Delaunay Reconstruction from
Multiaxial Planar Cross-Sections

C. R. Dance and R. W. Prager

CUED/F-INFENG/TR 273

January 1997

Department of Engineering
University of Cambridge
Cambridge CB2 1PZ
England

1. INTRODUCTION 1

1 Introduction

“Given a set of cross-sections of an object, make an approximate representation of its surface.”
This is known as the surface from cross-sections problem. Here, the approach selected to solving
this problem is to generate triangulated surfaces.

Many solutions to this contour interpolation problem are possible and for the case of parallel
planar contours many solutions have been proposed. However, this work focuses on the harder
and more general case of arbitrarily oriented (multi-axial) planes, which has received much less
attention. Indeed, it appears that only one algorithm for this case has previously been published
(by Payne and Toga [46]).

Ideas from [46] are incorporated in the procedure developed here, but the restrictive assump-
tions on the shape of the contours which are required by their method are removed. This is
achieved by generalising the ideas of Boissonnat and Geiger [5, 7, 24] on Delaunay reconstruction
to the multi-axial case. The latter authors use an efficient two-stage procedure for triangulating
between parallel planes, which they have been able to generalise to treat two but not more
non-parallel planes in [6]. Here, this is replaced by a remarkably simple alternative developed
by the same group [8].

Reconstruction from contoursis an attractive problem since it provides an opportunity to use
computational geometry and graph theory with visually appealing results. More importantly,

good solutions to it have great practical applicability, as the following examples show:

¢ Biological Morphology. Reconstructions from contour data obtained by CT and MRI
are exploited for surgery and radiation therapy planning, volumetry, prosthesis milling
and finite element simulation [14, 24]. They have also already been used for volumetry in

ultrasound [27] and in the microscopy of cells [33].

e Industry. In computer aided design, lofting techniques specify and then generate the
geometry of an object as a sequence of sections [47] 1. Robotics and reverse engineering
use laser range imaging which often leads to reconstruction from sections. Non-destructive
evaluation sometimes employs interpolation of contours from ultrasound or X-ray slice
data.

e Geology/Geography. Applications have been made in the reconstruction of terrain
from topographic elevation data and of invertebrate fossils from serial grinding data [26].

Sedimentology and seismology should also find the methods useful.

Here, non-parallel reconstruction is motivated simply by the fact that the data has been
sampled this way. However, the non-parallel case generally offers a number of advantages over

the parallel case:

e Connectivity. With parallel planes, all connectivity between slices must be guessed.

'Ships can be made by solving the surface from cross-sections problem physically: first laying out a set of
transverse ribs to guide the shape and then nailing longitudinal strips to these. This takes up much space and

therefore used to be done in the lofts of shipyard buildings, hence the name lofting [68].

Intersecting planes can definitively show that regions are connected: the data may provide

absolute constraints on topology between planes.

Object Shape. Objects whose shape variation is not well-captured by parallel planes

may be more naturally sampled.

Triangulation. Triangulation of non-parallel sampled data usually involves less points
from smaller regions in each step (this is further elucidated in Section 6.6). This means
that these steps can be performed faster and that the effects of any inconsistency of a
triangulation with the true shape of the object being reconstructed are propagated over a

smaller region.

A quick reference to this report is as follows:

Section 2 examines the relation between the triangulated surface from cross-sections prob-
lem and some alternative reconstruction methods, so providing more motivation for the
approach adopted here. Some closely related problems which share fertile common ground

are pointed out.

Section 3 defines and explores the problem. The emphasis is on different ways of viewing
the problem, special aspects of the non-parallel case, the existence of solutions and how

fast solutions may be obtained.
Section 4 surveys previous solutions to the parallel and non-parallel planar problems.

Section 5 provides an overall picture of the reconstruction algorithm and the theory behind
it.

Section 6 details the data-structures and algorithms used to implement the ideas of the

previous section.

Section 7 describes some approaches to noise problems with contours from intersecting

planes.

Section 8 demonstrates the performance of the algorithm on artificial data and real data
from CT and ultrasound. The ultrasound models obtained are applied to estimation of

organ volumes.
Section 9 draws conclusions on the work presented in this report.

Section 10 suggests some further work along the lines of this report.

2 Related Problems

2.1

Voxel Reconstruction

Surfaces may be obtained from 3D data in ways other than reconstruction from contours. In

voxel approaches, it is assumed that data is available as a 3D grid (or cuberille), each cell of

2. RELATED PROBLEMS 3

which is known as a voxel. The simplest such approach gives a surface as a set of faces of
voxels [63]. Often the grid is more widely spaced in one direction than another, for example to
ensure minimal radiation dosages in CT. The set of voxels lying on the boundary of the object
of interest would be a rather blocky representation of that surface. Therefore an interpolation
method, such as the Marching Cubes algorithm [32], is employed.

The main disadvantage of such methods relative to reconstructions from contours is the larger
amount of data to be processed in reconstruction and the larger number of small tiles which are
produced in the reconstructed surface, even when that surface is smooth. Furthermore, it has
been shown that appropriate contour reconstruction methods give better estimates of surface
normals [24]. It is harder to intervene in voxel approaches to improve erroneous connections or
aliasing in their results. Finally, they lack an obvious extension to cases where data does not lie
on a regular grid and resampling would greatly destroy resolution, or where boundaries are not

well-described by iso-value surfaces for some image property.

2.2 Smooth Surfaces

Smooth surfaces can be obtained in two ways: as mappings from a pair of parameters to 3D
space (parametric surfaces) or as the zeros of a scalar function with 3D argument (implicit
surfaces).

B-splines are the most widely used parametric surfaces. Nonrational B-splines [44] and their
rational counterparts [47] have recently been used for reconstruction from contours. Both of
these works provide interesting references on the smooth surface from cross-sections problem.
Thin-plate splines [9] allow minimisation of curvature, but require computationally expensive
optimisation since they perform global interpolation. Fitting of splines requires a set of location
parameters to be determined. This often requires an existing underlying surface which is nor-
mally generated by triangulation [34, 64] or an expensive optimisation procedure. It is difficult
to guarantee that splines are smooth in 3D space (visual continuity) and that they do not self-
intersect, although solutions to both these problems have been devised and the problems are
quite rare in practice [64].

Implicit surfaces do not require the location parameter step but rather need an a priori
parametrised model. This can limit their representational power, unless the model is itself
selected on the basis of an approximate underlying surface. Such complex implicit surfaces
are difficult to transform and it is hard to ensure their boundedness [36]. At the same time,
simple implicit surfaces make it fairly easy to treat noise, missing data and boundedness. For
this reason the simplest implicit surfaces, such as quadrics, quartics, and hyperquadrics [30] are
frequently used.

Triangulations are also preferred to smooth surfaces here since they enable simpler, more
well-developed and more rapid computations on the surface. Specifically, they facilitate the
finding of lengths, volumes and areas. They also allow rapid rendering and hence visualisation,
point location (especially finding closest points and checking whether points lie inside or outside
the reconstructed surface), surface simplification and finite element computations. Furthermore,

triangulations may be computed for parallel planes, by considering only a pair of sections at a

time. More sections must be treated simultaneously to ensure curvature constraints are satisfied.
Finally, the use of other linear surfaces constructed from higher order polygons is possible
[49]. Such surfaces approximate rather than interpolate the data because of their linearity

requirement.

2.3 Related Topics

Several important but less constrained problems are closely related to reconstruction from con-
tours. An excellent overview of reconstruction from sets of points alone using methods connected
with those proposed in this report may be obtained from [17, 64]. In some situations, such as
laser range imaging, the points or contours are occluded, so multiple views of the object must
be combined [61]. The problem of reconstruction in stereo vision is harder still since only poor
knowledge of point depth is available [21, 20].

A more constrained problem which is intimately related to the approach to reconstruction
taken here is that of meshing a specified volume. This is usually performed for finite element
analysis [65], computer graphics or computer aided design.

Finally, intermediate sections of reconstructions from parallel sections are interpolations of
the shapes of the contours in those sections. Thus they may be used for morphing in computer
graphics [51] and for the averaging of random shapes. Similarly, techniques from those fields

may come to be useful in reconstruction.

3 The Problem

3.1 General Considerations

The surface from cross-sections problem is defined in terms
original object

of a set of contours. These are taken to be simple closed
polygons representing the intersection of a surface with a
plane of section. A section (or slice) is the set of contours
= P which lie on a single plane. It is assumed that the contours
U U in a section do not intersect each other. These concepts are
illustrated by the adjacent figure.

The problem is to generate a surface which has a given set of sections as cross-sections. That
is, cutting the reconstructed surface with the original planes gives the original contours. In the
case of parallel planes, such a reconstruction may be formed by considering the space between
one pair of adjacent planes at a time and creating the part of the surface lying entirely between
those planes. For the non-parallel case, this may be generalised to the individual consideration
of each of the gaps (chunks) between the planes. The first task with non-parallel planes is the

generation of a suitable representation of this subdivision (see Section 5.2).

Reconstruction may be decomposed into several subproblems [34]:

3. THE PROBLEM 5

— o> zTOaO> T
! P ! e Correspondence. Which contours on one plane

should be linked to which contours on which other

-— a»> = > plane?

- - > e Branching. What should be done when sections to
; ooy i be connected have different numbers of contours, or
when a contour has a concavity or hole that its neigh-

bour does not? Some form of bifurcation is necessary.

e Tiling. Given a pair of contours to connect, which
vertices and edges should be joined to make triangles?
What is an appropriate method of capping off contours

at the ends of branches?

