
ON THE USE OF SUPPORT VECTOR MACHINES FOR PHONETIC CLASSIFICATION

Philip Clarkson
�

and Pedro J. Moreno

Compaq Computer Corporation,
Cambridge Research Laboratory

One Kendall Square, Building 700
Cambridge, MA 02139

USA

ABSTRACT

Support Vector Machines (SVMs) represent a new approach to
pattern classification which has recently attracted a great deal of in-
terest in the machine learning community. Their appeal lies in their
strong connection to the underlying statistical learning theory, in
particular the theory of Structural Risk Minimization. SVMs have
been shown to be particularly successful in fields such as image
identification and face recognition; in many problems SVM clas-
sifiers have been shown to perform much better than other non-
linear classifiers such as artificial neural networks and

�
-nearest

neighbors.
This paper explores the issues involved in applying SVMs to

phonetic classification as a first step to speech recognition. We
present results on several standard vowel and phonetic classifi-
cation tasks and show better performance than Gaussian mixture
classifiers. We also present an analysis of the difficulties we fore-
see in applying SVMs to continuous speech recognition problems.

1. INTRODUCTION

The theory of Support Vector Machines was first introduced by
Vapnik and was developed from the theory of Structural Risk Min-
imization [14]. SVMs learn the boundary regions between sam-
ples belonging to two classes by mapping the input samples into
a high dimensional space, and seeking a separating hyperplane in
this space. The separating hyperplane is chosen in such a way as to
maximize its distance from the closest training samples (a quantity
referred to as the margin).

The appeal of SVMs is twofold. Firstly they do not need any
fine tuning of parameters, and secondly they exhibit a great abil-
ity to generalize. In many problems SVMs have been shown to
provide better performance than more traditional techniques, such
as highly tuned neural networks. In recent years they have been
used in multiple applications (see [1]), from vision problems to
text classification. However, their application to speech recogni-
tion problems has been very limited. In this paper we focus on
the simpler task of phonetic classification. Studying the perfor-
mance of SVMs in phonetic classification tasks will allow us to
understand the issues involved in the more difficult task of speech
recognition.

This paper is organized as follows: In section 2 we give a brief
introduction to the theory of SVMs. In section 3 we describe ex-
periments using SVMs for vowel classification using the Peterson
and Barney and the Deterding data sets. In section 4 we describe

�
Philip Clarkson is a Ph.D. student at Cambridge University Engi-

neering Department, United Kingdom. This work was conducted during a
summer internship at Cambridge Research Laboratory, Massachusetts.

experiments in phonetic classification using the more difficult and
general phonetically balanced TIMIT database. We conclude with
a discussion of the remaining issues which need to be addressed in
order to make SVMs useful for continuous speech recognition.

2. SUPPORT VECTOR MACHINES

This section introduces the theory behind SVMs. Lack of space
prohibits a more detailed discussion, but interested readers are re-
ferred to [14] for an in depth discussion or to [1] for a short tutorial.

2.1. The Linearly Separable Case

Suppose we have a set of training samples �������
	������������ where
��������� . Each sample has a corresponding label �������	������������
(where � � �! �"$#%��#�&) that indicates which of two classes each
sample belongs to. Then the hyperplane ')(+*�
,�-/. separates the
data if and only if

')(+*����0,1-2.4365 if �%�
78# (1)

')(+*�� � ,1-2.4965 if � � 78"$# (2)

and we can scale (and . so that this is equivalent to

')(+*�� � ,1-2.4:;# if � � 78# (3)

')(+*����0,1-/.=<;"$# if �%�
78"$# (4)

or

����'�')(>*����?,1-@.�,�:A# B C (5)

To find the optimal separating hyperplane, we need to find the
plane which maximizes the distance between the hyperplane and
the closest sample. The distance of the closest sample is

D ')(E��.�,F7 GIHKJLNMPO�Q RSOUT �0V
(+*� � -2.W (W " GYX�ZL0MPOSQ R[OUT
\ �0V

(+*� � -2.W (W (6)

and from equation (4) we can see that the appropriate minimum
and maximum values are]^# . So we need to maximize

