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ABSTRACT

In this paper, the speech production system is mod-
elled using the true glottal excitation as the source and
a recurrent neural network to represent the vocal tract.
The hidden nodes have multiple delays of one and two
samples, making the network equivalent to a parallel
formant synthesiser in the linear regions of the hidden
node sigmoids. An ARX model identification is car-
ried out to initialise the neural network parameters.
These parameters are re-estimated in an analysis-by-
synthesis framework to minimise the synthesis (out-
put) error. Unlike other analysis-by-synthesis speech
production models such as CELP, the source and filter
in this approach are decoupled, enabling manipulation
of the source time-scale to achieve high quality pitch
changes.

1. INTRODUCTION

Typical source-filter models of the vocal tract system
use a linear filter to model the frequency response (for-
mants) of the vocal tract, and an impulse train or
turbulent excitation to model the source. The filter
parameters are usually estimated by linear prediction
analysis to minimise the equation error [1]. A linear
filter has a limited performance on nonlinear speech
data, and nonlinear neural network-based models have
been shown to give improved synthesis performance [2].
With continuous data, the hidden nodes of small, sin-
gle hidden layer networks operate predominantly out
of saturation [3], motivating a linear initialisation of
these networks to give improved convergence over ran-
dom initialisations [4].

In CELP and multi-pulse coders, the excitation is
typically computed in an analysis-by-synthesis frame-
work to minimise the synthesis error and can therefore
compensate for much of the information lost by the
filter representation. However, performing time modi-
fications to the source in order to change the pitch of
the synthesised speech distorts the synthetic speech by
changing the rate of articulation. This can be overcome
by using a fixed excitation and re-estimating the filter
parameters to minimise the synthesis error [5]. A fixed
stylised glottal excitation and synthesis error minimi-
sation is used in the JSRU parallel formant vocoder [6].

The quality of the synthesis produced is still as good as
that of multi-pulse coders, but the vocoder has the ad-
vantage that the excitation can be manipulated with-
out causing distortion of the synthetic speech. For a
recurrent neural network model, minimisation of the
synthesis error is achieved by back-propagation train-
ing.

In this paper, a nonlinear recurrent network-based
model of the vocal tract is derived, in which the weights
are initialised from a linear ARX model [7]. The net-
work parameters are trained using the true glottal ex-
citation as input and the effect of manipulating the
pitch of this excitation on the quality of the synthe-
sised speech is shown.

2. VOCAL TRACT MODELLING

A model of the vocal tract system approximates the
transfer function between the acoustic waveform at the
glottis (the glottal excitation waveform) and the acous-
tic waveform at the lips (the speech waveform). These
can be measured as electrical signals by means of a
laryngograph [8] and a microphone respectively. The
laryngograph signal is free from the influences of the
resonances of the vocal tract and can be used to de-
termine the fundamental frequency, f0, of the glottal
excitation. Typical examples of the glottal excitation
and speech waveform are shown in Fig. 5, (a) and (b).
The data was preprocessed by sampling at 16kHz, nor-
malising the amplitude to lie in the range [—1, 1] and
removing the mean.

In this section, a recurrent network model of the
vocal tract is described which allows the speech data,
y(t), to be synthesised from the glottal data, z(¢) with
minimum synthesis error.

2.1. Structure of Recurrent Network

The structure of the recurrent network model is shown
in Fig. 1, in which there are first and second order de-
lays in the feedback around the hidden nodes of a sin-
gle layer with nonlinearities f(.) = tanh(.). There are
no cross-connections between hidden nodes and a sin-
gle linear output node is used. The network synthesis,
9(t), is given by (1).
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Figure 1: Structure of recurrent network.
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where p is the number of hidden nodes and h;(t) is
the output of hidden node i. The structure allows an
initialisation of the network from a parallel formant

representation of the speech, derived by factorisation
of a linear ARX model, as described below.

2.2. Initialisation of Network Parameters

The speech spectrum 1is considered to be composed of
a sum of parallel formants (resonances of the vocal
tract) which are represented by second order TIR fil-
ters. Within the linear region of the tanh function, each
hidden node of the recurrent network represents such
a formant, with resonant frequency F; and bandwidth
Bi, as shown in Fig. 1. The filters are derived from
a partial fraction expansion of the synthesis transfer
function H(z), (3), of a linear ARX model of the vocal
tract. Recombination of complex conjugate poles and
pairs of real poles gives p quadratic factors (5), from
which the network weights can be initialised. All out-
put weights, u;, are taken to be equal, thus assuming
an equal contribution from each formant in (4).
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Figure 2: Spectra and formant factors (dotted curves)
for a typical ARX model (n, =10, np = 1) .
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The order, ng,, of the ARX model is given by n, = 2p,
where the number of hidden nodes equals the number of
formants of voiced speech, typically 4 or 5. Any num-
ber of delays, n,, can be used depending on whether
an all-pole or pole-zero initialisation is preferred. Ze-
ros are desirable for the modelling of nasals. To avoid
direct terms in the factorisation, 1 < np < n,—1. Fig. 2
shows the spectra of the formant factors for a typical
ARX model (n, = 10, ny, = 1). Fig. 3 shows a compari-
son of the learning curves for random initialisation and
ARX initialisation from different order models, when
trained over a short length of voiced speech. These
curves show that ARX factorisation provides a good
network initialisation with improved convergence over
random initialisation. The reduction in synthesis er-
ror results in a better synthetic waveform as shown in
Fig 4.