It is not necessary to break the problem up this way to solve it, but it helps to illustrate
the kinds of situations to be confronted. The method proposed in this report follows a different
paradigm. This is known as volume reconstruction to distinguish it from the above surface
reconstruction [24]. In this paradigm a mesh of tetrahedra is constructed between slices, with
contour points as vertices. New vertices are then added to ensure that the contours are part
of the mesh. Finally, some tetrahedra are eliminated to make the volume consistent with the
contours. The reconstructed surface is then just the surface of the remaining volume. Thus,

there are also three subproblems:
e Meshing. What tetrahedra should be selected?
e Conforming. Where should points be added so that all contour edges appear?
e Sculpting. What tetrahedra should be removed?

The non-parallel case has all the problems of the parallel case and some new ones. In
particular it is possible for regions to tile onto themselves (if intersecting regions from intersecting
planes are considered to be merged into a single region). Furthermore, it is important that
contours on intersecting planes intersect accurately on the line of intersection of those planes:
it is impossible to make reconstructions consistent with data which is inconsistent with itself.

Whether the surface or volume paradigm is chosen, there are many ways of solving each
subproblem. The general principles which should guide any shape reconstruction mechanism
have been examined in [66]. For many applications, a successful solution may only be judged by
its consistency with human perception and knowledge. In other cases, performance is quantifi-
able, for example by comparing distances in shape between a reconstruction and a known true
object, by comparing reconstructions from different sets of planes or by assessing the quality of
the triangulation in terms of the accuracy and efficiency it allows for any later computations
[24].

It has been pointed out in [66] that a reconstruction algorithm should be invariant of net

rotations or scalings of its input. Three other natural criteria are that a reconstruction preserve

convexity [67], that it be self-consistent and that it be fair. Preservation of convexity means
that if the slices consist of convex regions, the resulting reconstruction should also be convex.
Self-consistency means that reconstructions made from planar sections of an interpolated pair
of slices be the same as the original reconstruction. Fairness means that reconstruction should
treat regions inside and outside an object equally: a reconstruction should be the same if the
subdivision of the input slices into regions inside and outside the object is replaced by its
complement. These criteria are sometimes not possible to meet and when they are, they are
hard to enforce when a reconstructed surface consists of triangles alone. Nonetheless, it might
be hoped that the triangulation at least satisfy them approximately.

As always, it is desirable that the algorithm perform efficiently and have an underlying unity
and simplicity. It is often forgotten that an algorithm should also be robust: many beautiful
procedures of computational geometry although perfect from a mathematical viewpoint, are
rendered unusable by precision problems unless stiff measures are taken [35]. In the present case,
an incremental approach can aid human interaction: for example, if automatically generated
solutions to the correspondence problem are checked and edited by eye. An incremental approach
can also enable reconstruction as data is acquired: for example, in a 3D ultrasound scenario
where a model is generated and visualised in real time and the person performing the scan
decides to increase the sampling density in a particular region.

It is interesting to consider the generalisations of the problem to other dimensions. In 2D, the
equivalent problem becomes the reconstruction of contours from line segments (see Section 5.1).
It is possible to consider a fourth dimension as a time dimension and so have the reconstruction
of deforming objects from their surfaces at different times or when their sections in a number of

planes are viewed continuously.

3.2 Limits on Triangulation

Given a pair of contours on parallel planes, it might be imagined that a triangulated surface
linking them with only contour vertices as triangle vertices could always be found?. A coun-
terexample to this intuition may be found in [25] (consisting of a triangle and a spiral with
63 vertices). Fortunately, appropriate placement of at most one extra point on each contour
is sufficient to guarantee the existence of such a surface [24] for any pair of single contours. A
consequence of the latter constructive proof, not mentioned by its author, is that a polyhedral
surface between an arbitrary pair of contours with n vertices in total can be obtained in O(n)
time®. This is interesting since it implies that the reconstruction problem is easier than trian-
gulating a set of n points in a plane, for which O(nlogn) is optimal [48]. In a weaker sense it
is also easier than triangulating a simple n-gon since for this problem only formidably complex

algorithms O(n) are known [41].

2Strictly, it is required to find a simple closed polyhedron with the simple closed polygonal contours as planar
sections.
*The surface consists of a pair of cones plus a patch over their common edge to force the result to be a

polyhedron. The apices of the cones are the leftmost vertex of one contour and the rightmost vertex of the
adjacent contour. The definition of left is arbitrary. The apices and extra patch take O(n) to find and each cone

takes O(n) time to construct.

4. PREVIOUS SOLUTIONS 7

The author knows of no analogous results for n contours per slice. However, it should first
be noticed that it is not possible to make a polyhedral surface simply by adding points on the
planes of the contours: consider the case of one circle connecting to two circles - there must
be a split which is not homeomorphic to a ball on one of the surfaces. If however, points may
be added between planes, the n contours of a plane can be connected into a single loop, points
added just below (or above, as appropriate) the plane on the lines linking contours and the
above arguments applied to the resulting loop. However, the process of connecting n loops to
form a connected planar graph takes O(nlogn) time. For example, the contours may all be
identical polygons centred along a line. The problem of finding non-intersecting connections

between contours is then equivalent to sorting them along the line.

4 Previous Solutions

The need for automatic solutions to the surface from cross-sections problem was recognised years
before any were found. In early electron microscope studies of nervous system morphology [31],
stereo pairs of stacked contours were visualised and graph models of fibre bifurcations (solutions
to the branching problem) were automatically generated. However, the first solution to the
triangulation problem was not given until 1975 [29]. This started a series of investigations of
optimal tiling for the case of one contour per slice. Soon after, ways of improving reconstruction
speed by heuristic tiling [11] were introduced and generalisation to multiple contours began
[11, 53]. Volume based approaches [5] and reconstruction from non-parallel planes [46] have
only been studied in the last decade. Reviews of the surface from cross-sections problem may
be found in [50, 34, 37].

4.1 Surface Reconstruction from Parallel Sections

Optimal Tiling. Tiling has been addressed by constrained optimisation of various costs.
The earliest solution maximised the volume of the reconstruction for convex contour segments
and minimised it for concave segments [29]. This was soon followed by a minimal surface area
[22] solution. This has physical plausibility when modelling liquid boundaries which tend to
minimise their surface tension. Other criteria have included minimal radii of circumscribed
circles of triangles (a variant of Delaunay triangulation of the contours when projected onto a
single plane — see Section 5.4.2) [34] and minimal sum of absolute value of angle between the
contour edge parts of successive triangles [67]. When the cost is decomposable into a sum of
terms from each triangle, the problem reduces to a search in a directed toroidal graph, for which
divide and conquer techniques [13] can be applied to improve efficiency [22].

Various constraints have been applied to define acceptable paths through this graph. Prin-
cipally, these are that each contour segment be present in at least one tile and that each tile
contain at least one contour segment [29, 22]. Attempts to stop self-intersection have also been
included. Prevention of crossing of neighbouring junctions between paired contour lines [29]
and enforcement of the angle consistency criterion [67] are necessary but not sufficient for this

purpose.

Although these methods were designed for the case of a single pair of contours, it is possible

to generalise them by techniques outlined below.

Heuristic Tiling. Optimal tiling is slow despite attempts to make it faster [22, 56]. There-
fore, heuristic approaches have been suggested, based on first transforming contours into more
standardised shapes, then rapidly triangulating by local criteria (local advancement rules) and
finally mapping back to the original contours. In [11] contours are first scaled so their bounding
rectangles fit the unit square and translated so their centroids coincide. Triangulation com-
mences by connecting the closest pair of contour vertices and proceeds by sequentially choosing
the shorter of the two possible edges to extend the existing triangulation.

Other local advancing rules have been suggested. The local minimum edge length criterion
of [11] has been extended to minimise the sum of squares of the successor triangle’s edges in [2]
and to connect all vertices of one contour to their nearest vertices on an adjacent contour in
[19]. Meanwhile, [23] advances along each contour being tiled at as near as possible the same
rate and [12] increments a triangulation to give the maximum degree of alignment between the
directions of triangulated points from the centroids of their contours.

Such approaches strongly depend on the coherence (similitude) of adjacent contours. Other
means of transformation to increase this coherence include the normalisation of contours to have
unit perimeter [23] and the mapping of each concave portion of a contour onto the line joining
the endpoints of that portion [19].

Instead of enforcing coherence, a more sophisticated approach is to search for similar contour
portions. This is known as matching and may be performed by segmenting contours on the basis
of extremes of approximate curvature [28]. More recently, a voting procedure for matching has
been described [2]. This maximises the lengths of pairs of ordered subsequences from contours
which match sufficiently. Sufficient matching is taken to mean that there is less than some
user-defined threshold distance between the vertices of the subsequences.

Unfortunately, most of the above heuristics are neither rotationally nor scale invariant. All
of these tiling techniques, including the optimal ones, will fail when confronted with contours
which cannot be interpolated without the addition of extra vertices, like the example of [25]. The
fact that most authors appeared not to suspect the existence of such shapes might be considered
adequate evidence that they are sufficiently rare to be of no practical concern. However, it has
been shown for heuristic tiling that non-intersecting transformed triangulations may become
intersecting when the transform is reversed [42]. In fact, all of the above methods may lead to

self-intersecting tilings even when the shapes to connect are tilable [67].

Branching. The earliest branching methods concatenated all contours in one layer into a single
contour using new edges called bridges [11, 53]. This artifice has been rendered unnecessary by
methods which reduce branching problems to a series of one-to-one cases by generating imaginary
new slices between the input slices [19, 10]. The necessary addition of extra vertices within a
contour to provide suitable splitting points for branching was first addressed by projection
of the medial axis of one plane (see Section 5.4.3) onto the adjacent plane [53]. Methods of

approximating this axis have been used since then [10].

