Quantitative visualisation of surfaces from volumetric data
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ABSTRACT

A 3D B-spline quasi-interpolant is used to extract smooth iso-value surfaces from volume data.
In this technique discretization and partial voluming artifacts are reduced by approzimating sampled
data at vozel centres. Surface normals, necessary for realistic shading, are analytically defined by the
approzimating function rather than estimated by in an ad hoc way from the volume data. We consider
an application where bone surfaces are revealed from CT data by ray-casting and the surfaces are then
used to construct models and prostheses. Accurate determination and rendering of bone surfaces is
required. A z-buffer shading technique is also described for improved rendering of surface depth-maps.
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1 INTRODUCTION

Surfaces extracted by ray-casting techniques typi-
cally exhibit ripples which arise from interpolation
and quantisation artifacts. Fig. 1(a) illustrates a typ-
ical surface rendered from CT data. For visualisation
purposes these artifacts are masked by volume gradi-
ent shading methods [Hohne86]. However, their exis-
tence becomes important when quantitative surface
measurements are required. In this paper we dis-
cuss the accurate rendering of surfaces and fit a func-
tion which approximates the sampled volume data
thereby resulting in smoother surfaces (Fig. 1(b)).
The specific application we consider is that of fash-
ioning cranial prostheses to repair holes and defects
in the skull. The problem is illustrated in Fig. 2 and
discussed in [Carr97]. Computer graphics are used
to extract surfaces from X-ray CT data. Models are
constructed directly from the displayed surfaces us-
ing a Computer Numerical Controlled (CNC) mill. A
mathematical surface is fitted to the corresponding
depth-map which interpolates the data and extrapo-
lates across defect regions where the skull surface is
either missing or requires repair. A surgeon identifies
these regions by ‘painting’ them on the rendered view
using a workstation’s mouse. The surgeon assesses
the fitted surface on the workstation and a titanium
prosthesis in the shape of the surface is automatically
constructed. Accurate rendering of bone surfaces is
critical to ensuring the good fit and appearance of
the prosthesis since intra-operative manipulation of
the prosthesis is limited. A binary segmentation of
the volume data is implicit in this problem.

1.1 Medical graphics

The visualisation of 3D medical data differs from
traditional computer graphics in two ways; (1) the
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Figure 1: Comparison of ray-casting artifacts in
bone surfaces rendered from CT data. (a) Conven-
tional tri-linear interpolation, (b) B-spline approxi-
mation. The scales are in mm.

data from which images are formed is captured from
real objects rather than synthesised by a designer or
generated mathematically from a computer model,
(2) accurate depiction is more important than pleas-
ing images. There are two volume visualisation
paradigms used in medical imaging; surface render-
ing and volume rendering.



(f)

Figure 2: Production of a cranial prosthesis. (a) Bone surface rendered from a CT data set, (b) detailed view of
the defect region with the support region for the prosthesis highlighted, (c) z-buffer rendering of the interpolated
surface fitted to (b), (d-e) depth-maps corresponding to (b) and (c). (f) Finished titanium prosthesis with its
corresponding mold, machined from epoxy-resin in the shape of the interpolated surface.

Surface rendering implicitly assumes that the data
possess tangible surfaces that can be extracted and
visualised. In effect a binary classification of the
data volume is made. Traditional surface render-
ing algorithms convert the volume data into geo-
metric primitives (e.g., a polygon mesh, a set of
contours) and then render these to the screen us-
ing conventional computer graphics algorithms [Fo-
ley90,PHIGS86]. Some well-known examples are the
cuberille technique [Chen85], the marching cubes al-
gorithm [Loren87,Cline88] and the dividing cubes al-
gorithm [Cline88].

Volume rendering avoids the binary classification im-
plicit in a surface extraction process. Light is mod-
elled as being partially attenuated and reflected as
it passes through the data volume. The images gen-
erated are dependent on the assignment of proper-
ties such as opacity, colour, luminescence, etc, to the
data [Drebl88,Levoy88].