A problem with the initialisation and training pro-
cedure is maintaining stability. Stability of the initial-
isation factors, H;(z), and the linearised nodes after
training, is ensured by reflecting unstable poles back
inside the unit circle.

3. SYNTHESIS PERFORMANCE

For long lengths of speech, an ARX model was gener-
ated over consecutive 20ms frames of data at a frame
rate of 10ms. From the ARX initialisation, a network
was trained by back-propagation to minimise the nor-
malised mean squared synthesis error (nmse) over the
first 10ms of the current frame. The values of h(t — k)
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Figure 3: Learning curves for different initialisations.
Net1:ARX initialisation (n, = 10,n, = 9). Net2:ARX
initialisation (n, = 10,n, = 1). Net_random:random
initialisation (ng = 10,n, = 9). ARX:synthesis error
for actual ARX model (n, = 10,n, = 9).
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Figure 4: Synthesis for ARX initialisation model
(ng=10, np=9) and recurrent network after 3000
epochs of training from the ARX initialisation.

at the start of the next frame were passed on from the
current frame. The trained networks were used to re-
synthesise the speech from the glottal waveform. An
example of the re-synthesis of the speech in Fig. 5(b)
is shown in Fig. 5(c). This is a fragment from the
utterance “and the concept of a base”. For this utter-
ance, the average (per frame) nmse in Table 1 shows
that re-estimation of the network parameters consis-
tently reduces the synthesis error below that of the
ARX model. This is due to the fact that the ARX
parameters, a and b, are derived by equation error min-
imisation in which the mean squared prediction error
is minimised [7]. These parameters are not optimal for
synthesis, unlike those of the network which are derived
by back-propagation to minimise the synthesis error di-
rectly. The networks were trained for 200 epochs per
frame to reduce training times. Examination of the
learning curves for each frame showed that the net-
works did not fully converge within this time. A larger
improvement over the ARX synthesis is expected for
longer training times.

Table 1 also shows the effect of changing the or-
der of the ARX model on the ARX and network syn-
thesis. Audibly, a model order of n, = 10, n, = 9

ARX Model

Order Average nmse (dB)

ne | no all voiced | unvoiced
6 2 -1.33 -2.66 -0.33
6 5 -1.88 -3.84 -0.49
8 2 -1.29 -2.56 -0.33
8 7 -2.13 -4.37 -0.57
10 2 -1.23 -2.38 -0.35
10 9 -2.12 -4.51 -0.49

Recurrent Neural Network

Order Average nmse (dB)
Na | o all voiced | unvoiced
6 2 -2.25 -4.61 -0.63
6 5 -2.10 -4.44 -0.50
8 2 -2.37 -4.52 -0.86
8 7 -2.44 -4.62 -0.92
10 2 -2.03 -3.77 -0.76
10 9 -2.47 -5.02 -0.74

Table 1: Average normalised mean squared error per
frame for ARX and network models for the utterance
“and the concept of a base”.

gave the best synthesis. Although changing the model
order n; does not require a change in the number of
network parameters, a higher order n; gave a better
network initialisation and final performance. For un-
voiced frames, in which the speech does not contain a
strong formant structure, the use of a higher order n,
introduces additional zeros into the model which allows
for the possibility of pole-zero cancellation to produce
a flatter spectrum. Increasing n, requires additional
hidden nodes in the network.

4. PITCH MANIPULATION

The trained networks were used to re-synthesise the
speech from a glottal waveform in which the original
pitch, f0, was altered by £25%. The effect on the
synthesised speech is shown in Fig. 5(d). Examination
of the spectra of these waveforms showed that the pitch
of the synthesised speech was altered but the positions
of the formants were maintained. The pitch changes
were audible but no change in articulation rate was
apparent.

5. CONCLUSION

A single hidden layer recurrent network with first and
second order feedback delays has been implemented to
synthesise speech from actual glottal waveforms. From
a linear ARX model of the vocal tract system, an ini-
tialisation for the network weights has been derived
which has improved convergence properties over ran-
dom initialisations. The network has better synthesis
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Figure 5: Glottal excitation, original speech and syn-
thesised speech for the fragment “... of a ba ...” taken
from the phrase “and the concept of a base”.

performance than the linear model because the weights
are derived to minimise the synthesis error directly.
This analysis-by-synthesis method is still valid if the
actual glottal excitation is not available, since it may
be replaced by a codebook of typical glottal excita-
tion signals in a CELP-like framework. The current
method for maintaining stability is sub-optimal and an
improvement will be to incorporate the stability condi-
tions into the training procedure. The effects of percep-
tual weighting of the synthesis error and quantisation
of the network parameters on synthesis performance
have not been investigated.

Using the true glottal excitation to derive the net-
work parameters, a vocal tract model has been devel-
oped in which the source and filter are decoupled. This
allows more information about the vocal tract to be
carried by the network parameters. The coder is more
flexible than other source-filter models such as multi-
pulse coders, since the pitch of the synthesised speech
can be altered by changing the time scale of the glottal
excitation, without causing distortion of the synthetic
speech. This allows new pitch contours to be applied
to the synthesised speech, without loss of quality.
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