4. PREVIOUS SOLUTIONS 9

Correspondence. Decisions about which regions to connect in multiple contour cases (the
correspondence problem) have only been addressed recently, with the exception of [57], where
a rule-based system using generalised cones was proposed. Previously it was assumed that the

topology of the object is either obvious or needs to be determined by user interaction [26].

The simplest automatic method is to connect contours when the area of overlap of their
bounding rectangles exceeds some threshold [19]. The dependence of this criterion on total
contour area has been removed in [10] by suitable normalisation. An orientation insensitive ap-
proach is to use a minimum spanning tree [34]. First, elliptical approximations of contours are
obtained, then connections are selected to minimise the sum of the squared distances between
the ellipse centroids and difference between their principal axis lengths. Methods guarantee-
ing topological consistency have been developed which build trees describing the inside-outside

relations of contours [54, 55] and combine them with minimum spanning tree heuristics [26].

4.2 Volume Reconstruction from Parallel Sections

As described in Section 3 volume reconstruction methods form a mesh over the region of interest
and then sculpt away parts of the mesh to make it agree with the data. The sculpting concept
existed prehistorically and has been applied computationally for years in the control of numerical
milling machines [15]. However, volume reconstruction from contour data grew out of studies of

reconstructing models from scattered point data.

Early work on reconstructing models from point data by O’Rourke [40] and Boissonnat [3]
proposed the construction of the convex hull of the points. The first of these works then pro-
ceeded to remove and “flip” triangles to bring all the points onto the surface of the reconstruction
while attempting to minimise surface area. In later papers, these authors started from the De-
launay triangulation (see Section 5.4) of the points: Boissonnat [4] sculpted to minimise the
change in surface area at each step, while O’Rourke [43] minimised the length of the Voronof

skeleton (see Section 5.4.3) of the reconstructed object.

Eventually, Boissonnat applied the Delaunay triangulation to the reconstruction from parallel
contours [5]. A clever and efficient procedure for combining the Delaunay triangulation of each
section into triangulations between planes was proposed and sculpting was designed to retain the
largest volume of the triangulation consistent with the contours. This approach simultaneously
handles the correspondence, branching and tiling problems. However, poor results were obtained

when sections on neighbouring planes were dissimilar.

These branching problems were corrected by Geiger [24], who stressed the importance of the
relation between the nearest neighbour surface (see Section 5.4.1) and the Delaunay reconstruc-
tion, and thus showed how the addition of extra points to the triangulation could improve its
quality. The extra points were essentially projections of the Voronoi skeleton of the contours,
as had been proposed in [53]. However, Geiger indicated how these points could be efficiently
obtained from the Delaunay triangulations of individual sections. Other authors have since

implemented the same ideas, for example [60].

10

4.3 Surface Reconstruction from Non-Parallel Sections

Several authors on reconstruction from parallel cross-sections have suggested that their methods
might be extended to work in the non-parallel case [23, 24, 39], but apparently, only the work
of Payne and Toga [46] makes such a generalisation.

Payne and Toga first construct a representation of the way the space containing the recon-
structed object is divided up into chunks by the planes of section. This is a structure known
as an arrangement (see Section 5.2). Then the intersections of contours on each plane with
other planes are found, and the contours are partitioned into fragments which begin and end
at such points. It is assumed that the fragments on different planes may be joined into loops
around each of the chunks of space between planes: no branching or correspondence problems
are allowed. Finally, each of these loops is triangulated by a minimum area method.

These authors recognise the limitations of the assumption of no branching and point out that
triangulation can produce poor results for loops which vary in several directions at once. They
propose to “thin” loops by removing data points on fragments which do not lie in the “principal
direction” of a triangulated loop to improve the visual appearance of the reconstruction when
the latter problem occurs. However, the concepts in the latter suggestion are not explained and
the idea seems to be working against the goal, which is to produce surfaces which accurately

represent the data!

5. THE IDEA 11

5 The Idea

5.1 Overview and Example

Here, what is to be achieved in the next sections is illustrated with a simple 2D example of
reconstruction. In 2D the input data for reconstruction consists of arbitrarily oriented linear
cross-sections of a 2D object which are piecewise either in or out of the object. Figure 1(a)

shows a grail object with sections shown as solid line segments when in and dotted when out.

/[\
L//
(a) Theinput data and the (b) Thearrangement of lineswith () The set of pointsto triangulate
trueboundary. chunksto triangulate (shaded). superimposed on the data.

FIG. 1. 2D Example of Delaunay reconstruction from multi-axial contours.

The first stage forms a representation of the way the space is divided up by the lines. The
result is a set of chunks which form the natural units in which triangulation may be performed.
These provide the analogue of adjacency of planes in parallel planar reconstruction. In Fig-
ure 1(b) the chunks are labelled A, B, ..., S. Notice that only the 19 chunks within a bounding
box are shown out of a total of 29. The idea described in Section 5.2 uses a bounding box to
save on the computation of unnecessary chunks.

Then chunks are labelled according to whether or not they require triangulation and whether
any of the points where lines intersect (the vertices of the chunks) should be included in a
triangulation. The results of labelling are shown in Figure 1(b) in which the shaded parts need
triangulation and the white parts do not. Partitioning and labelling are described in Section 5.3.
The decision as to when to triangulate clearly depends on the topological relation of a chunk
to the object. A chunk with no part of its boundary in the object clearly does not require
triangulation, as is the case for chunks J,K and N. However, “requires triangulation” is not
equivalent to a “having some boundary in the object.” For example chunk E lies entirely in the
object, so a sensible reconstruction is just the entirety of K. More subtly, chunk O only has one
of its sides in the object, which leaves nothing to triangulate to.

Next the vertices which will be involved in triangulation are gathered together. These include
the endpoints of the line segments which lie in the object: for example, vertices a,b,c,d in
Figure 1(c). Also, there are the points of intersection of the lines which were decided on in the
labelling stage: for example, vertices e,f,g,h. After a first phase of triangulation, some extra
vertices are added to improve the quality of the triangulation, mainly in branching situations
(splitting vertices): for example vertex i. Finally, in order for all the required edges to be present,

yet more vertices may need to be added. This is achieved automatically in a stage known as

12

making the triangulation conform. No such vertices are required by the present example.
Triangulation is performed chunk by chunk resulting in a mesh like that of Figure 1(d). The
mesh uses up all the vertices and edges required, but may violate the input data in the sense
that regions known to be outside the object get filled: for example edge a. The set of violating
edges does not include edges like b and c. Although they lie out of the true object, the input
data does not impose this constraint and could equally well have come from an object for which

b and ¢ were in.

5
S

(d) Thetriangulation. (e) Thereconstruction (shaded) (f) Theresult of voxel
and thetrue boundary. reconstruction (shaded).

FIG. 1: 2D Example of Delaunay reconstruction from multi-axial contours.

Triangles containing violating edges are removed in a step known as sculpting. Once sculpting
has removed these edges, it may leave an object with some bizarrely connected portions which
are only joined at a vertex (or along an edge in 3D): for example the triangle containing c
which remains if both triangles with edge a are removed in Figure 1(d). Such triangles are
also removed. Triangulation and sculpting are described in Section 5.4. Sculpting produces a
reconstructed object like Figure 1(e). This reconstruction has noticeable differences from the
actual object, which is not surprising since only seven lines have been used in total.

It is worth comparing the results with those from a voxel reconstruction in which voxels are
made as small as possible subject to the constraint that every voxel should contain some data.
In the present example this gives a total of twelve voxels. Voxels are labelled in or out of the
object according as more or less of the data they contain is in or out. Such a reconstruction is
shown in Figure 1(f).

A truer analogue of the voxel method used in parallel plane reconstruction would be to extend
voxels normal to the input lines, giving a result like Figure 1(g). This uses an arrangement to
label a point in if its closest data point is in and out if its closest data point is out. It produces
a complex, jagged boundary and even goes outside the bounding region. This is because it is a
form of piecewise constant interpolation.

A piecewise linear interpolation should be preferable. Geiger [24] views Delaunay reconstruc-
tion in the parallel plane case as producing an approximation to the nearest neighbour surface.
This object is formed by connecting each point in each region of the input data lying in the
object (interior region) to its closest points in interior regions on neighbouring planes. Applying
the same idea to non-parallel planes, the nearest neighbour surface for the present example is

shown in Figure 1(h).

5.

THE IDEA

13

=

(g) An alternative voxel method: (h) The nearest neighbour
the block near est- reconstruction.
neighbour surface.

FIG. 1. 2D Example of Delaunay reconstruction from multi-axial contours.

Arrange planes

'

Label chunks

Triangulate chunks

'

Make conform

Add splitting vertices

'

pu—m @EER = gEIR = eGEIR = gEER @ @EER

Sculpt

J
J
J
J
J
J

Figure 1(h) shows that in the non-parallel case the nearest neigh-
bour surface is even less desirable than the block nearest neighbour
surface! In particular, regions between lines at angles greater than
5 do not even get connected: the closest point on a line is the per-
pendicular projection onto it.

The triangulation method described here is a non-parallel gener-
alisation of Delaunay reconstruction, but it does not treat Delau-
nay reconstruction as an approximation of the nearest neighbour
surface. It may be considered as a form of interpolated voxel re-
construction but instead of considering every voxel in each region,
it only considers the region boundaries, making it more efficient.

Finally, the overall process for reconstruction is summarised by

the adjacent flowchart.

14

5.2 Arrangements

This section introduces the subdivision of a space by a set of planes and a means of computing it.

Such subdivisions are known as arrangements. For all the parallel plane methods of Section 4,

triangulation proceeds by considering one infinite gap between a pair of adjacent planes at a

time. For arbitrary planes, adjacency of planes is a function of position in space. Here, the

arrangement of a set of planes of section provides the natural units in which triangulation may

be performed. Arrangements are fundamental structures of computational geometry. For a full

introduction to their properties, consult [41] then [16].