Proponents of volume rendering argue that in cases
where binary segmentation is difficult, such as
when rendering ultrasound data [Nelso93], a semi-
transparent modelling of an object can improve the
visualisation. Thresholding is normally a robust
segmentation technique for visualising bone surfaces
from CT data but can fail when bone structures are
thin. The result is apparent holes in the rendered
surface which do not actually exist. Such fine bone
structures occur in the orbits and nasal septum. Fail-
ure occurs because the voxel grey level represents the
average density of tissue within a local neighbour-
hood. Consequently, along tissue boundaries and
where structures are thin, this average may no longer
be representative of either bone or soft tissue. This
effect is known as partial voluming and afflicts most
imaging modalities. For example, the analogous ar-
tifact in ultrasound is beam width. Volume rendering

algorithms such as Levoy’s [Levoy88] attempt to over-
come this problem by using both grey-level value and
grey-level gradient to assign transparency.

Although transparency methods can sometimes com-
pensate for partial voluming effects and generate
smoother images [Hohne90], the assignment of opac-
ities and related parameters is arbitrary and a broad
range of visual impressions can be obtained for the
same object. It is difficult to know which render-
ing is the most accurate and how precisely the ren-
dering represents the actual surface. [Tiede90] have
attempted to quantify image quality in their study
of rendering methods. They conclude, with partic-
ular reference to rendering bone surfaces from CT
data, that if exact surfaces can be determined then
non-transparent rendering often yields the best per-
ception.

Volume and surface rendering strategies can be com-
plementary depending on the goal — whether it be
qualitative or quantitative. Indeed, hybrid schemes
have been proposed by [Udupa93] and [Levoy90]. Ir-
respective of image ‘quality’, fuzzy or transparent
renderings are not suitable for making quantitative
measurements or for fitting surfaces due to the am-
biguous depiction of anatomy.

1.2 Ray-casting

Traditional surface rendering techniques such as
marching cubes and the cuberille technique generate
a fine polygon mesh by sequential tessellation of a
boundary with triangles or rectangles. Ideally, cubic
voxels are required. Medical volumetric data rarely
exhibits isotropic sampling. CT data volumes consist
of slices which are usually 2-3mm apart, while resolu-
tion within the slices is typically sub-millimetre. Lin-
ear or shape-based interpolation [Herma92] between
adjacent 2D data slices is therefore used to generate



intermediate slices so that an array of approximately
cubic voxels is achieved. More recently, ray-casting
techniques have been used to render opaque sur-
faces directly without forming an intermediate sur-
face representation of polygons. Tuy et al [Tuy84]
were among the first to apply ray-casting to the dis-
play of binary volumetric data. Subsequent imple-
mentations have varied primarily in their use of trans-
parency, shading and in coding details which improve
the computational efficiency of the method.

Surface normal

Data volume n; Image plane

Viewing ray

Figure 3: The ray-casting paradigm.

Fig. 3 illustrates the principle of the ray-casting
method. Rays emanate from a viewpoint, pass
through pixels in an image plane, and then inter-
sect the data volume. For each pixel p; in the image
plane, a ray is tracked through the volume until ei-
ther a surface is detected or the volume is exhausted.
A surface is determined by thresholding the scalar
intensity distribution. The distance to the surface,
d;, is recorded in a z-buffer along with the surface
normal n;. Intensity values are interpolated between
voxel centres. Tri-linear interpolation, where an in-
termediate value is computed from the linear com-
bination of the 8 nearest voxels, is commonly used.
Within a boundary voxel the intensity is evaluated
at fine increments along the ray until a threshold
transition is detected or the voxel is exited. In this
way a surface transition is determined with sub-voxel
resolution and aliasing is avoided. Shading is fun-
damentally dependent on the determination of sur-
face normals. Volume gradients are normally esti-
mated at voxel centres from those voxels in a 3x3x3
neighbourhood [Hohne86]. Between voxels the gra-
dients are interpolated and used to estimate surface
normals. Consequently, an iso-valued surface is ren-
dered. Fig. 3 suggests a perspective projection, but
parallel rays are generally used in medical imaging to
assist quantitative analysis.