D ')(E��.�,_7 #W (W "
"$#W (W 7

`
W (W (7)

Therefore our problem is equivalent to minimizing
W (W 	�� `

subject to the constraints expressed in (5). By forming the La-
grangian, and solving the dual problem, this can be translated into
the following [1]:

Minimize

�
��� ��"

#` �
��� ��� � � �����)�	�����1*��
� (8)

subject to

� � : 5 (9)�
� � �U��� 7 5 (10)

The � � are the Lagrange multipliers; there is one Lagrange
multiplier for each training sample. The training samples for which
the Lagrange multiplier is non-zero are called support vectors, and
are such that the equality in equation (5) holds. The samples with
Lagrange multipliers of zero could be removed from the training
set without affecting the position of the final hyperplane.

This is a well understood quadratic programming problem,
and software packages exist which can find a solution. Such solvers
are non-trivial, however, especially in cases where we have large
training sets [9].

2.2. The non-separable case

The optimization problem described in the previous section will
have no solution if the data is not separable. In order to cope with
this scenario, we modify the constraints (1) and (2) such that the
constraints are looser, but a penalty is incurred for misclassifica-
tion:

���1*�(-/. : #�"���� if �%��78# (11)

� � *�(-/. < � � " # if � � 78"$# (12)

��� : 5 B C (13)

If � � is to be misclassified, we must have � � 3 # , and hence
the number of errors is less than � ��� . So we may add a penalty
for misclassifying training samples by replacing the function to be
minimized by

W (W 	�� ` -�� '� � � � , , where � is a parameter which
allows us to specify how strictly we want the classifier to fit to the
training data.

If we form the Lagrangian, the dual problem now becomes:

Minimize

�
� � ��"

#` �
��� � � � � �����)�	�����1*��
� (14)

subject to

5 < � � <�� (15)�
� � � � � 7 5 (16)

2.3. The non-linear case

The classification framework outlined above is limited to linear
separating hyperplanes. SVMs get around this problem by map-
ping the sample points into a higher dimensional space using a
non-linear mapping chosen in advance. That is, we choose a map��� �������� where the dimension of � is greater than � . We
then seek a separating hyperplane in the higher dimensional space,
this is equivalent to a non-linear separating surface in ��� .

The data only ever appears in our training problem (equa-
tions (8) to (10)) in the form of dot products, so in the higher
dimensional space we are only dealing with the data in the form� ')� � ,
* � ')� � , . If the dimensionality of � is very large, then this
could be difficult, or very computationally expensive to compute.
However, if we have a kernel function such that �2')�
�N���
�%,27� ')� � , * � ')� � , , then we can use this in place of � � *�� � everywhere
in the optimization problem, and never need to know explicitly
what

�
is.

Some examples of kernel functions are the polynomial kernel
�2')�_���_, 7 ')� *�� - #�,�� and the Gaussian radial basis function

(RBF) kernel �2')�_���F,_7�� Q M \
 �Q !#" 	%$! .
2.4. Multi-class classifiers

So far we have only discussed using SVMs to solve two-class
problems. However, if we are interested in conducting phone clas-
sification experiments, we will need to choose between multiple
classes. The best method of extending the two-class classifiers
to multi-class problems is not clear. Previous work has generally
constructed a “one vs. all” classifier for each class [12], or con-
structed a “one vs. one” classifier for each pair of classes. The
“one vs. all” approach works by constructing for each class a clas-
sifier which separates that class from the remainder of the data. A
given test example � is then classified as belonging to the class
whose boundary maximizes ')(*%�
,F- . . The “one vs. one” ap-
proach simply constructs for each pair of classes a classifier which
separates those classes. A test example is then classified by all of
the classifiers, and is said to belong to the class with the largest
number of positive outputs from these sub-classifiers.