Figure 2: Examples of

arrangements.

In 2D the equivalent of a plane is a line. A 2D arrangement
is shown in Figure 2. It has three types of region: the points
where the lines cross, the line segments between such points
and the polygonal regions which the line segments surround.
These regions are called the faces of the arrangement. Faces
of dimension 0 (points) are called 0-faces, faces of dimension 1
(line segments) are called I-faces and so forth.

When a new line is added to an arrangement, like that shown
in bold in Figure 2(b), the set of faces which it cuts are called
the zone of the line. Here the 2-faces of the zone are shaded
and the 1-faces are bold dashed.

In 3D, an arrangement has polyhedral regions between planes
called 3-faces, in addition to 0-faces, 1-faces and 2-faces. Alter-

native names for k-faces are as follows:

0-face ¢ point or vertex
1-face <« line segment or edge
2-face ¢+ convex polygonal region

3-face ¢« convex polyhedral cell.

The term face is adopted as it avoids verbosity and confusion
with the use of the terms vertex, edge and polygon elsewhere,
while capturing the underlying symmetry of this situation.

Frequently in the following sections, it will be useful to talk
about the faces lying in the boundary of another face, which
are of one dimension lower. Such faces are called the subfaces of
the higher-dimensional face. In the adjacent figure of a 3-face,
the 0-face A is a subface of 1-face B which is itself a subface of
2-face C. Similarly, the faces which have a given face in their
boundaries are called the superfaces of the lower-dimensional

face. For example, the 3-face is a superface of C.

5. THE IDEA 15

To formalise* and generalise these notions to a Eu-

clidean space of dimension d, define the position vec-

A h - tor of a point p with respect to a set of hyperplanes
5 ea e b H = {hy,hy,...,h,} as the n-component vector with
* K ith component
b . +1 ifpe h;-"
o 2 vilp)={ 0 ifpeh, (0.1)
g C . L ipen

+ B]
Figure 3. A sub-arrangement of three where h™, h™ denote the half-spaces above and below

planes hy, ho, hy with bounding region h. (Any fixed direction which is not parallel to any

ABCD. a,b,c are points within the hyperplane will do as a definition of above.) Then,
bounding region and have position a face is the set of all points with the same position
vectors: vector. A face is a k-face if it has dimension k. Notice
va) = (1,1,0) that all faces are open convex sets.
s = (0,1,0) A face f is a subface of a face g if the position vector
' ' of f differs from that of g by the replacement of just
v(e) = (=LL1). one non-zero component by zero. ¢ is a superface of f
d lies outside the bounding region and has iff f is a subface of g.
position vector The arrangement of H is the set of all 0...d-

v(d) = (—1,—1,~1). faces formed by the hyperplanes in H and a sub-
' ' arrangement of H is the subset of the arrangement
consisting only of faces within some convex region
called the bounding region. An example of a 2D sub-

arrangement is shown in Figure 3.

An arrangement may be optimally constructed incrementally. If A is the arrangement of
k planes hy,..., hg, then Agy, is formed by first finding the zone (recall Figure 2(b)) of A1
in Ay then replacing each face f in the zone by three faces: the part of f above hi41, the part
below hry1 and the intersection of f with Ag4q. Since the zone at stage k& has O(k2) faces®, an
arrangement of n planes has O(n?) faces. For the reconstruction method developed here, it is
likely that only a small fraction of these faces fall within the region where triangulation will
be performed. Therefore it is useful to construct only the part of an arrangement lying within
a volume bounding all the contour data. This also enables a simpler implementation of the
construction algorithm, since infinite faces need not be represented. The lack of infinite 1-faces

also simplifies the cutting up of contours and labelling of regions described in the next section.

*In particular, it is important to state what “in the boundary of” actually means: subfaces are not contained

in their superfaces.
5The proof in [16] is incorrect. A correct version may be found in [18].

16

5.3 Partitioning and Labelling

Once the space has been partitioned into a sub-
arrangement, the contours are split into fragments

each of which is contained in a single 2-face. The goal

is to be able to rapidly access all parts of a contour
on the surface of any given 3-face. This enables the
recognition of which faces lie in or out of the object
and the formation of loops over any 3-face involving
fragments of contours from different planes for trian-
gulation. Also, since triangulation is performed one

3-face at a time, it is necessary to include the points

of intersection of contours with 1-faces as triangulation
vertices. An example of the partition of a contour is Figure 4: A typical partition of a con-
shown in Figure 4. tour into chains ¢q, ¢y, c3, and junctions
Contour fragments are known as chains and the points Ji, J2, ja by intersecting planes h1, o, hs.
where they join together are called junctions. For con- ji lies in ABC', a 2-face, while j; and js
sistency, every contour is taken to begin and end at a lie on BC', a 1-face.

junction. Thus, junctions may occur both in the mid-

dle of 2-faces and on the intersections of contours with

1-faces.

It is now shown that some 3-faces do not need triangulation and that some 0-faces need in-
clusion in a triangulation in order to provide consistency with the input data. To recognise these
cases it is necessary to determine the topological relation of each face in the sub-arrangement
to the object to be reconstructed. This process is called labelling.

In the parallel case, labelling is not usually considered as a stage in reconstruction at all:
since the reconstructed objects are connected, they must be connected from each infinite parallel
2-face to its adjacent 2-face. Also, since parallel planes do not intersect, there are no 0-faces to

include in a triangulation.

e A

PART
Figure 5: The four labels for a 3-face. Regions inside the object are shaded.

Firstly, consider the situation for 3-faces as in Figure 5. They may lie entirely out of or in the
reconstructed object. There is no point trying to triangulate such faces. Alternatively, they
may have just one subface (boundary face) partly in the object, and hence lie at the end of
some branch of the object. In such cases, the contours have nothing to be triangulated to.
Finally, more than one such subface, but only part of the total boundary may be in the object.

Correspondingly, the labels oUT, IN, END and PART are assigned to these cases.

5. THE IDEA 17

Figure 6: Example of why it is necessary to include QO-faces as triangulation vertices: a tetrahedral 3-face

formed by 4 intersecting planes and their contours (in bold/dashed when occluded by a 2-face).

<

(a) The area labelled IN by (b) The largest possible region covered (c) The region covered by the tri-

the contours is hatched. by a triangulation when only loop vertices angulation when 1N 0-faces are

(black points) are triangulated is shown in also triangulated is shown in grey.

grey.

Secondly, consider any triangulation of the set of contour vertices on some 3-face, like those in
Figure 6. The biggest possible triangulation of any set of points is their convex hull. However,
the convex hull of the contour vertices alone is not large enough to agree with the information
provided by the contours. If the point set is expanded to include any 0-faces which lay in the
object then this problem is solved. The labels oUT and IN are assigned to 0-faces to distinguish
these cases.

Analogous symbols are given to the other faces in or-

der to derive the appropriate labels for 3-faces (see

ouT d Figure 7). Formally, each set of contours for a plane
C partitions that plane into a set of points which are
RT inside the object, S, and its complement which lies

AU outside the object, S. Correspondingly, a (k < 3)-face

f is labelled with one of the following values:

IN & Snf=f

Figure 7: The labelling of (k < 3)-faces.
The lines are the intersections of planes
with a plane coplanar with the page.
The shaded region is the inside of the
object. The labels of some of the 2-faces
are indicated. 0-faces @ and b are IN,

while ¢ and d are ouT.

5.4 Delaunay Reconstruction

our & Snf=f
PART & SNfC/f,

while 3-faces are classified as

IN < all subfaces of f are IN
oUT < all subfaces of f are ouT
END < all but one subface is ouT
PART < at least two subfaces are not ouT

but f is not IN.

Now the Delaunay reconstruction method is introduced. The following presentation starts from

the Delaunay surface which can solve the reconstruction from contours problem in a single 3-face

in one step. This does not have a triangulated surface, so it is shown how it may be approximated

using Delaunay triangulations and Voronoi diagrams.

18

5.4.1

(a)

Nearest Neighbour Surfaces and Beyond...

Consider the surface from cross-sections problem for the
sets of planar regions (whose interiors are shown in grey)
in Figure (a). Perhaps the simplest way to generate a solid
object with these sections is to join all points in the lower
regions with all points in the upper regions as in Figure
(b). Although it solves the problem and resembles a well-
known object (a pair of binoculars), this maximum volume
solid is not the most intuitive solution since regions which
are distant from each other have been connected.
Alternatively, all points in the lower regions could be joined
to their nearest points in the upper regions and vice versa,
as in Figure (c). This corresponds to the heuristic that in-
terpolation is most accurate when based on function values
from locations as near to a point as possible.

This is known as the nearest neighbour solid and its surface
is the nearest neighbour surface. It solves the correspon-
dence, branching and tiling problems of Section 3 in one
simple step. When solving the branching problem (Figure
(d) reconstructs to Figure (e)), one or more splits are intro-
duced in one region. These are known as splitting points.
Sometimes the nearest neighbour solid joins rather distant
regions, since it assumes that everything must be connected
to something. In these cases, the regions are not really
solidly linked at all: they are only joined at a point (Figure
(f)) or along a line (Figure (g)). Such links are known as
non-solid connections and solids containing them as non-
manifold solids.

Often, non-solid connections occur when a branch of an
object is encountered for the first time in a sequence of
slices, and better results are obtained by removing the non-
solidly connected parts, as in Figure (h), where a third slice
has been included in the input to Figure (f) (which has
also been rotated). An algorithm which works with only
one 3-face at a time cannot tell the beginning of a new
branch from the alternative very slanted case (Figure (i)
could be the correct reconstruction from the input to Figure
(2)). The nearest neighbour surface with any non-solid
connections removed shall be called the solidly connected

nearest neighbour surface in the following text.

