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Abstract. In this paper we consider the problem of estimating the fun-
damental matrix from point correspondences. It is well known that the
most accurate estimates of this matrix are obtained by criteria mini-
mizing geometric errors when the data are affected by noise. It is also
well known that these criteria amount to solving non-convex optimiza-
tion problems and, hence, their solution is affected by the optimization
starting point. Generally, the starting point is chosen as the fundamental
matrix estimated by a linear criterion but this estimate can be very inac-
curate and, therefore, inadequate to initialize methods with other error
criteria.

Here we present a method for obtaining a more accurate estimate of the
fundamental matrix with respect to the linear criterion. It consists of
the minimization of the algebraic error taking into account the rank 2
constraint of the matrix. Our aim is twofold. First, we show how this non-
convex optimization problem can be solved avoiding local minima using
recently developed convexification techniques. Second, we show that the
estimate of the fundamental matrix obtained using our method is more
accurate than the one obtained from the linear criterion, where the rank
constraint of the matrix is imposed after its computation by setting the
smallest singular value to zero. This suggests that our estimate can be
used to initialize non-linear criteria such as the distance to epipolar lines
and the gradient criterion, in order to obtain a more accurate estimate
of the fundamental matrix. As a measure of the accuracy, the obtained
estimates of the epipolar geometry are compared in experiments with
synthetic and real data.

1 Introduction

The computation of the fundamental matrix existing between two views of the
same scene is a very common task in several applications in computer vision,
including calibration [15,13], reconstruction [13], visual navigation and visual
servoing. The importance of the fundamental matrix is due to the fact that it
represents succinctly the epipolar geometry of stereo vision. Indeed, its knowl-
edge provides relationships between corresponding points in the two images.



Moreover, for known intrinsic camera parameters, it is possible to recover the
essential matrix from the fundamental matrix and, hence, the camera motion,
that is the rotation and translation of the camera between views [6,14].

In this paper we consider the problem of estimating the fundamental matrix
from point correspondences [6, 20, 7]. Several techniques has been developed [9,
19,17], like the linear criterion, the distance to epipolar lines criterion and the
gradient criterion [12]. The first one is a least-squares technique minimizing the
algebraic error. This approach has proven to be very sensitive to image noise
and unable to express the rank constraint. The other two techniques take into
account the rank constraint and minimize a more indicative distance, the geo-
metric error, in the 7 degrees of freedom of the fundamental matrix. This results
in non-convex optimization problems [11,10] that present local solutions in ad-
dition to the global ones. Hence the found solution is affected by the choice of
the starting point of the minimization algorithm [12]. Generally, this point is
chosen as the estimate provided by the linear criterion and forced to be singular
setting the smallest singular value to zero, but this choice does not guarantee to
find the global minima.

In this paper we present a new method for the estimation of the fundamental
matrix. It consists of a constrained least-squares technique where the rank con-
dition of the matrix is ensured by the constraint. In this way we impose the
singularity of the matrix a priori instead of forcing it after the minimization
procedure as in the linear criterion.Our aim is twofold. First, we show how this
optimization problem can be solved avoiding local minima. Second, we provide
experimental results showing that our approach leads to a more accurate es-
timate of the fundamental matrix. In order to find the solution and avoiding
local minima, we proceed as follows. First, we show how this problem can be ad-
dressed as the minimization of a rational function in two variables. This function
is a non-convex one and, therefore, the optimization problem still presents local
minima. Second, we show how this minimization can be reformulated so that
it can be tackled by recently developed convexification techniques [2]. In this
manner, local optimal solutions are avoided and only the global one is found.
The same problem has been studied by Hartley [9], who provided a method for
minimizing the algebraic error ensuring the rank constraint, which requires an
optimization over two free parameters (position of an epipole). However, the op-
timization stage on these two unknowns is not free of local minima in the general
case.

The paper is organized as follows. In section 2, we give some preliminaries about
the fundamental matrix and the estimation techniques mentioned above. In sec-
tion 3, we state our approach to the problem, showing how the constrained
least-squares minimization in the unknown entries of the fundamental matrix
can be cast as a minimization in only two unknowns. Section 4 shows how this
optimization problem can be solved using convexification methods in order to
find the global minima. In section 5 we present some results obtained with our
approach using synthetic and real data, and we provide comparisons with other
methods. In particular, we show that our solution gives smaller geometric errors



than the one provided by the linear criterion. Moreover, initializing non-linear
criteria with our solution allows us to find a more accurate estimate of the fun-
damental matrix. Finally, in section 6 we conclude the paper.