For computational reasons an approximation to tri-
linear interpolation is usually made which avoids in-
cremental evaluation along a ray. This uses bi-linear
interpolation to evaluate the scalar intensity at a
ray’s entry and exit points from a voxel neighbour-
hood. The intensity profile along the ray is then lin-
early interpolated between these two points. Using
this method, a point in the data volume will gen-
erally be evaluated with slightly different values de-
pending on the ray path taken through the point, i.e.
for different views, the scalar distribution will appear
to be multi-valued. However, if visual appearance is
the sole concern, then this effect is not noticeable

when voxels are comparable in size to pixels in the
image plane. Both tri-linear interpolation and asso-
ciated approximations result in surface artifacts (rip-
ples) which, though sub-millimetre, are reproduced
in titanium prostheses and models milled from the
ray-cast surface. In Section 3 we model the scalar
distribution piecewise with an approximating cubic
spline. We argue that this reduces interpolation ar-
tifacts and provides a more faithful depiction of the
true surface.

2 RELATED WORK

[Webbe90] has also tried to fit mathematical func-
tions to volume data to improve the ray-casting algo-
rithm. His method involves fitting a local bi-quadric
surface as a function of two variables, w = f(u,v).
A 3x3x3 voxel neighbourhood determines coefficients
of the polynomial f. In order to do this, a coordi-
nate system u-v-w is chosen such that the rendered
surface is locally a function of u and v. A surface
which is vertical relative to the u-v plane cannot be
represented. Choosing an appropriate u-v plane for
each voxel is difficult and no such plane may exist
in the general case. The method results in a series
of local quadric surface patches which form a discon-
tinuous surface. Webber demonstrates the approach
by locally approximating the surface of a sphere and
justifies the use of a discontinuous surface on the ba-
sis of the degree of precision commonly present in
voxel data and the density of rays cast. Coordinate
changes generate the greatest patch discontinuities
and are to be avoided. However, the complexity of
anatomical structures is such that many coordinate
changes are likely. This method suffers from many
difficulties because it is essentially a 2D approach to
a 3D problem.

[Molle97] has investigated the use of cubic spline fil-
ters in volume rendering and applied them to MRI
data. Their work builds on earlier research by
Mitchell and Netravali [Mitch88] which discusses cu-
bic interpolation in computer graphics from a signal
processing point of view. They use a Fourier anal-
ysis of the approximation error and subjective tests
based on 2D image interpolation to argue for a partic-
ular cubic spline filter. [Molle97] uses a Taylor series
expansion to argue that the Catmull-Rom spline is
the optimal interpolator. Interestingly, they choose
a different filter, rather than the derivative of the in-
terpolant, to determine gradients. In this paper we
have found that, despite these previous analyses, a
quasi-interpolant which does not exactly interpolate
the data is useful when rendering structures known to
be smooth and continuous. We believe this is because
the theoretical analyses do not consider the presence
of noise in the sampled data.

3 B-SPLINE APPROXIMATION

In this section we introduce a tensor-product cubic
B-spline which quasi-interpolates a 3D scalar distri-
bution sampled on a regular grid. Engineers are fa-
miliar with the use of parametric cubic B-splines to



synthesise free-form surfaces in traditional computer
graphics. In this paper we use cubic B-splines to
approximate the continuous function which under-
lies the volumetric data. The spline control points
are therefore derived from the points (voxel centres)
where the function is known, rather than being spec-
ified by a designer.