5. THE IDEA

19

Aty) VRS

FIG. 8: Three views of the nearest neighbour connection between two lines. The surface consists of two

hyperbolic paraboloidal sheets [24].

The Delaunay reconstruction method of [24] generates an approximation of the solidly-

connected nearest neighbour surface. Approximation is necessary as this surface is generally

curved, even when the regions it connects are straight as shown in Figure 8. It might be hoped

that a surface constructed by taking linear combinations of convex regions also be convex. How-

ever, this figure also illustrates that the nearest neighbour surface does not preserve convexity.

It was shown in Section 5.1 that the nearest neighbour surface has
a pathological behaviour for non-parallel planes. Nevertheless, a
close relative has good performance even for this case. Consider
the adjacent figures of pairs of planes in 2I). The point p in the
upper plane hy closest to a given point ¢ in the lower plane hq
may be found by expanding a circle C with centre ¢ until it hits
hy. Alternatively, expansion of a circle C'p tangent to hy at ¢
until it hits hy produces the same results for parallel planes, but
different results for non-parallel planes. The surface generated by
connecting every point in the regions of each plane to the interior
points in any other planes which its C'p circle first hits is a simple
version of what is known henceforth as the Delaunay surface. The
same definition may be extended to other dimensions, by using

tangent balls instead of tangent circles.

Now the full Delaunay surface is described. It is helpful to imagine that the interior regions

on each plane have some small thickness. Then, instead of allowing the balls C'p to be just

tangents to the planes, allow them to be tangent to (and not containing any) interior regions:

that is, Cp may rest on the side of an interior region and thus penetrate an exterior region of a

plane. This full Delaunay surface clearly contains the surfaces described above. Furthermore, it

allows the preservation of convexity. This definition is the one used for the rest of this report.

20

@
AN

() /\
~ I/

a '
© /\
- \ /

~N/_7

L

(d)

S EGN

An important advantage of the Delaunay surface for non-parallel trian-
gulation is that when planes are strongly angled, the connections be-
tween them are much fatter than with the nearest-neighbour surface.
This may be understood by viewing the Delaunay surface as a nearest
neighbour surface where the distance between a point ¢ lying in a plane
h and a point p is measured along dog-leg paths rather than straight
lines. A dog-leg path first goes some distance r along the normal to the
plane from ¢ then the same distance r on to p, as shown in the adjacent

figure.

Another advantage is that when splitting occurs, it always leads to splits
which end on the planes rather than between planes. The adjacent
Figure (a) shows a set of input planes drawn solid when in and dotted
when out. Figure (b) shows the nearest neighbour reconstruction, which
requires splitting points (like point @) in between planes. The lines joined
to splitting points are shown dashed. It might be imagined that the
Delaunay surface leads to splits carved out of the reconstructed volume
which intersect each other as in Figure (c). This is not the case here as
the Delaunay surface in Figure (d) shows (the two circles for the splitting
points are also indicated). In fact, intersecting splits can never happen
in a Delaunay surface. Furthermore, unless the boundaries of a split are
cospherical with more than one point, which is a rather special case, a

single split only generates splitting points on one 2-face®.

5.4.2 Conforming Delaunay Triangulation

As has just been seen, the nearest neighbour surface is generally curved and is identical to the

simple version of the Delaunay surface when reconstructing from parallel planes. Thus, the

Delaunay surface should be expected to be curved in general, so it is desirable to find a means

of approximating it by triangles. A number of criteria should be satisfied by the approximation:

1. There should be enough triangles to use up all the polygon vertices.

2. There should not be so many triangles that they intersect one another.

3. There should be enough triangles to use up all the polygon edges.

4. Triangles should not fill regions which the contours indicate should not be filled.

5. The surface should have a similar shape to the Delaunay surface.

The Delaunay triangulation provides a solution which can satisfy requirements 1 and 27. In the

following, first the triangulation is defined, then its failure to satisfy requirement 3 is rectified.

This may be seen as the limit of an analogous property of the Delaunay triangulation which is described next.

"For a proof that it satisfies requirement 2, see [41].

5. THE IDEA 21

Requirement 4 must wait until Section 5.4.4. The fulfillment of requirement 5 should be evident
at the completion of this section, apart from the non-existence of the splitting points. This shall
be rectified in the next section.

In two dimensions, the Delaunay triangulation joins any three vertices
to form a triangle when the circle through them contains no other
vertices. Such triangles are called Delaunay triangles. This is shown
in the adjacent figure. Here Aabc is a Delaunay triangle as circle abe
is empty. Aabd is not a Delaunay triangle as circle abd contains ¢. The
circle around a triangle is known as the circumcircle and its centre is
the circumcentre. The circumcircle circumscribes the triangle. The
vertices of a Delaunay triangle are close because their circumcentre

is closer to them than to any other vertex.

In three dimensions, the Delaunay triangulation joins four vertices
to form a tetrahedron when the sphere through them (their circum-

sphere) contains no other vertices®

. This is shown in the adjacent
figure. Notice that the section of the circumsphere of a tetrahedron
in the plane of one of its surface triangles (facets) is the circumcircle
of that triangle. In fact, the three-dimensional Delaunay triangula-

tion could have been defined just as the set of triangles which have

an empty sphere going through them, or even just as the set of pairs

of vertices which have an empty sphere through them.

To generalise further and formalise, it is helpful to define the Delaunay triangulation as a
graph:

Definition 1 The Delaunay triangulation of V, a finite set of points from R?, is the graph
(V, &), where & is the set of all pairs of vertices vy, vy from V such that there is some point p

which is closer to them than to any other point vz in V. That is,
lvs — p| = |v1r — p| = |v2 — p[for all vs € V.

In d dimensions the locus of points less than a given distance from a point is known as a ball.
Usually d+ 1 points is sufficient to define a unique ball in d dimensions. d+ 1 points and all the
linear combinations of them which lie between them (their convex hull) are known as a simplex °.
So, in d dimensions, the generalisation of the notion of a Delaunay triangle circumscribed by a
circumcircle is that of a simplex circumscribed by a circumball.

Every vertex has at least one closest vertex. So, a sphere can be drawn through a vertex

and made larger until it hits the closest vertex. This sphere can then be moved around until

8Some people call this the Delaunay tetrahedronisation.
?Strictly speaking,the convex hull of a set of k + 1 points T for k < d in dimension d is known as a k-simplex,

denoted by s7. A collection of simplices S is known as a simplicial complex or triangulation if
1. s7,sy €S = st Nsy = sTnu,

2. every face of every sr in S is also in S.

22

Cone Ty
.
(a) (b) (c)

FIG. 9: Conforming Delaunay triangulation.

it hits another vertex. These three vertices then define a Delaunay triangle since they have an
empty sphere through them. So, requirement 1, that there should be enough triangles to use up
all vertices is satisfied by the Delaunay triangulation.

The Delaunay triangulation does not guarantee that every edge of a polygon be present in
it. For a given set of vertices, there is usually only one Delaunay triangulation. However, there
are usually many polygons which may be drawn through a given set of points. Two polygons
through the same set of points are shown in Figure 9(a) and (b).

Fortunately, judicious addition of extra vertices to a polygon is enough to ensure that it will
be part of a Delaunay triangulation. A Delaunay triangulation with enough extra points that
all the required edges are present (possibly as unions of other edges) is known as a conform-
ing Delaunay triangulation. An example of a conforming Delaunay triangulation is shown in
Figure 9(c), where two additional points have been placed in order to make the triangulation
conform to Figure 9(a), the edges of which are shown in bold.

To see that this is always possible, let every edge of a polygon have points added to it at
separations less than twice the separation between any two non-concident polygon edges (that
is to say, edges which do not share any vertices as endpoints). Then the circle centred at the
midpoint of any pair of consecutive vertices is clearly empty of other vertices and so present
in the triangulation. This result also shows that when polygon edges are obtained from some
pixelised image, and hence the distance between non-coincident edges is less than the interpixel
spacing, no more points need be added than there are pixels in the image representation of the
boundary. Hence conforming triangulation is always at least as efficient as voxel methods.

Optimal algorithms have been found which add the minimum number of points necessary
on the edges of any set of polygons to give every resulting edge a circle empty of other edges in
[38]. For this problem it is known that the number of additional points necessary can be made
arbitrarily large depending only on the shape of the input polygons. In particular, more points
need adding as the polygons become thinner and more elongated.

Alternatively, one may aim to find the minimum number of extra points which may be placed
anywhere to make a Delaunay triangulation conform. For a planar graph with m edges and n

points Q(mn) points are necessary but the best algorithm to date adds O(m?n) points [59].

5. THE IDEA 23

5.4.3 Voronol Diagrams and Delaunay Splits

It has just been indicated that new points must be added in order that

the Delaunay triangulation contain the edges of a polygon to be interpo-

lated. Yet more points need to be included to approximate the Delaunay

surface. In branching configurations, as in the adjacent figure, and for

some rather bent regions, this surface splits inside a region, so triangles

will need vertices near these splitting points.

In the parallel planar case, the location of the splitting points is easily quantified in terms
of the Voronoi diagram. When the Voronoi diagram has been defined, it shall be shown to have
such a close relationship with the Delaunay triangulation, that only the Delaunay triangulation
need be computed to find appropriate splitting points. Then the location of splitting points

shall be generalised to the non-parallel case.