2 Preliminaries
First of all, let us introduce the notation used in this paper.

R: real space;

I,: n X n identity matrix;

AT: transpose of A;

A >0 (A >0): positive definite (semidefinite) matrix;
(A)s;: entry (5,5) of A;

[lull2 (llull2,w): (weighted) euclidean norm of w;
det(A): determinant of A;

adj(A): adjoint of A;

A (A): maximum real eigenvalue of A;

Ker(A): null space of A.

):
):

Given a pair of images, the fundamental matrix F' € R3*3 is defined as the
matrix satisfying the relation

WTFu=0 Vu',u (1)

where u',u € R® are the projections expressed in homogeneous coordinates of
the same 3D point in the two images. The fundamental matrix, F' has 7 degrees
of freedom being defined up to a scale factor and being singular [5].

The linear criterion for the estimation of F' is defined as

N, T
min Zl(u: Fu;)? (2)
=

where n is the number of observed point correspondences. In order to obtain a
singular matrix, the smallest singular value of the found estimate is set to zero
[8]. The distance to epipolar lines criterion and the gradient criterion take into
account the rank constraint using a suitable parameterization for F. The first
criterion defines the cost function as the sum of squares of distances of a point
to the corresponding epipolar line. The second criterion considers a problem of
surface fitting between the data [(u})1; (u})a; (ui)1; (u;)2] € R* and the surface
defined by (1). These non-linear criteria result in the minimization of weighted

least-squares:
n

i ! /T 2
F:dgl(lg):o z=21 w(F, uj,ui)(u;” Fug) (3)

where
1 1

+
(FTuf)? + (FTuj);  (Fui)i + (Fui)s

w(F, U;,uz) =



for the distance to epipolar lines criterion and

1
w(F,ul,u;) = 5
(Fyuss i) = CEr e + (FTa)2 + (P + (Fur)3 ©)

for the gradient criterion. The main problem with these non-linear criteria is
the dependency of the found solution on the starting point for the optimization
procedure, due to the fact that the cost funtion defined in (3) is non-convex.
Experiments show a large difference between results obtained starting from the
exact solution and starting from the solution provided by the linear criterion,
generally used to initialize these minimizations [12].

Before proceeding with the presentation of our approach, let us review the
method proposed by Hartley for the minimization of the algebraic error con-
strained by the singularity of the fundamental matrix [9]. In short, Hartley re-
duces the number of degrees of freedom from eight (the free parameters of the
fundamental matrix) to two (the free parameters of an epipole) under the rank
2 constraint. Therefore, the optimization stage looks for the epipole minimizing
the algebraic error. Unfortunately, this step is not free of local minima in the
general case, as figure 1 shows for the statue image sequences of [9].
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Fig. 1. Algebraic error versus position of epipole.

3 The constrained least-squares estimation problem

The problem that we wish to solve can be written as

. S T 2
min ; w;(u; Fu;) (©)
subject to  det(F) =0



where n > 8, w; € R are positive given weighting coeflicients and the constraint
ensures the rank condition of the estimation of F. Let us introduce A € R**8,
rank(A) = 8, and b € R" such that

n

> wi(uy” Fui)? = [|Af — bl w (7)

where f € R® contains the entries of F':
(N1 (£)a ()7
F=1(f2(fs (s (8)
(fls (fle 1

and W € R"*™ is the diagonal matrix with entries w;. Since F' is defined up to
a scale factor, we have set (F)s,3 = 1 (see Remark 1). Then, (6) can be written

as 5
in||Af —b
min |47 = b

subject to TN f =r(\) ©)
where A € R?, T(\) € R®*8 and r()\) € R? are so defined:
(N2 0
T = (—73 (Mils 0 ()\)2) ) (10)
0 O
r)=(0 0 —(\)2)". (11)

The constraint in (9) expresses the singularity condition on F as the linear
dependency of the columns of F' and hence det(F) = 0. In order to solve the
minimization problem (9), let us observe that the constraint is linear in f for any
fixed A. So, the problem can be solved using the Lagrange’s multipliers obtaining
the solution f*(\):

f*) =v = ST P [T(N)v —r(N)] (12)
where v € R®, S € R¥*® and P()\) € R®*? are:
v=SATWb, (13)
S=ATwa), (14)
PO\ = [TSTTN] ™ (15)

Now, it is clear that the minimum J* of (9) can be computed as:

J* =m/\inJ*()\). (16)