Consider the 1D spline f(z) specified over the interval
z; <z < Zi+1. f(x) can be written as the weighted
average of four points P;_1, Pi, Piy1, Pi1+2, which are
equally spaced along z. Without loss of generality,
if the origin is translated to the point z; and the
interval ; < ¢ < z;4+1 scaled such that x varies over
the range 0 < z < 1, then a spline segment can be
described by,

P,
P;
f@) = Ta | 5|, (1)
Piyo
where
T o= [ 2 o 1], )

M is a 4x4 matrix of weights which are chosen to
provide various degrees of continuity between adja-
cent segments at the endpoints ¢ = 0 z = 1. In
general, the spline does not pass through the control
points P;_1, P;, P11, P;y2. Specifically, we consider
the family of BC-splines where M is given by,

-B-6C 12-9B-6C  -124+9B + 6C B+6C
1| 3B+12C -18+12B +6C 18 —15B —12C  -6C
6| -3B—6C 0 3B +6C 0
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This family is derived from the most general form
for a symmetric cubic basis function. By requiring
the value and first derivative to be continuous every-
where, the number of free parameters which deter-
mine the spline is reduced from eight to two (B, C).
Note that the BC-spline family includes the cubic B-
spline (1,0), the Cardinal cubic splines (0,C) and the
Catmull-Rom spline (0,0.5). The Cardinal splines in-
terpolate the control points. In the specific case of
the B-spline (1,0), M becomes,

-1 3 -3 1
1 3 -6 3 0

M=zl 0o 30 (3)
1 4 10

When the product in Eq. 1 is now evaluated, it can
be seen that the B-spline is constrained to lie within
the convex hull of the four control points since the
coefficients of the four control points range in value
between 0 and 1 and sum to 1 for 0 <z < 1.

We now consider the analogous BC-spline in 3D
where x = (21, 2, z3). In 3D the control points lie on
a regular grid in R® and are denoted by P; ; ; where
i,J,k are integer indices referring to grid locations
where the data are known. The nodes of the grid are
the voxel centres. The 3D spline is a weighted average
of 64 control points in a 4x4x4 neighbourhood which
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Figure 4: The geometry of the sixty-four control
points in Eq. 5 which define the cubic spline in three
dimensions.

describes the spatial distribution f(x) within the vol-
ume bound by the eight central voxels (Fig. 4). If the
locations of these voxels are scaled and shifted such
that they lie within the unit cube, then the spline can
be formulated as,

SM  Qi_. MTT
_ SM Q. M'T
f(x) = RM SM Qk+1 MTT ) (4)
SM  Qryz MTT
where
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R :[ z¥ z3 3 1 :|, (6)
S =[ z5 22 oz 1 ], (7
T =[ m? a:f 1 1 ] (8)
and 0<zi,z2,23<1

In the ray-casting paradigm, voxel values are used as
control points which describe the scalar parameter
being visualised in a piecewise fashion. The aggre-
gate of BC-spline segments determines the scalar dis-
tribution over the entire data volume. The resulting
spatial distribution is smooth and, in the case of the
B-spline, exhibits second order continuity. The con-
vex hull property of the B-spline means that the the
fitted function is constrained to have values within
the range of the voxel values forming the support.
Other choices of B and C, such as the Catmull-Rom
spline, do not exhibit this property. The B-spline is
a quasi-interpolant of the voxel data since it approxi-
mates the voxel values at the interpolation nodes. It
is not unreasonable to approximate the sampled data
at voxel centres if the sampled data are noisy or do
not represent the actual value of the parameter at
the grid coordinates but are averages of the true pa-
rameter over the volume of the voxel. In such cases,
the data can be viewed as having a noise component
arising from the partial voluming effect.

In practice, the B-spline interpolant closely approx-
imates the data except where sudden changes occur
at a scale which is small relative to the size of the
B-spline support. The piecewise nature of the spline



interpolant avoids the propagation of spurious ripples
due to sudden changes or discontinuities in the data.