The set of all points closer to a given point in a point set than to all

other points in the set is known as the Voronoi cell for the point (see

® adjacent Figure). The union of all Voronoi cells for each of a set of points
is called its Voronoi diagram. The vertices of Voronoi cells are called
® ® o Voronoi vertices and their edges Voronoi edges. Formally, the Voronoi
cell of a point ¢ drawn from a set of points S in R? can be written as

the set

{pERd

Voronoi cell boundaries are segments of the bisectors of pairs of points. In fact, Voronof cells

lg—p| < |¢'—p|forall ¢ € S — {q}}- (0.2)

in R? are just unions of d-faces of the arrangment of these bisectors [16].
An equivalent way of defining the Voronoi diagram is as the set of points whose nearest
site is not unique. Points in this set are the boundaries of the Voronoi cells and are known as

the Voronoi skeleton'?.

One use of this diagram is to find the closest point to a given point:
all that is necessary is to find which Voronoi cell the point lies in. So, one relationship to the

nearest-neighbour surface is already apparent.

A generalisation immediately points out the splitting points. The set of all
points whose nearest site within any region in a set of regions is not unique is
called a generalised Voronoi diagram. A generalised Voronoi diagram is shown
in the adjacent Figure. The parts of this diagram lying outside the regions
are known as the exterior Voronoi skeleton and those inside are known as
the interior Voronoi skeleton''. When interpolating regions on two planes by

the nearest-neighbour surface, it is precisely the perpendicular projection of

the exterior Voronof skeleton of regions on one plane onto the adjacent plane

which constitutes the splitting points.

%7he Voronoi diagram is also known as the Dirichlet tessellation, the Thiessen polygons, the Wigner-Seitz

zones, the unweighted power-diagram or Blum’s medial axis transform.
"TFurther generalisations are of great importance in other contexts, for example, the consideration of metrics

24

A remarkable fact is that the Delaunay triangulation can be defined as the dual of the
Voronoi diagram: if each vertex of a point set is connected to every vertex whose Voronoi cell it
shares a Voronoi edge with, then the Delaunay triangulation is obtained. The duality between
Voronoi diagrams and Delaunay triangulations is illustrated in Figure 10.

This definition of the Delaunay triangulation and the definitions given above are equivalent,
since a common boundary point p is equidistant from a pair of vertices vg, v1, and nearer to them
than to any other vertex, by definition of the Voronoi diagram. Thus a ball centred on p and
touching wvg, v1 is empty of other vertices and hence a Delaunay ball. Similarly, the centre of any
Delaunay ball must be equidistant from its defining vertices and thus be a Voronoi vertex. This
relationship shows how once a Delaunay triangulation has been computed, points approximating
the splitting points may be obtained directly: these points are just the projections of the centres
of the intersections of the circumballs of Delaunay tetrahedra which have facets outside the

regions.

In the non-parallel case, the adjacent figure shows that direct projection
(ep) of the external Voronoi skeleton (e) no longer provides appropriate
splitting points. Instead, splitting occurs wherever a Delaunay ball (Cp)

for a tetrahedron with a facet lying outside the contours touches another

plane in its object interior regions (ep). Note that this implies that the

position of splitting points must vary not only with the centre of the split

but also with its width. This must be true for a satisfactory method in

any case, else the triangulation cannot be scale invariant.

5.4.4 Sculpted Triangulations

The outer boundary of the Delaunay triangulation of a set of points is the convex hull of that
set. This boundary does not generally meet requirement 4 of page 20 that the triangulation not
violate the contour data. The operation of removing tetrahedra/triangles from a triangulation to
make the boundary of the remaining set of simplices satisfy some property is known as sculpting.
This section sets up some terminology for discussing sculpting, says exactly which tetrahedra
need removing and shows when this can be done. It closes with some thoughts on tetrahedra
which need neither be kept nor removed.

A set of contours divides a plane into in-regions which are inside the object and out-regions
which are outside the object. When a set of tetrahedra does not violate such a subdivision it
is said to be acceptable. The edges and facets of a tetrahedron in a conforming triangulation
cannot cut the boundaries of regions by the definition of a conforming triangulation. That is, the
facets which lie in the input planes may only be in in-regions or out-regions. They are therefore
classed as in-facets or out-facets. There are more different types of edges, of which it is helpful

to distinguish those lying entirely in out-regions as out-edges.

other than the Fuclidean distance is important in fluid mechanics and many interesting properties of subdivisions
on the basis of the closest pair of points (or trio of points and so forth) known as higher order Voronoi diagrams
are described in [16].

5. THE IDEA 25

FIG. 10: The relationship between the Delaunay triangulation and the Voronoi diagram. (a) The Delaunay
triangulation of a set of points: the outer boundary is the convex hull of the point set. (b) The Delaunay
triangulation with finite circumcircles overlaid: each circumcircle is maximal and empty. (c) The Voronoi
diagram: the regions are convex but not triangular. (d) The Voronoi diagram with the Delaunay circles
overlaid: the circumcentres are the Voronoi vertices. (e) The Delaunay triangulation with Voronoi diagram
overlaid: Delaunay edges correspond to Voronoi edges although they may not intersect, Delaunay vertices

correspond to Voronoi regions and Voronoi vertices to Delaunay triangles.

26

These definitions are illustrated in the adjacent figure, which shows a pair
of non-parallel planes with in-regions shaded. Facet abc is an in-facet of
tetrahedron abed. Facet dfg is an out-facet of tetrahedron defg. Edge de
is an out-edge. As this diagram suggests, tetrahedron defg and any other

tetrahedron containing de should be removed in sculpting.

The central fact about sculpting is:

Property 1 Under certain assumptions, removal of all tetrahedra with out-edges from a con-

forming triangulation is necessary and sufficient to leave an acceptable set of tetrahedra.

The only risk in choosing suitable assumptions for this is that a tetrahedron may contain both
in-facets and out-facets. Fortunately, the following assumptions make this impossible and so

make Property 1 true:

(i) Contours from intersecting planes meet exactly on the line of intersection of those planes,

giving a consistent classification of those lines into in-regions and out-regions.

(i) No contour passes through the point of intersection of three planes or has a finite (that is,

non-infinitesimal) section lying on the line of intersection of two planes.

To see that these assumptions work, observe that any two facets of a tetrahedron share an edge.
Consider a tetrahedron with both in- and out-facets. Then the edge between these lies in an
intersection of two planes which violates assumption (i) or (ii).

As remarked in Section 5.4.1, it is desirable to approximate the solidly connected Delaunay
surface. Therefore, all tetrahedra which are part of a connected set of tetrahedra which is only
connected to another plane at a point or along an edge should be removed. It is possible to
remove further tetrahedra, however no good reason for doing so is evident. Indeed, the removable
tetrahedra enable the surface to preserve convexity and the removal would take extra computing

time.

6. THE ALGORITHM 27

6 The Algorithm

6.1 The Top

Here the idea described in the previous section is formalised in an algorithm called reconstruct.
The description provided is non-incremental. However an incremental version is possible in
which a new reconstructed model is generated as each plane is inserted. This only involves some
shuffling of function calls on a level one layer lower than that described in the pseudocode here.
Such an incremental approach is more computationally expensive since each time a new 3-face

is created from an existing triangulation, it must be retriangulated.

For the description of the algorithm, a number of assumptions are made:

[A1] The intersections of the planes are such that no more than two planes meet at a line and

no more than two lines meet at a point within the bounding region.

[A2] Contours from intersecting planes meet exactly on the line of intersection of those planes,
giving a consistent classification of these lines into regions inside and outside the object to

be reconstructed.

[A3] No contour passes through the point of intersection of three planes or has a finite (that is,

not infinitesimal) section lying on the line of intersection of two planes.

The removal of assumption [A2] would require a change in the overall problem formulation
(Section 3), which involved producing reconstructions which were consistent with the input
data. At the same time, all real data is noisy, so procedures for relaxing this assumption are
described (Section 7). A function merge-junctions is included in the formal description of the
algorithm below as a tag indicating one place where such procedures can be applied. The other
assumptions can be removed but it would complicate the presentation to give the completely

general algorithm, so only pointers to means of removing them are provided.

At input to reconstruction, it is assumed that every plane has an upper side defined in
terms of its normal. Also, the vertices of contours are assumed ordered so that any point just
counter-clockwise of a contour lies inside the object to be reconstructed and any point just
clockwise lies outside the object. Other representations involved in the algorithm will become
apparent in the following sections. As motivated in Section 5.2, the algorithm first constructs a
sub-arrangment A of the input planes H with a function arrange. The contours C are then split
with a function split-contour and the faces of A labelled by function label-faces for reasons
explained in Section 5.3. The following pseudocode subsumes a large number of operations
including conforming Delaunay triangulation and sculpting in one function triangulate which is

discussed in Section 6.5.

28

Algorithm: reconstruct
Input: a set of contours C on planes H

Output: a reconstruction consistent with C

find a convex bounding region B containing all contours in C
A « arrange(H, B)
for each contour Ci in C, split-contour(Cy,.A)
merge-junctions
Py « list of all parT 2-faces found in splitting
P3 « label-faces(.A, Ps)
for each PART 3-face f in P3
T <« triangulate(f)
output(7)

The algorithm can be made to function for the lower- and higher-dimensional versions of the
problem. In 4D, the major difficulty is the fact that a guaranteed method of making a Delaunay
triangulation conform to an arbitrary polyhedral surface is presently an unsolved problem [58]: it
is easy to make the edges of a surface conform but a surface may not be present in a triangulation

even if its edges are.

6.2 Arrangements

Recall from Section 5.2 that a sub-arrangement is a description of the way the space inside
some bounding region is divided by a set of planes into a set of faces. This section explains the
computation of sub-arrangements. Attention is restricted to the three-dimensional case and the

simplicity assumption mentioned above is made, which may be put more precisely as:
[A1] No (5 — k) k-faces meet at a (k — 1)-face within the bounding region.