In [15] a method of extending the quadratic programming prob-
lem to multi-class problems is presented, although the results pre-
sented suggest that it performs no better than the more ad-hoc
methods of building multi-class classifiers from sets of two-class
classifiers.

3. VOWEL CLASSIFICATION

Our preliminary experiments focus on vowel classification tasks,
based on the Deterding [11] and Peterson and Barney [10] data
sets. There are two advantages of starting with vowel classifica-
tion tasks. Firstly the problem is small – the data is low dimen-
sional, there are only ten classes to choose between, and there are
a relatively small number of training samples. Secondly, vowels
do not vary much in time, and we can therefore characterize them
easily with a vector of fixed length. For example, the vowels are
characterized by their four formant frequencies in the Peterson and
Barney data, and by ten LPC reflection coefficients in the Deterd-
ing data set.

To provide a comparison point with SVMs we provide re-
sults of experiments performed with mixtures of Gaussians. The
Gaussians were initialized with the

�
-means algorithm which pro-

vided a starting point for the well-known expectation maximiza-
tion (EM) algorithm [2]. The EM algorithm was trained until con-
vergence of the log likelihood was achieved. The covariances in

the Gaussians were modeled with diagonal matrices. Our baseline
classification results with Gaussian mixture models were � ` � #��
accuracy for the Deterding data using 16 Gaussians per class, and� #%� ��� accuracy for the Peterson and Barney set using 3 Gaussians
per class.

Table 1 presents our results using SVMs on the vowel classi-
fication tasks, using both a polynomial kernel of degree 4 and an
RBF kernel. We have investigated constructing multi-class classi-
fiers using a one vs. all approach and a one vs. one approach.

Data Set Kernel Multi-class Accuracy
Deterding Polynomial one vs. all 54.9%
Deterding Polynomial one vs. one 60.4%
Deterding RBF one vs. all 66.1%
Deterding RBF one vs. one 70.0%

PB Polynomial one vs. all 77.9%
PB Polynomial one vs. one 84.5%
PB RBF one vs. all 79.6%
PB RBF one vs. one 85.3%

Table 1: Vowel classification results

The results are extremely encouraging. Not only do the SVM
classifiers perform comparably with the Gaussian classifiers (and
better in many cases), but they perform significantly better than
previously reported results using neural network classifiers for the
Deterding data [11]1. Furthermore, our results on the Peterson
and Barney data compare favorably to previously reported results
[7, 13].

Other conclusions which can be drawn from these results are
that the RBF kernel outperforms the polynomial kernel, and that
constructing multi-class classifiers from a set of one vs. one classi-
fiers yields better performance than using a set of one vs. all clas-
sifiers.

4. TIMIT EXPERIMENTS

To test the performance of SVMs on a more difficult task we used
the TIMIT database [3]. Training was performed on the ‘sx’ and
‘si’ training sentences. These create a training set with 3696 utter-
ances from 168 different speakers. For testing we chose the core
set. It consists of 192 utterances from 24 different speakers not in-
cluded in the training set. All utterances contain labels indicating
the phone identity and the starting and ending time of each phone.
The standard Kai-Fu Lee clustering [8] was used, resulting in a set
of 39 phones.

All of our experiments on the TIMIT database were conducted
by constructing multi-class classifiers using one vs. one classi-
fiers. This was principally motivated by the fact that they had been
shown to perform better than one vs. all classifiers on the vowel
classification tasks. There were, however, other practical issues
for this choice – using one vs. one classifiers makes each individ-
ual training problem smaller, and hence the memory and CPU time
required to train each classifier is greatly reduced. While using a
one vs. all approach requires many fewer classifiers to be trained,
the memory requirements to train each classifier were found to be
prohibitive.

The key problem with conducting classification experiments
with the TIMIT database is that the segments that we are seeking
to classify are not of a uniform length. In order to use the SVM

1Our results here are consistent with those presented in [4]

classifiers, however, we must encode the waveform information
in a fixed-length vector. Furthermore, unlike the case of vowel
classification, it is not sufficient to take a sample at one point in
the example, as phones other than vowels can vary significantly in
time, and it is often these time-varying dynamic patterns that are
critical in performing classification.