4 APPLICATION

In the following examples, rays were cast into a data
volume and an iso-value surface corresponding to
bone was extracted. Threshold transitions along rays
were not determined analytically but by searching
along the viewing rays. The smallest step size was
determined by the tolerance required by the appli-
cation; 50um was considered sufficient for machining
prosthetic templates. The convex hull property of
the approximating spline constrains it to have a value
within the range of those voxels in the 4x4x4 neigh-
bourhood which determine it. The spline is therefore
only evaluated within those neighbourhoods where a
voxel exceeds the surface threshold. Thus, evaluation
at every voxel which a ray passes through is avoided.
This is not the case for a general cubic spline since
the spline may exhibit values outside the range of
the local voxel values. When a ray terminates, the
gradient V f(x), is computed analytically by differ-
entiating Eq.4.
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Figure 5: The difference between the tri-linear sur-
face in Fig. 1(a) and the approximating spline surface
in Fig. 1(b). The scales are in mm.

Fig. 1 illustrates part of a typical cranial surface
extracted from CT data by ray-casting. The CT
data consists of rectangular voxels of dimension
1x1x2.3mm. Fig. 1(a) was obtained using conven-
tional tri-linear interpolation while Fig. 1(b) is the
corresponding surface obtained using the spline ap-
proximation. The scales are in millimetres. Appar-
ent in Fig. 1(a) is a step artifact occurring at voxel
boundaries. This is largely absent from the appre-
ciably smoother surface depicted in Fig. 1(b). In
Fig. 5 the difference between the two surfaces is dis-
played. Surface differences range between -0.19mm
and 0.4bmm, the mean being 0.21mm with a stan-
dard deviation of 0.016mm. Significantly, the differ-
ence between the two surfaces is very small. Further-
more, Fig. 1(b) differs from Fig. 1(a) primarily in the
absence of ripples.

In Fig. 1 it is not possible to directly determine which
representation is the more accurate since the actual
skull surface is not known, nor can it be easily mea-
sured. However, given that the difference between
the two surfaces is very small (a fraction of a voxel),
and that this is primarily due the ripples in the tri-

linear surface, then it can be argued that the B-spline
is the more likely representation since it is known that
skulls do not contain such ripples.

Fig. 6 compares skull surfaces rendered using tri-
linear and B-spline interpolation. The data set con-
sists of 47 slices at 3mm spacings with 0.88mm reso-
lution within the slices. Fig. 6(a) is the B-spline sur-
face rendered using the B-spline gradient. Fig. 6(b)
is the corresponding tri-linear surface rendered using
a grey-level volume gradient. The same threshold
has been applied in both cases. The B-spline surface
gradient results in shading that is very similar to the
grey-level volume gradient. In Fig. 6(c) the B-spline
depth-map is shaded using z-buffer gradients deter-
mined by the algorithm described in Appendix A.
Fig. 6(d) is the corresponding z-buffer shaded image
for the tri-linear ray-cast surface. The smoother B-
spline surface is particularly apparent in the z-buffer
surface renderings, near the orbits of the eyes. The
observation that the B-spline gradient produces sur-
face shading very similar to that of the grey-level vol-
ume gradient is typical of the B-spline interpolant.
Fig. 6(c) illustrates that a high quality image, simi-
lar to that achieved using volume shading, can be ob-
tained with z-buffer shading if the underlying surface
is smooth. The popular grey-level volume shading
method (Fig. 6(b)) merely masks inadequacies in the
extracted surface while z-buffer shading accurately
depicts them (Fig. 6(d)).

5 DISCUSSION

The B-spline approximation developed in Section 3
uses a uniform parameterisation which means that
the continuity properties are invariant under an affine
transformation of the data points. Consequently,
the technique is applicable when the data lie on a
regular cubic grid or can be mapped on to a reg-
ular cubic grid by an appropriate linear transfor-
mation. If such a transformation cannot be found,
then a parametric representation can be formulated
where f,z1,z2,z3 are each written as a function of
three variables, say r, s,t, which vary between 0 and
1, ie. f(r,s,t),z1(r,s,t),z2(r,s,t),z3(r,s,t). How-
ever, the difficulty with a parametric representation is
that evaluating f at a point (z1,z2, z3) requires find-
ing the corresponding point in the parametric space.
This involves solving third order polynomials in three
variables. Consequently, multiple solutions are pos-
sible. Although f(r,s,t) is a single valued function,
f(z1,2z2,23) may be multi-valued and this has no
physical meaning in the medical imaging context.