So, let us calculate J*(X). Substituting f*(A) into the cost function we obtain:

J*(N) = IIAf*(;\) —blI3,w

=co + Z C,(/\) (17)
i=1



where

co = bW (I, — ASATW) b, (18)
c1(A) =T (AN PN)r(N), (19)
ca(A) = =20TTT (N P(M)r(N), (20)
es(A) = oI TT (NPT (M. (21)

The constrained problem (6) in 8 variables is equivalent to the unconstrained
problem (16) in 2 variables. In order to compute the solution J*, let us consider
the form of the function J*(A). The terms ¢;(\) are rational functions of the
entries of \. In fact, let us write P()) as:

POy = S, (22)
G(\) = adj [T(N)STT (V)] , (23)
d(\) = det [T(N)STT(N)]. (24)

Since T'(\) depends linearly on A, we have that G()\) is a polynomial matrix of
degree 4 and d()) a polynomial of degree 6. Straightforward computations allow
us to show that J*(\) can be written as:

J*(\) = % (25)

where h(])) is a polynomial of degree 6 defined as:

h(A) = cod(A) +rT(NGNr(N) — 20T TT(NGA)r(A) + T TT(NGAT (N)v.
(26)
Let us observe that the function d()\) is strictly positive everywhere being the
denominator of the positive definite matrix T(A)STT ().

Remark 1 The parametrization of the fundamental matrix chosen in (8) is
not general since (F)s,3 can be zero. Hence, in this step we have to select one
of the nine entries of F' that, for the considered case, is not zero and not too
small in order to avoid numerical problems. A good choice could be setting to
1 the entry with the maximum modulus in the estimate provided by the linear
criterion.

4 Problem solution via convex programming

In this section we present a convexification approach to the solution of problem
(6). The technique is based on Linear Matrix Inequalities (LMI) [1] and leads
to the construction of lower bounds on the global solution of the polynomial
optimization problem (6). More importantly, it provides an easy test to check



whether the obtained solution is the global optimum or just a lower bound. From
the previous section we have that:

Jr = min ) (27)
Let us rewrite (27) as:
J* =miné
M(A) (28)
i h
subject to m = 4.

where § € R is an additional variable. The constraint in (28) can be written as
y(A, 8) = 0 where
y(A,8) = h(A) — dd(}) (29)

since d(A) # 0 for all A. Hence, J* is given by:
J* =miné
bW (30)
subject to  y(A\, ) =0

where the constraint is a polynomial in the unknown A and §.
Problem (30) belongs to a class of optimizations problems for which convexifi-
cation techniques have been recently developed [2, 3]. The key idea behind this
technique is to embed a non-convex problem into a one-parameter family of con-

vex optimization problems. Let us see how this technique can be applied to our
case. First of all, let us rewrite the polynomials h(\) and d(A) as follows:

h(A) =D hi(N), (31)
=0
6
d(N) = di(N). (32)
=0

where h;(A) and d;(A) are homogeneous forms of degree i. Now, let us introduce
the function y(c; A, 9):

6 g6—i
y(e X, 0) = —= [hi(N) —edi(V)]. (33)

i=0
We have the following properties:

1. for a fixed ¢, y(¢; A, §) is a homogeneous form of degree 6 in A\ and J;
2. y(A,0) =y(e A, 0) forall Aif § = ¢.

Hence the form y(c; A, ) and the polynomial y(\, §) are equal on the plane ¢ = c.
In order to find J* let us observe that § > 0 because J* is positive. Moreover,
since h(A) is positive, then y(A,d8) > 0 for § = 0. This suggests that J* can be



computed as the minimum § for which the function y(A,d) loses its positivity,
that is:
J*=min{d:y(X,0) <0 for some A}. (34)

Hence, using the homogeneous form y(c; A, §), equation (34) becomes (see [3] for
details):
J* =min{c:y(e;\,8) <0 for some X\ d}. (35)
The difference between (35) and (34) is the use of a homogeneous form, y(c; A, 9),
instead of a polynomial, y(\,d). Now, let us observe that y(c; A, §) can be written
as:
y(c;A,0) = 2T (X, 0)Y (c)2(), ) (36)

where z(),d) € R is a base vector for the forms of degree 3 in the variables
(N1, (A)2,6:

z(X,6) = ( (M} CYHEYP
(A)ié N1(N)3
N1 (A28 (A)16? (37)
N3 (N30
(\)20? 6 )T

and Y (c) € R°%10 js a symmetric matrix depending on c. Now, it is evident
that positivity of the matrix Y (¢) ensures positivity of the homogeneous form
y(e; A, ) (see (36)). Therefore, a lower bound ¢* of J* in (35) can be obtained by
looking at the loss of positivity of Y(¢). To proceed, we observe that this matrix
is not unique. In fact, for a given homogeneous form there is an infinite number
of matrices that describe it for the same vector z(\, d). So, we have to consider
all these matrices in order to check the positivity of y(c; A, d). It is easy to show
that all the symmetric matrices describing the form y(c; A, §) can be written as:

Y()-L ,Lel (38)
where £ is the linear set of symmetric matrices that describe the null form:
L={L=L" e R : 2T(\,8)Lz(\,8) =0VA,6}. (39)

Since L is a linear set, every element L can be linearly parametrized. Indeed, let
L(a) be a generic element of £. It can be shown that £ has dimension 27 and
hence

27
L(a) =) oiL; (40)
i=1
for a given base L1, Lo, ..., La7 of L. Hence, (38) can be written as:
Y(c) - L(a) , a € R*. (41)

Summing up, a lower bound ¢* of J* can be obtained as:

¢* =minc
subject to  min Ay [L(a) — Y (c)] > 0. (42)



This means that ¢* can be computed via a sequence of convex optimizations
indexed by the parameter c. Indeed, for a fixed ¢, the minimization of the max-
imum eigenvalue of a matrix parametrized linearly in its entries is a convex
optimization problem that can be solved with standard LMI techniques [16, 1].
Moreover, a bisection algorithm on the scalar ¢ can be employed to speed up the
convergence.

It remains to discuss when the bound ¢* is indeed equal to the sought optimal J*.
It is obvious that this happens if and only if y(c*; \,d) is positive semidefinite,
i.e. there exists A* such that y(c*; \*,¢*) = 0. In order to check this condition,
a very simple test is proposed. Let K be defined as:

K =Ker[L(a™*) — Y (c*)] (43)

where a* is the minimizing « for the constraint in (42). Then, J* = ¢* if and
only if there exists A\* such that z(A\*,c¢*) € K. It is possible to show that, except
for degenerate cases when dim(K) > 1, the last condition amounts to solving a
very simple system in the unknown A\*. In fact, when K is generated by one only
vector k, then \* is given by the equation:

c*3

"

In order to solve the above equation, it is sufficient to observe that if (44) admits
a solution A* then:

z2(A*, ") = (44)

* (k)G
()‘*)1 =c )
¥ Uk ((179))190 (45)
( )2 =c (k)m .

Now, we have just to verify if \* given by (45) satisfies (44). If it does then ¢*
is optimal and the fundamental matrix entries f* solution of (9) are given by:

=)
— v — ST(VY)PO) [TV o — 70" (46)

Whenever ¢* be not optimal, standard optimization procedures starting from
the value of A given by (45) can be employed for computing J*. This is expected
to prevent the achievement of local minima. However, in our experiments we did
not experience any case in which c¢* is strictly less than J*.

Remark 2 In order to avoid numerical problems due to too small values of

the parameter ¢ in (33), the procedure described above can be implemented
replacing § in (28) by § — 1. This change of variable ensures ¢ > 1.

5 Experiments and results

In this section we present some results obtained by applying our method for
solving problem (6). The goal is to investigate its performance with respect to



the linear criterion. To evaluate the algorithm, we generated image data from
different 3D point sets and with different camera motions, and also applied the
algorithm to real image data from standard sequences. In both cases, we scaled
the image data in order to work with normalized data.

In the sequel, we will refer to the estimate of the fundamental matrix given by
the linear criterion with Fj; to the estimate provided by our method, constrained
least-squares criterion, with F,;,; and to the estimate provided by the distance
to epipolar lines criterion with F; when initialized by F; and with F; when ini-
tialized by F;s. The algorithm we use to compute F;,; is summarized below.

Algorithm for computing F;

1. Given the point correspondences u},u;, form the polynomials h())
and d()) as shown, respectively, in (26) and (24).

Build a symmetric matrix function Y (c) satisfying (36).

Solve the sequence of LMI problems (42).

Retrieve \* as shown in (45) and check for its optimality.

Retrieve f* as shown in (46) and form Fy;.