However, the algorithm described readily generalises to other dimensions and to the treatment
of special cases in the intersections of planes. A colourful presentation of these generalisations
is given by Edelsbrunner [16], except that he only considers the case of arrangements with
no bounding region. For discussion of the linear algebra involved in finding intersections and
interior points of lines and planes the reader is referred to [41, 13, 52].

Recall from Section 5.2 that a sub-arrangement may be optimally constructed incrementally.
At each stage, the set of faces in an existing arrangement cut by the new plane (the zone of the
plane) is found, then each of these faces are cut into three parts. This leads to the following top
level algorithm.

Algorithm: arrange
Input: a set of planes #H, a bounding region B
Output: the sub-arrangement A of H in B

load A with a representation of B
for each plane h in H
Z ¢ find-zone(h, A)
split-zone(Z, h, A)

6. THE ALGORITHM

29

Figure 11: A cuboid and the finite

portion of its incidence graph.

6.2.1 Computing The Zone

d
(@
[¢] h
ef-m" N4
-k
a/ b
abed
AN
d a b

This is followed by a walk along the

To implement this, a representation for an arrange-
ment is needed. The most convenient choice is an
incidence graph. An incidence graph has the faces of
the arrangement as nodes and arcs between two nodes
iff one is a subface of the other. For convenience, a
base node is connected to all 0-faces and a top node
is connected to all 3-faces.

Figure 11 shows the incidence graph of a cuboid. For
the experiments described in Section 8 bounding re-
gions had this shape. When an incidence graph is used
in the construction of a sub-arrangement, it is conve-
nient that each face store some arbitrary point internal
to it so intersection tests may be performed. It should
also contain a label used to indicate the nature of its

intersection with the plane currently being inserted.

Consider the simplest possible update to an arrangement as
shown in the adjacent figure. This is the part of an arrange-
ment corresponding to a single tetrahedron cut by a new
plane h. The goal is to find the faces which are shown in
bold in the incidence graph in part (b).

Zone computation first finds an arbitrary 1-face in the
boundary of the bounding region (the bounding surface)
which intersects the new plane h. For example, if the tetra-
hedron in the adjacent figure is considered to be the bound-
ing region, 1-face ad would do. If the bounding surface is
not complex, this may be efficiently achieved by looping over
all the 1-faces it had before any planes were inserted until

one which is cut (say u) is found.

actual 1-faces of u until one which is cut is found'?. If there

is no such 1-face then A is entirely out of the bounding region, so the algorithm goes on to the

next plane. The zone is then grown

out from this face. The key to this is:

Property 2 The portion of the incidence graph corresponding to the zone is connected. Fur-

thermore, the portion of this subgraph containing I1-faces and 2-faces alone is connected.

This holds because a plane is connected, and the arrangement fills the bounding region. The

‘furthermore’ part holds because the intersection with A is itself just a 2D arrangement to which

the same argument applies. The property is readily verified for the bold lettered faces in the

Figure (b).

'20bserve that u will generally have already been cut by planes inserted prior to h.

30

It is easy to tour a connected graph by depth first search. In this case, go to all cut superfaces
of a 1-face, then to all cut subfaces of these 2-faces and so on until nothing remains to be visited.
A queue Q of 2-faces and the marking of faces as they are visited prevent cycling in such a search.

Finally, the 3-faces of the zone are just the superfaces of its 2-faces. This gives the following

algorithm in which the zone is represented as an array of lists of k-faces L. (Each face is assumed
to be initially unmarked.)

Algorithm: find-zone
Input: a sub-arrangement A, a plane h

Output: the zone Z = {L£1,Ls, L3} of hin A

find a 1-face e in the bounding surface cut by h or return
mark an arbitrary superface f of e and append f to Q and L,
while Q is not empty
f < dequeue Q
for cach unmarked subface e of f which intersects h
mark e and append e to £

mark each unmarked superface g of ¢ and append g to @ and £,
for cach f in Lo
mark each unmarked superface ¢ of f and append g to L3

6.2.2 Splitting The Zone
(© abcd

abc abd acd bcd

ab ac ad bc bd cd a bf cg de df dg

The splitting of the zone proceeds from low to high dimension: first the 1-faces are split,
then the 2-faces and finally the 3-faces. The above figure shows how 1-faces have been split
to replace the zone found in the example of the previous page. No removal of old faces has
yet occurred and only newly formed links have been shown in order to avoid confusion. An
analogous example for a cuboid is shown on the next page.

Pick some direction which is not parallel to h, and define above and below with respect to it.
The part of R? above A is denoted by AT and that below h by A~. Then the key to the splitting

process may be stated as:
Property 3 A new plane h splits each face f of ils zone into three new faces:

1. The part fo = fNh of f in h. This is of one dimension lower than f. The subfaces of fy
are (i) any new faces of appropriate dimension which were created by splitting subfaces of

f and which lie in h, or (ii) the base if fy is a 0-face.

6. THE ALGORITHM 31

2. The part f, = fOht of f above h. This is of the same dimension as f. The subfaces of
fa are (i) any subfaces of f which lie above h and were not split, (ii) any new faces of

appropriate dimension lying above h which were created by splitting subfaces of f and (iii)

fo.

3. The part fy = fNh™ of f below h. This is of the same dimension as f. The subfaces of
fv are (i) any subfaces of f which lie below h and were not split, (ii) any new faces of

appropriate dimension lying below h which were created by splitting subfaces of f and (iii)

Jo-

These facts may be readily verified by considering the definition of faces in terms of position
vectors as described in Section 5.2. The process for generation of the relevant connections simply
applies this proposition, although since it proceeds from low to high dimension, correct connec-
tion of some newly created faces to their superfaces may not be performed at their construction

but must wait until the iteration at one dimension higher.

Algorithm: split-zone
Input: a plane h and its zone Z = {£1, L2, L3} in a sub-arrangement A
Effects: A is updated to include h

for k=1...3
for cach f in Ly
make the new faces
fo=fnh fo=f0ht fo=fnh-
connect fy, fa, fp according to Property 3

remove [from the graph

6.3 Contour Partitions

Now the means of splitting the contours into fragments is
briefly described. First, recall from Section 5.3 that a chain
is an open connected portion of a contour which lies within a
single 2-face and a junction is a point on a contour which lies

either on a 1-face or a 2-face and connects together several

chains'®. A contour is split in a single walk around it. At

Figure 13: A typical partition of a each stage the procedure keeps track of the 2-face currently

contour into chains ¢1, ca, 3, and being traversed and starts new chains and junctions when

junctions ji, ja, j by intersecting a 1-face is crossed. Figure 14 shows that a single edge may
) Y.
planes hi, ha, hs. j1 lies in ABC,

a 2-face, while j» and j3 lie on

BC, a 1-face.

traverse any number of 1-faces. For later stages of recon-
struction it is helpful to make a list of all the 2-faces which

are traversed while performing the partition.

131t is convenient to have junctions on a 2-face since a chain was defined as being open, while a contour may

32

@ 9

FIG. 12: Addition of the plane P to the finite portion of the incidence graph of a cuboid (compare Figure 11).
(a) The geometry of the situation. (b) The incidence graph at the end of find-zone. The faces of the zone
are shaded. The top and base faces are not shown for simplicity. (c) Immediately prior to the £ = 2 pass of

split-zone. Observe how not all 1-faces are correctly connected and how none of the 1-faces involving two

new O-faces have yet been incorporated.

6. THE ALGORITHM

33

Figure 14: A less typical partition
of a pair of contours. This
shows that a single edge of a
contour may cross many l-faces
before arriving at the next vertex.
Alternatively, a contour may be
restricted entirely to a single

2-face.

Algorithm: split-contour

To simplify the subdivision process, the assumption [A3] of
Section 6.1 is brought into play. This may now be stated

more formally as:

[A3] No contour edge passes through a 0-face, no vertex lies
on a O-face and no contour segment has a finite (not

infinitesimal) portion on a 1-face.

The incidence graph of the sub-arrangement makes it easy to
test for the requisite intersections: if the 2-face in which one
endpoint lies is known, only intersections with the convex
polygon bounding that face need be tested for. This polygon
is just the set of subfaces of the 2-face. The incidence graph
also enables us to trivially locate the 2-face which an edge
crosses onto after cutting a 1-face. The incidence graph is
useful here since the process is essentially finding the zone
of each contour segment. These considerations lead to the
following procedure which is assumed to be called once for

each contour with all 2-faces initially labelled UNMARKED.

Input: a single polygonal contour Cg, a sub-arrangement .4, a list of 2-faces Py

Effects: all faces crossed by Cy are labelled with chains and junctions,

P is updated to contain all 2-faces crossed by Cx which have

not already been crossed by some other contour

f « the 2-face containing first point ag of Cg

start chains and junctions on f

for each edge ab in C;, from ag

while ab crosses some subface of f on its way to b

f + the neighbouring 2-face crossed into
if fis UNMARKED, mark f PART and append f to Ps

create appropriate chains and junctions

if b # ag, include b in the current chain

finish the current chain and the first junction

6.4 Labelling Faces

Recall from Section 5.3 that the goal of labelling is to indicate the topological relationship of

0-faces and 3-faces to the object to be reconstructed. To do this, labelling starts with the list

of PART 2-faces returned by the procedure described above for partitioning contours. First the

0-faces in the boundary of each PART 2-face are labelled in a walk around that boundary. Then

be confined to a single 2-face. It is also convenient for computation as a junction provides a simple way to start

a partition of a contour.

34

oUT and IN 2-faces are labelled by growing regions using PART 2-faces as seeds. Finally all 3-faces
are labelled by counting how many oUT and IN subfaces they have. This gives the following

simple overall procedure for labelling.