6 CONCLUSION

The B-spline approximation improves the rendering
of surfaces from volume data known a priori to be
locally smooth and continuous. It is less suscepti-
ble to noise in the sampled data and therefore pro-
duces smoother surfaces. Gradients can be deter-
mined analytically. In the vicinity of thin bone the
B-spline interpolant does not perform as well as other
splines such as the Catmull-Rom spline favoured by
[Molle97]. This is due to the convex hull property



Figure 6: Comparison between tri-linear and B-spline surface renderings. (a) B-spline depth-map shaded
using the B-spline gradient, (b) tri-linear depth-map shaded using a grey-level volume gradient, (c) B-spline
depth-map shaded using the z-buffer gradient, (d) tri-linear depth-map shaded using the z-buffer gradient.

of the B-spline which means that no data value out-
side the range of the control points can be gener-
ated. The Catmull-Rom spline, for example, is not
constrained by the convex hull property. In the ap-
plication considered in this paper we are interested
in fitting surfaces to regions where the skull surface
is smooth and free of defect. The application is ideal
in this respect because regions where discontinuities
occur, which are more likely to result in rendering
errors, are usually rejected. Surfaces are fitted only
to those regions where the bone is well defined.

Shading using volume gradients can mask interpola-
tion artifacts in a ray-cast surface. These become
important when models are to be constructed from
the rendered surface. Analytically determined gradi-
ents are preferable. However, accurate, high quality
shading is possible when gradients are determined
from the z-buffer, provided discontinuities in the z-
buffer are considered (Appendix A).

Acknowledgements

This work was supported by the SOLUS-3D Euro-
pean project (contract no. BMH4-CT-95-0476).

7 REFERENCES

[Carr97] Carr, J. C., Fright, W. R., and Beatson,
R. K., Interpolation with radial basis functions
for medical imaging, IEEE Trans. on Medical
Imaging, Vol.16, No.1, pp96-107, 1997.

[Chen85] Chen, G. T. Y., Herman, G. T., Reynolds,
R. A., and Udupa, J. K., Surface shading in the
cuberille environment, IEEE Computer Graph-
ics and Applications, Vol.5, No.12, pp33-43,
1985.

[Cline88] Cline, H. E., Lorensen, W. E., Ludke, S.,
Crawford, C. R., and Teeter, B. C., Two algo-
rithms for the three-dimensional reconstruction
of tomograms, Medical Physics, Vol.15, No.3,
pp320-327, 1988.

[Drebl88] Dreblin, R. A., Carpenter, L., and Hanra-
han, P., Volume rendering, Computer Graph-
ics, Vol.22, No.4, pp51-58, 1988.

[Foley90] Foley, J. D., van Dam, A. Feiner, S. K., and
Hughes, J. F., Computer Graphics Principles
and Practice, Addison-Wesley, Reading, Mass.,
1990.



[Gordo85] Gordon, D., Image space shading of 3-
Dimensional objects, Computer Vision, Graph-
ics, and Image Processing, Vol.29, pp361-376,
1985.

[Herma92] Herman, G. T., Zheng, J., and Bucholtz,
C. A., Shape-based interpolation, IEEE Com-
puter Graphics and Applications, May, pp69—
70, 1992.

[Hohne86] Hohne, K. H., and Bernstein, R., Shading
3D images from ct using gray-level gradients,
IEEFE Trans. on Medical Imaging, Vol.5, No.1,
pp45-47, 1986.

[Hohne90] Hohne, K. H., Bomans, M., Pommert,
A., Riemer, M., Schiers, C., Tiede, U., and
Wiebecke, G., 3D visualization of tomographic
volume data using the generalised voxel model,
The Visual Computer,Vol.6, No.l, pp28-36,
1990.