We chose a simple method of encoding the variable length seg-
ment information in a vector of fixed length. We converted the
utterances from their waveform representation into a sequence of
13 dimensional mel cepstral feature vectors, their time derivatives
and second order derivatives. The cepstra and its time derivatives
were combined into a 39 dimensional vector. For our cepstral
analysis we used a 25.5 ms Hamming window shifted every 10
ms. Each phone segment was broken into three regions in the ra-
tio 3-4-3. The 39 dimensional vectors belonging to each of these
regions were averaged resulting in three 39 dimensional vectors2.
In addition, the 39 dimensional vectors belonging to a window re-
gion centered at the start of the phonetic segments and with a 40
ms width were averaged, resulting in another 39 dimensional vec-
tor. The same was done for a window centered at the end of the
segment. One additional feature indicating the log-duration of the
phone segment was added. This resulted in a vector with 196 com-
ponents.

The results of using SVM classifiers with various kernel func-
tions to perform phonetic classification are shown in Table 2. In
order to provide a comparison point we conducted experiments us-
ing Gaussian mixture models. The initialization and training algo-
rithms used to learn the parameters of the Gaussian mixtures were
the same as those used in the vowel classification experiments.
Using 64 diagonal covariance Gaussians per class we obtained a
classification accuracy of 73.7%.

Kernel SVM
Function Accuracy

Polynomial degree 3 76.4%
Polynomial degree 4 77.1%
Polynomial degree 5 77.6%
Polynomial degree 6 77.0%

Radial Basis Function 76.3%

Table 2: TIMIT phonetic classification results

These results show that SVMs perform significantly better than
the Gaussian classifiers. Furthermore, the results are competitive
with current state-of-the-art performance in phonetic classification
using this data set [5, 16]. It is also interesting to note that the
choice of kernel function does not have a major impact on accu-
racy.

5. CONTINUOUS SPEECH RECOGNITION

The results given in the previous sections show that support vector
machines can perform well on phonetic classification tasks. How-
ever, a number of obstacles remain before they can be useful in the
context of continuous speech recognition. This section explores
these issues, and discusses how they might be resolved.

5.1. Context-dependent models

It is well established that many phones vary greatly when they
occur in different phonetic contexts. Current speech recognition

2This mirrors the acoustic representation reported in [5].

systems based on hidden Markov models handle this variability
by creating a separate model for all sufficiently different phonetic
contexts (where by “phonetic context” we mean the phones which
occur immediately before and after the current phone). These are
referred to as triphone models. This obviously has the potential
to increase the number of possible models required by a power of
three.

At present, our one vs. one classifier requires us to train � ' � 	 ,
classifiers, where � is the number of classes. If we increase the
number of “classes” to ��� , we would therefore require � ' ����, clas-
sifiers to be trained, which is clearly out of the question. The stan-
dard engineering solutions used in large vocabulary speech recog-
nition systems, such as clustering of triphones and the use of a tree
based hierarchy of classifiers could possibly alleviate the problem.

5.2. Estimation of a posteriori probabilities

A more critical problem than the practical issue of the number of
classifiers needed is what the classifiers actually tell us. Speech
recognition takes place on a probabilistic basis – the identity of
the most likely phone is not sufficient information, we would like
a probability distribution over all phones. It is unclear how to adapt
our approach in order to estimate these probabilities, although it is
possible that one could generate a probability estimate based on the
distance of a test sample from each of the separating hyperplanes.

5.3. Modeling of time-varying dynamics

A further drawback with using SVMs for speech recognition is
that as described here they are “static” models; they are incapable
of successfully modeling the time-varying dynamics of the speech
signal in the way that hidden Markov models or recurrent neural
networks [11] are. However, work on the use of SVMs to handle
patterns of variable length [6] suggests that they could be used
successfully to model the dynamics of the speech signal.