U W

First, we report the results obtained with synthetic data. The points in 3D space
have been generated randomly inside a cube of size 40cm and located 80cm from
the camera centre. The focal length is 1000 pixels. The first image is obtained
by projecting these points onto a fixed plane. The translation vector ¢ and the
rotational matrix R are then generated randomly, obtaining the projection ma-
trix P of the second camera and, from this, the second image of the points. The
camera calibration matrix is the same in all the experiments. In order to use
corrupted data, Gaussian noise has been added to the image point coordinates
(in the following experiments we refer to image noise as the standard deviation
of the normal distribution). These experiments have been repeated fifty times
and the mean values computed. The weighting coeflicients w; in (6) have been
set to 1.

In the first experiment, a comparison of the mean algebraic error e, defined as:

1 1T 2
= — " Fu; 4
ea= =3 (" Fu) (47)

i=1

for the linear criterion (F}) and the constrained least-squares criterion (Fys) has
been performed. The goal is to show that imposing the rank constraint a priori
gives very different results with respect to setting the smallest singular value to
zero. Figure 2 shows the behaviour of the logarithm of e, for the two methods. In
the second experiment we consider the properties of estimated epipolar geometry.
Specifically, we compare the mean geometric error e, defined as:

n

1 1 1 .
= | = Try)2 (4
N %EQMMHW%*@MHmQW W us
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Fig. 2. Logarithmic algebraic error (log;y(es)) for linear (dashed) and constrained
least-squares criterion (solid).

that is the mean geometric distance between points and corresponding epipolar
lines. Figure 3 shows the behaviour of the logarithm of e, for linear and con-
strained least-squares criterion. As we can see, the error e, achieved by Fi; is
clearly less than the one achieved by Fj for all image noises considered. Now, let

logarithmic geor

3 35 4 45 5
image noise (pixels)

Fig. 3. Logarithmic geometric error (log;,(eq)) for linear (dashed) and constrained
least-squares criterion (solid).

us see the results obtained with real data. Figure 4 shows two typical views used
to estimate the fundamental matrix. The forty point correspondences are found
by a standard corner finder. Table 1 shows the geometric error e, given by lin-
ear and constrained least-squares criterion, and by the distance to epipolar lines
criterion initialized by F; (Fy) and by F., (Fy). As we can see, the geometric
error achieved by F, is clearly less than the one achieved by F;.

Table 2 shows the geometric error obtained for the views of figure 5. Here, the



Fig. 4. King’s College sequence (epipoles outside the image). The epipolar lines are
given by Fy after optimization using F;s solution as the starting point.

Criterion|Geometric error ey
F; 1.733

Fos 0.6578

Fy 0.6560

Fy 0.6560

Table 1. Geometric error e, obtained with the image sequence of figure 4.

point correspondences used are 27. Again, F,;; achieves a significant improve-
ment with respect to Fj.
Finally, table 3 and table 4 show the geometric error obtained for the well known

Criterion|Geometric error ey
F, 1.255

Fos 0.6852

Fy 0.5836

Fy 0.5836

Table 2. Geometric error for the image sequence of figure 5.

examples used in [9] and shown in figures 6 and 7. The point correspondences
used are 100 for the first example and 128 for the second one. Observe that this
time, not only does F,;, achieve a smaller geometric error than Fj, but also F}
produces a better result than Fj, indicating the presence of different local min-
ima. Moreover, in the calibration jig example, F;; provides better results even
than Fj.



Fig. 5. Cambridge street sequence (epipoles in the image).

Criterion|Geometric error ey
F; 0.4503
Fos 0.4406
Fy 0.1791
F, 0.1607

Table 3. Geometric error for the views of figure 6.

As we can see from the results, the solution provided by our method gives
smaller algebraic and geometric errors with respect to the linear criterion, with
both synthetic and real data. Moreover, initializing non-linear criteria with our
solution allows us to achieve more accurate estimates of the fundamental matrix.

6 Conclusions

In this paper, we have proposed a new method for the estimation of the funda-
mental matrix. It consists of minimizing the same algebraic error as that used in
the linear criterion, but taking into account explicitly the rank constraint. We
have shown how the resulting constrained least-squares problem can be solved
using recently developed convexification techniques. Our experiments show that
this method provides a more accurate estimate of the fundamental matrix com-
pared to that given by the linear criterion in terms of epipolar geometry. This
suggests that our estimation procedure can be used to initialize more complex
non-convex criteria minimizing the geometric distance in order to obtain better
results.
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Fig. 6. Oxford basement sequence (epipoles in the image).

Criterion|Geometric error ey
F 0.4066
Fos 0.1844
Fy 0.1943
Fy 0.1844

Table 4. Geometric error for the views of figure 7.
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