[Levoy88] Levoy, M., Display of surfaces from volume
data, IEEE Computer Graphics and Applica-
tions, May, pp29-37, 1988.

[Levoy90] Levoy, M., A hybrid ray tracer for ren-
dering polygon and volume data, IJEEE Com-
puter Graphics and Applications, Mar., pp33—
40, 1990.

[Loren87] Lorensen, W. E., and Cline, H. E., Marching
cubes A high resolution 3D surface construc-
tion algorithm, Computer Graphics, Vol.21,
No.4, pp163-169, 1987.

[Mitch88] Mitchell, D. and Netravali, A., Reconstruc-
tion Filters in Computer Graphics, Computer
Graphics, Vol.22, No.4, pp221-228, 1988.

[Molle97] Moller, T. and Machiraju, R. and
Mueller, K. and Yagel, R., Evaluation and De-
sign of Filters Using a Taylor Series Expan-
sion, IEEE trans. Visualisation and Computer
Graphics, Vol.3, No.2, pp184-199, 1997.

[Nelso93] Nelson, T. R., and Elvins, T. T., Visu-
alisation of 3D ultrasound data, IEEE Com-
puter Graphics and Applications, Nov., pp50—
57, 1993.

[PHIGS86] Shuey, D., Bailey, D., and Morrissey,
T. P., PHIGS a standard, dynamic, interac-
tive graphics interface, IEEE Computer Graph-
ics and Applications, No.6, pp50-57, 1986.

[Tiede90] Tiede, U., Heinz, K., Bomans, M., Pom-
mert, A., Riemer, M., and Wiebecke, G., Inves-
tigation of medical 3D-rendering algorithms,
IEEE Computer Graphics and Applications,
Mar., pp41-53, 1990.

[Tuy84] Tuy, H. K., and Tuy, L. T., Direct 2-D display
of 3-D objects, IEEE Computer Graphics and
Applications, Vol.4, No. 10, pp29-33, 1984.

[Udupa93] Udupa, J. K., and Odhner, D., Shell ren-
dering. IEEE Computer Graphics and Appli-
cations, Nov., pp58-67, 1993.

[Webbe90] Webber, R. E., Ray tracing voxel based
data via biquadratic local surface interpola-
tion, The Visual Computer, Vol.6, No.1, pp8—
15, 1990.

APPENDIX A: z-buffer shading
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Figure 7: Geometry for estimating g—; from the z-
buffer.

Surface gradients can be estimated from the z-buffer
and are required when an analytic expression or vol-
ume gradient are not available. The z-buffer is viewed
as a function of two variables z = z(z,y) and the sur-
face normal n is obtained from the vector Vz.
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Consider the z-buffer profile depicted in Fig. 7. To a

first approximation, g—; at z; can be estimated from

the central difference, (ziy1 — zi—1)/(Tit1 — Ti—1)-
Unfortunately the central difference will fail when a
discontinuity occurs in the z-buffer due to one surface
occluding another (Fig. 8). [Gordo85] has proposed
a method which takes a weighted average of the for-
ward z;4+1 — 2; and backward z; — z;—1 differences to
provide a more reliable estimate of surface gradient
from parallel projections. We use a modified version
which attempts to explicitly identify discontinuities
in the z-buffer corresponding to partially occluding
surfaces.

surface normals

7745 Centrd difference
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e
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Figure 8: Failure to correctly estimate surface nor-
mals when a discontinuity occurs in the z-buffer.

Consider determining g—: at the point z; (Fig. 7)

where the forward, backward and central differences
are expressed by the angles, 05,60, and 6., respec-
tively. Note that the z;’s need not necessarily be
equally spaced. Fig. 10 summarises the algorithm
used to estimate g—; at the point z;. Nine cases
are sequentially considered. These are illustrated in
Fig. 11. The first three cases deal with the possi-
bility of one or both of the adjacent Z-values being
undefined, which occurs when the corresponding ray
does not intersect a surface. The following six cases
consider the prospect of a discontinuity occurring in
the intervals [z;—1, #;] and [z;, Tit1]-



(a) (b) (c)

Figure 9: Comparison between z-buffer shading methods (detail from Fig. 6(d)). (a) z-buffer shading using
the central difference gradient estimate, (b) z-buffer shading using the method described in Fig. 10, (c) shading

with the grey-level volume gradient.

