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Abstract–Recurrent neural networks are widely used for context dependent
pattern classification tasks such as speech recognition. The feedback in these
networks is generally claimed to contribute to integrating the context of the input
feature vector to be classified. This paper analyses the use of recurrent neural
networks for such applications. We show that the contribution of the feedback
connections is primarily a smoothing mechanism and that this is achieved by
moving the class boundary of an equivalent feedforward network classifier. We
also show that when the sigmoidal hidden nodes of the network operate close
to saturation, switching from one class to the next is delayed, and within a class
the network decisions are insensitive to the order of presentation of the input
vectors.

INTRODUCTION

Many classification problems depend on the context in which class data is received,
ie. the history of previous classes. Human perception of speech is a typical example,
in which coarticulation effects between adjacent phonemes are important contextual
factors for correct recognition, especially in noise. The performance of a classifier
can be enhanced by providing past and future context. Future context can be provided
by a delay between input window and output decision. Past context can be presented
within an input window which contains a fixed number of previous frames [1],
and by including delayed feedback paths (recurrent connections), which provide
information about previous local decisions [2]. For a fixed input window, the depth
of the context ie. the number of frames spanned by the input, is fixed. The classifier
may miss dynamic features of the class with a longer duration than that of the input
window and cause smoothing of features that change rapidly within this window. For
a recurrent network, the depth of the context is potentially infinite, but in practice is
determined by the relative size of the recurrent connection weights.

Much experimental work eg. [2], has reported improved performance of recurrent
networks over feed-forward networks. In a previous paper [3], we looked at how
this is achieved for the system identification of time-varying patterns. In this paper,
we proceed by studying how recurrent networks operate for classification of time-
varying patterns. We concentrate specifically on how the recurrent connections make
use of previous context during 2-class classification problems such as classification
of phoneme pairs from the TIMIT database.



EFFECT OF FEEDBACK ON DECISION BOUNDARY POSITION

Consider the unit delay recurrent connection around a single hidden node, with a
nonlinearity ƒ(x) = tanh(x), shown in Fig. 1. The output node is linear and the
classification decision is determined by an output threshold at zero.
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Figure 1: Single Hidden Node With Recurrent Connection

For such a network, the equations for the output of the hidden node, y(t) and network
output, z(t), are :

y(t) = ƒ
���

T � (t) + wy(t � 1) + θ � (1)

z(t) = uy(t) (2)

where
�

is a vector of input weights, � (t) is a vector of input parameters, [c1, c2, …
, cn]T, θ is a bias term and (. )T denotes transpose. We used cepstral coefficeints
derived from phoneme segments from the TIMIT database as an example input. The
networks were trained as 2-class classifiers using back-propagation through time
to minimise the mean squared-error, with class targets of -1 and 1. The decision
boundary is defined by :

�
T � (t) + wy(t � 1) + θ = 0 (3)

The contribution
�

T � (t) + θ, represents a static linear decision boundary which can
be interpreted as the decision boundary for a feed-forward classifier which has the
same weights u,

�
and θ. The term wy(t � 1) represents a variable bias which causes

the decision boundary to move parallel to
�

. We consider a trajectory of points in
class 1, Fig. 2 a), for which some of the points are incorrectly classified by the static
boundary. For these errors to be corrected, the decision boundary must move away
from class 1, biasing the current decision towards that of the previous classification.
This occurs for positive w, which also gives stable feedback around the node. Hence
for maximum classifier performance, we require a training algorithm which develops



positive w. The limits of the boundary movement lie at ± w on either side of the static
boundary, and with this they divide the input space into 4 regions, A–D, as shown
in Fig 2 b). Classification of points in A and D is unaffected by the position of the
decision boundary and is independent of their context. A and D define a region of
the input space in which the number of classification errors made by the recurrent
net is predetermined. B and C define an indeterminate region of the input space, of
width 2 � w � , in which the classification of points requires knowledge of their context,
since movement of the decision boundary in this region causes both correction of
and addition to errors made by the feed-forward net. The sensitivity of the output
to the context of the input data implies that the order of presentation of the training
classes is important. Different orders of presentation of the classes will not converge
to the same solution, when starting from the same weight initialization.
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Figure 2: a) Movement of decision boundary by recurrent connection. b) Decision boundary
limits and classification regions

