as described in
Section C.5.1. In each case plausible transfer function shapes are obtained, and intelligible
acoustic waveforms are produced.
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Figure C.6: Example frequency responses and time-domain waveforms synthesised from
Fant’s area function data using the explicit vocal tract model: (a) frequency response for
/aa/ (b) time-domain waveform for /aa/ (c) frequency response for /z/ (d) time-domain

waveform for /z/.
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