Conditions (82,

Case e

[y

zi—1 = undefined, z;11 = undefined 0

2 z;_1 = undefined tan @
3 2Zi41 = undefined tanfy
4 |6y — 05| < Abpnas tan 6,
5 |t9f| > Onaz, |91,| > Omaz, ofab <0 0

6 |(9f| > Onaz, |91,| > Omaz, 0f0b >0 tan6,
7 10f] > Omaa tan 0y
8 |01,| > Omaz tan 0f
9 default case tand,

Figure 10: Algorithm for estimating (g—:)i from the
z-buffer (Fig. 7). The cases are considered in sequen-

tial order, where =% < 6,6y < 5*. The constants

Abimasz and Oppaq > 0.

A large change in depth between two adjacent points
in the depth-map alone is not indicative of a discon-
tinuity in the surface profile. A smooth continuous
surface segment oriented obliquely to the viewing di-
rection may also exhibit a steep profile. The change
in gradient must also be considered when determin-
ing whether a discontinuity occurs. Gordon’s weight
allocation indirectly achieves this in certain cases.

As with Gordon’s method two parameters, 6y,q42 and
AOpmaz, are used to detect discontinuities. Opmqz Te-
lates to the magnitude of the forward and backward
differences while Afy,., relates to the magnitude of
the change in gradient between the forward and back-
ward differences. Af;,4, determines the maximum
permissible change in surface gradient. If the change
in gradient, |0y — 6/, is less than Afmqz, then no dis-
continuity is deemed to have occurred in the vicinity
of z;, regardless of whether the gradients over the in-
tervals [z;—1, z;], and [z;, zs+1] exceed the threshold
Omaz (case 4).

If a significant change in gradient occurs at z;, then
the magnitude of the forward and backward differ-
ences are considered. In case 5 the magnitudes of 6y
and 6, are compared to the threshold 0y.q,. If both
exceed this threshold and are of opposite sign, then
a ‘spike’ (or an inverted spike) is deemed to have oc-
curred. Both intervals [z;_1, z;] and [z;, Z;+1] there-
fore contain a discontinuity. If both gradients exceed
the threshold 0mmqz, but have the same sign, then no

z Z
i-1 ><i i+1
case 4
‘n
z /\ z
><|1 ><i X|+1 i-1 X\ i+1 i-1 ><i i+1
case 7 case 8 case 9

Figure 11: Illustration of the 9 z-buffer cases identi-
fied in Fig. 10.

discontinuity is deemed to have occurred even though
the change in slope exceeds Afyq,. Cases 7 and 8
consider the more usual occurrence where a single
discontinuity occurs, either in the interval [z;_1, z;]
(case 7) or [z;, x;+1] (case 8). Case 9, the default
case, corresponds to the situation where a significant
change in slope has occurred, |6y —0¢| > Abmaq, but
neither 65 nor 0, exceeds the threshold ,,4.. In this
case no discontinuity is deemed to have occurred.

From experience, the values of 65° for 6,4, and 20°
for ABpmqq have been found to produce good results.
Fig. 9 examines the region of the zygomatic arch from
Fig. 6(d) in detail. Fig. 9(a) is shaded from the z-
buffer using the central difference method. Fig. 9(b)
is shaded from the z-buffer using the method de-
scribed in Fig. 10. For comparison, Fig. 9(c) is the
volume gradient shaded image. The new algorithm
has correctly assigned normals in most cases, elimi-
nating the ‘shadow’ artifact apparent in Fig. 9(a) and
producing a result similar to the volume shaded one.
Fig. 9(b) differs from 9(c) primarily in the correct
depiction of ripples resulting from tri-linear interpo-
lation used in the ray-caster.