EFFECT OF DECISION BOUNDARY MOVEMENT ON OUTPUT
SWITCHING

The decision boundary movement, which biases the current decision towards that
of the previous decision, gives a classifier output which exhibits a switching delay
and is trajectory sensitive ie. is dependent on the order of presentation of input data
within the current class. The magnitude of the delays and the extent of the trajectory
sensitivity is determined by the relative range of the indeterminate region, B and
C, and the approximately linear region of the node function, Fig. 3. All points in
regions A and D are trajectory insensitive, since they cannot move the decision
boundary. Only indeterminate points which lie within the linear region of the node
function, shown hatched in Fig. 3, can cause boundary movement and are therefore
trajectory sensitive. The entire indeterminate region will be trajectory sensitive if it
is completely spanned by the linear region of the node function.

The variation in switching delay for different points within the indeterminate region
is shown in Fig. 4. The decision boundaries and test data points for this classifier
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Figure 3: Trajectory sensitive region of input space when decision boundary lies at class 0
limit, for a nonlinear function which is linear over the range 2d and θ = 0

are shown in Fig. 2 b). For a narrow nonlinear function, only a few indeterminate
points are within the linear region and can cause switching. This switching is rapid
since the boundary moves quickly across the indeterminate region to the other class
limit. Most points cause saturation and no switching, Fig. 4 a). Hence most of the
indeterminate region is trajectory insensitive and smoothing of the classifier output
occurs ie. previous decisions are favoured. This is obvious in the limiting case of a
step function, in which the linear width is zero. For this nonlinearity, the boundary
can only lie at a class limit and only points in A or D cause switching. In this case,
all indeterminate points are also trajectory insensitive and the previous decision is
always chosen, giving maximum output smoothing. For a wide nonlinear function,
Fig. 4 b), more of the indeterminate points fall within the linear region and are
therefore trajectory sensitive, as shown in Fig. 3. The wider the linear region, the
more slowly the decision boundary crosses the indeterminate region, giving longer
switching delays and greater output smoothing. The actual boundary movement
caused by a trajectory of points, f to a, which span the ‘indeterminate region’, is
shown in Fig. 5 a), for ƒ(x) = tanh(x). The boundary and data trajectory move in
opposite directions, and due to the finite switching delay illustrated in Fig. 4 b), the
recurrent decision lags the feed-forward decision, Fig. 5 b).

The limited trajectory sensitivity of the recurrent network is illustrated in Fig. 6, for a
network with 10, 5 and 1 units in the input, hidden and output layer respectively. The
network was trained as a classifier of voiced and unvoiced phonemes on sentences
from the TIMIT database. In testing, adjacent input frames within a class segment
were swapped and the classifier output compared with that for the normal input
order. For most segments, the hidden nodes saturate, giving similar recurrent network
outputs in Fig. c) and d). Only segments in which a node operates in the linear region
(node output < 0. 5 in Fig. 6 b). ) are the network outputs very different. Smoothing
of the recurrent network output within a class segment is seen in the unvoiced
segments around frames 100 and 145 and a switching delay in the unvoiced/voiced
class transition at frame 151.
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Figure 4: Delay in 1–0 switching, f to a: a) Narrow node function f(x)= tanh(10x). b) Wide
node function f(x)= tanh(x)
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Figure 5: Movement of decision boundary due to a recurrent connection: a) Decision bound-
aries for 1–0 trajectory, b) Classifier output for 1–0 trajectory
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Figure 6: Voiced-unvoiced classification of phrase “a woman met a famous author”