6. CONCLUSIONS AND FUTURE WORK

These experiments have demonstrated that SVMs can be applied
successfully to phonetic classification. We have shown that they
outperform classifiers based on mixtures of Gaussians for all of
the data sets. The vowel classification rates which we have ob-
served using SVMs compare favorably with those reported in the
literature using neural networks. Furthermore, the classification
rates on the 39 phone TIMIT core set are comparable to state of
the art performance for this task. However, there remains a lot
of ground to be covered before SVMs can be successfully applied
to continuous speech recognition. Several difficult problems still
remain to be solved. This paper represents a preliminary step in
understanding the problems of applying SVMs to speech recogni-
tion.

7. ACKNOWLEDGMENTS

The authors wish to thank Edgar Osuna and Tomaso Poggio from
the Center for Biological and Computational Learning at MIT for
providing the core Support Vector Machine software upon which
the experiments were based, and for several helpful discussions.
We also thank Andrew Hallberstadt and James Glass from the MIT
Spoken Language Systems group for providing us with data.

8. REFERENCES

[1] Christopher Burges. A Tutorial on Support Vector Machines
for Pattern Recognition. Data Mining and Knowledge Dis-
covery, 2(2), 1998.

[2] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum
Likelihood from Incomplete Data Using the EM Algorithm.
Journal of the Royal Society of Statistics, 39(1):1–38, 1977.

[3] W. Fisher, G. Doddington, and K. Goudie-Marshall. The
DARPA Speech Recognition Research Database: Specifica-
tions and Status. In Proceedings DARPA Speech Recognition
Workshop, pages 93–99, 1986.

[4] Aravind Ganapathiraju, Jonathan Hamaker, and Joseph Pi-
cone. Support Vector Machines for Speech Recognition. In
Proceedings ICSLP, Sydney, Australia, 1998.

[5] Andrew Hallberstadt and James Glass. Heterogeneous
Acoustic Measurements for Phonetic Classification. In Pro-
ceedings Eurospeech, Rhodes, 1997.

[6] Tommi S. Jaakola and David Haussler. Expoloting gener-
ative models in discriminating classifiers. In Proceedings
NIPS*98, 1998.

[7] Visakan Kadirkamanthan and Mahesan Niranjan. Applica-
tion of an Architecturally Dynamic Network for Speech Pat-
tern Classification. Proceedings of the Institute of Acoustics,
14(6):343–350, 1992.

[8] K.-F. Lee and H. Hon. Speaker-Independent Phone Recog-
nition Using Hidden Markov Models. IEEE Transactions on
Acoustics, Speech and Signal Processing, 37(11), 1989.

[9] Edgar Osuna. Support Vector Machines: Training and Ap-
plications. PhD thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technol-
ogy, May 1998.

[10] G.E. Peterson and H.L. Barney. Control Methods Used in a
Study of the Vowels. JASA, 24:175–184, 1952.

[11] Tony Robinson. Dynamic Error Propogation Networks.
PhD thesis, Cambridge University Engineering Department,
February 1989.

[12] Berhard Scholköpf, Chris Burges, and Vladimir Vapnik. Ex-
tracting Support Data for a Given Task. In Proceedings, First
International Conference on Knowledge Discovery and Data
Mining, 1995.

[13] R.S. Shadafan and M. Niranjan. A Dynamic Neural Network
Architecture by Sequential Partitioning of the Input Space.
Technical report, Cambridge University Engineering Depart-
ment, May 1995.

[14] V. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, New York, 1995.

[15] J. Weston and C. Watkins. Multi-class Support Vector Ma-
chines. Technical Report CSD-TR-98-04, Department of
Computer Science, Royal Holloway, University of London,
May 1998.

[16] Stephen Zahorian, Peter Silsbee, and Xihong Wang. Phone
Classification with Segmental Features and a Binary-Pair
Partitioned Neural Network Classifier. In Proceedings IEEE
ICASSP, 1997.