EFFECT OF DECISION BOUNDARY MOVEMENT ON CLASSIFIER
PERFORMANCE

The movement of the decision boundary has the potential to both improve and impede
the performance of a recurrent net over that of a feed-forward net due to the variable
classification of points in the indeterminate region, B and C. The recurrent net cannot
correct errors in regions A and D. The combined effect of the trajectory sensitivity and
switching delay caused by boundary movement, is to smooth output decisions of the
recurrent net causing them to lag those of the feed-forward net. If the ‘indeterminate
region’ is too narrow, Fig. 7 a), the feed-forward and recurrent outputs are almost
identical and there is little difference in performance, Fig. 7 c). Conversely, if the
‘indeterminate region’ is too wide, Fig. 7 b), most classifications are dependent on
previous decisions and over-smoothing of the outputoccurs, causing the performance
of the recurrent net to fall below that of the feed-forward net, Fig. 7 d). Hence to
minimise the additional errors of the recurrent network caused by switching delays,
we require the indeterminate region to bind, as tightly as possible, any region of data
overlap surrounding the static boundary.
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Figure 7: Test patterns and decision boundary limits for a ‘g–d’ classifier: a) w too small,
b) w too large. Network output: c) w too small, d) w too large.



The smoothing of the recurrent network output can explain the change in relative
performance of recurrent and feed-forward classifiers at different frame-rates (res-
olutions) [4], where recurrent networks are reported to perform better at lower
frame-rates. At a higher frame-rate, there are more frames for a given phoneme
duration but the parameters vary much less on a frame-to-frame basis than at a lower
rate, causing saturation of the recurrent network. At a phoneme boundary, the small
changes in parameter values at each frame cause the recurrent net to switch slowly,
causing smoothing of the output decisions and a fall in performance below that of a
feed-forward net.

DISCUSSION

Recurrent neural networks are widely used for context dependent pattern recognition.
In speech recognition, for example, their application is motivated by the need to
integrate acoustic cues that are distributed over time. It is generally claimed that
this ability to model the temporal correlation in the data vectors gives recurrent
neural network classifiers greater power than state-of-the-art acoustic models based
on hidden Markov modelling. The observations reported in this paper suggest this
may not be the case in practice. We have shown that the contribution of the feedback
is primarily a smoothing operation. This can improve performance over a static
classifier in regions of the input space where the class data may overlap, by moving
the class boundary of the static classifier. The smoothing can also cause a delay in
switching from one class to the next.

We also observed that when the hidden nodes operate in the saturated regions of
the sigmoid, the network outputs are not sensitive to the order of presentation of the
input examples within a class. When this happens, the network is not modelling the
trajectory of the input vectors and is effectively treating each data vector within a
class independently, similar to a hidden Markov model state. We suggest some of
the above problems can be overcome by setting the network targets (or weighting
the error function) in a similar manner to Etemad [5] and Watrous [6]. These authors
use a ramp-like target function over the duration of a class, say a phoneme in
speech recognition, to reflect the increasing confidence of class membership as more
and more data is received. Such training will force the hidden units to stay out of
saturation, avoiding some of the problems we have pointed out.

For the single hidden node recurrent net, a linear decision boundary,
�

T � , is defined,
with a bias of θ + wy(t � 1). We have shown that the effect of w is to bias the current
decision towards that of the previous decision, in a similar way to which the log prior
ratio biases the decision boundary of a Bayes optimal descriminant function towards
the most probable class [7]. We can interpret wy(t � 1) as acting like a variable prior
ratio, since wy(t � 1) determines which class is favoured. The recurrent connection
thus updates our estimate of the priors, depending on the previous context, y(t � 1).
In [8], variation in the class priors between training and test data is accounted for
by scaling the network outputs. Recent work on feed-forward nets by Gish [9] has
shown that adjustment of the output biases is sufficient to adapt the classifier to the



new data. For a recurrent net, this suggests that modifications to both the recurrent
weights and the biases are necessary.

For a feed-forward network (multi-layer perceptron or MLP) with a single output
node, training by back-propagation is known to yield a minimum mean squared-error
estimate of the Bayes optimal descriminant function [10], in which the outputs are
treated as posterior probabilities. The MLP approximation is only accurate if there
are sufficient hidden nodes to capture the complexity of the function. With multiple
hidden nodes, the decision boundaries become nonlinear and result as a combination
of local decisions by each node. For the recurrent network case, cross terms in the
feed-back matrix, � determine how previous decisions in other local regions of the
input space affect the current local decision. We are now studying the multiple hidden
node case more closely and expect the indeterminate regions for each local decision
to overlap resulting in more of the input space being context sensitive.
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