Algorithm: label-faces
Input: an arrangement A and a list Pz of all PArRT 2-faces
Output: all relevant O-faces, 3-faces and as yet unlabelled 2-faces are labelled
Effects: a list of all PART 3-faces

for cach face f in Py, label-0-faces(f)
label-in-out(7P,)
Ps 0
for each 3-face f in A
(Mn, Nout, Nearr) < the number of subfaces of f of the relevant types
if ny + nparr = 0, label f ouT
else if noyr = Nparr = 0, label f 1IN
else if ny + npspr = 1, label f END
else label f PART and append f to Ps

return Ps

When labelling 0-faces, care must be taken that all of the
boundary of a 2-face may be ouT even though the 2-face
itself is PART, as illustrated by the face f3 which contains
contour Cy. Also, although a 1-face may be crossed by a
contour, it is not necessarily the case that its 0-faces have

different labels. This is the case for the 0-faces vy, v4 on the

boundary of 2-face f; for which the 1-face viv4 is crossed

twice by contour Cy. These faces are both ouT.

The method of labelling 0-faces rests on the following property:

Property 4 If there is no junction between one 0-face and another 0-face when traversing the

boundary of a 2-face in a cycle, then both are identically labelled.

An example of this property is that v, and vy have the same label since the path between them
via vz in the boundary of f; has no junctions. This leads to the following procedure:

6. THE ALGORITHM 35

Algorithm: label-0-faces
Input: a pArT 2-face f
Effects: all subfaces of f and their subfaces are labelled

find a subface eg of f with a non-empty list of junctions
if there is no such 1-face
label all 0-faces in the boundary of f ouT and return
for each 0-face v in a cycle around the boundary of f starting from a subface of eq
if v is UNMARKED
vy < the predecessor of vy in the cycle around the boundary
if the 1-face e between v and vy has junctions
J ¢ the nearest junction to v
if v is counter-clockwise of 7, label v IN
else label v ouT

else label v as v; was labelled

To label IN and ouT 2-faces for any plane it is usually sufficient to know at least one PART
2-face with labelled edges for each contour which has been added to that plane. This may not
be the case if the set of PART faces contains a connected sequence from one side of the bounding
region to another. Therefore labelling is performed starting from the entire set of PART faces for

the plane.

Consider the set of all non-PART neighbours of PART 2-faces

through 1-faces with an N subface. These are all IN 2-faces.

For example in the adjacent figure, f; is a PART 2-face and vy
is an IN 0-face according to contour C'. vy is also a subface of
the 1-face which f; shares with f;. Therefore fy is IN. The

analogous argument is true for neighbours of PART 2-faces

through 1-faces with an ouT subface. For example in the

adjacent figure, fi is a PART 2-face and vy is OUT so f3 is
OUT.

This argument is simply converted to an algorithm which works with a queue Q of newly-
labelled faces which may be either IN and ouT. This queue is first filled with all neighbours of
PART 2-faces, which become labelled as they are added, so that it can be assured that no face is
added more than once. Any unlabelled neighbour of an entry ¢ in the queue then has the same
label as ¢ and may be added to it and so forth until the queue is empty.

36

Algorithm: label-in-out
Input: a list P of all PART 2-faces from any planes to be labelled
Effects: all 2-faces in these planes are labelled

for cach subface e of each face f in Py
g < the neighbouring 2-face of f through e in the same plane as f
if g is UNMARKED
if one of the subfaces of e is IN, label g IN
else label g our
append g to Q
while Q is not empty
f « dequeue Q
for each UNMARKED neighbouring 2-face g of f in the same plane
label g as f is labelled and append g to @

6.5 Triangulation

This section shows how the operations of conforming Delaunay triangulation, adding splitting
points and sculpting (which were defined and motivated in Sections 5.4.2-5.4.4) can be combined
to make the function triangulate (alluded to in Section 6.1) which lies at the heart of the

reconstruction algorithm.

triangulate acts on a single PART 3-face f. Its first stage must be to find the constraints
which f imposes on the triangulation. These are represented as a graph G and obtained by a
function gather-graph. Instead of immediately generating a triangulation conforming to G, it is
more convenient to first make the Delaunay triangulation of the vertices S of G, using a function

delaunay. Only then is a conforming triangulation created using a function conform.

It is desirable to improve the quality of a triangulation before inserting approximate splitting
points (Section 5.4.3). These operations are performed by procedures delete-obtuse and split-
lines. Each of these requires as input a triangulation conforming to G. However, either of these
procedures may lead to the triangulation not conforming. Therefore each must be followed by

conform!4

. Finally, the quality conforming triangulation 7 found so far may still violate the
contours on the surface of f, so sculpting by a function sculpt to produce a subset 7' of T is

needed, giving an overall triangulation procedure as follows:

Tt is possible to leave out delete-obtuse, split-lines and all but the first call to conform, however results will

be inferior when splitting is required.

6. THE ALGORITHM 37

Algorithm: triangulate
Input: a parT 3-face f
Output: a triangulated surface 77 interpolating contour data on f
G = (S,€) « gather-graph(f)
D < delaunay(95)
conform(D, G)
delete-obtuse(D, G)
conform(D, G)
split-lines(D, G, f)
conform(D, G)
7T < output-triangulation(D)
T' + sculpt(T,G)

A mysterious aspect of this formal presentation is the presence of the function output-
triangulation which might seem to rename a Delaunay triangulation D as a triangulation 7. In
fact at the current level of description, D should be considered to be an abstract data structure
known as a dynamic Delaunay triangulation. Such a structure supports insertion of any set of
points at any time using a function insert-vertices, while being able to provide output of the
Delaunay triangulation itself at any time using a function output-triangulation'®. There are two

very different ways in which a Delaunay triangulation can be used in the present application:

e 'lo first construct conforming non-obtuse 2D triangulations of each 2-face of a PART 3-
face. Then to efficiently combine these into a 3D triangulation (for example, as shown in

Boissonnat [8]).
e To directly construct a 3D triangulation of a whole 3-face.

The 2D way is more efficient since a 2D triangulation need only be computed once for each 3-face
in which it is used. It is also less awkward numerically since the fact that points are coplanar
is not special in 2D! However, in this report, direct 31 triangulation is used since it makes the
overall scheme simpler to implement once numerical problems are overcome. The direct method
also enables reconstructions to be made in other dimensions with more minor modifications than
are needed to to generalise the combining method.
6.5.1 The Graph to Triangulate
Given a 3-face f, three sorts of vertices must appear in the graph to be triangulated:

1. The vertices of any chains on its subfaces.

2. The vertices at any junctions on its boundary 1-faces.

3. Any boundary 0-faces which are IN.

The reasons for the first two types are obvious, while the reasons for including the third type of

vertex have been discussed in Section 5.3.

5Strictly speaking this is a semi-dynamic method: a dynamic method would also support deletion of points.

38

m
1 n A
|} - — (ol \}
A >E
l:] - &= T g
1! " C- g
|‘ - ‘ |
I,l‘*;”_”;”_”;’:.’ B
Fom =~ = A
q Y Y
r i k

FIG. 15: The graph to triangulate is obtained as one set of loops per face. In loop A, chain C is first followed
from junction | to junction j. At junction j, a left-turn is made starting a doubling back portion completed by
inclusion of IN O-face k. Loop B = DmnoEpqr is a more complex example showing how multiple chains (in
this case D and E) may be involved in the same loop. At junction o, the correct move is to follow chain E

since it classifies line segment op as out of the object.

The set of edges which must be present is simply all edges in all chains on the subfaces of
f. However, in order to form a partition of the boundary of the 3-face into regions in and out
of the object, which will be seen to be a requirement of sculpting (Section 5.4.4), it is desirable
that all these edges are parts of closed planar loops on the 3-face. This can be satisfied by
connecting the junctions at the end of chains to neighbouring 0-faces or other junctions and
then on to other chains, eventually looping back to the initial chain. At each stage, a turn is
made to whichever side preserves the partition of the plane indicated by the contour. This is
illustrated by Figure 156,

This translates into a simple procedure for graph gathering:

'This traversal may lead to certain edges appearing more than once in the resulting graph. As such, it should
not strictly be called a graph. Also, it might be imagined that connecting part of a boundary 1-face twice in
different loops may lead to errors in the conforming stage as described in Section 6.5.3 if a midpoint were added
in order to make such a 1-face conform. This is not the case since these edges lie on the convex hull of the 3-face

and so will automatically be present in the triangulation.

6. THE ALGORITHM 39

Algorithm: gather-graph
Input: a 3-face f to triangulate
Output: the graph G = (V, £) to conform to

V0
E« 10
for each subface g of f
for each unmarked subface e of ¢
mark e and append its junction vertices to V
for each unmarked subface v of e which is IN
mark v and append v to V
for each chain C on f
append the vertices of C to V
if C' is unmarked
follow a loop starting from C round the boundary of g,
marking each chain encountered and appending all edges to &

unmark all things which were marked in this procedure

It is possible to perform the edge listing and chain vertex part of graph gathering only once
for each 2-face. This is more efficient than the procedure given here and only involves a minor

modification.

6.5.2 The Delaunay Tree

Recall from Section 5.4 that the Delaunay triangulation in 3D is the set of tetrahedra with
empty circumspheres. Of many possible algorithms for computing the Delaunay triangulation
(see [1] for a survey), the Delaunay tree was chosen as it is incremental, extremely simple and
achieves optimal randomised time and storage bounds for any fixed dimension!”. This method
was proposed by Boissonnat and Teillaud [8]. This section first introduces the data structure.
Then the central test of the algorithm is described and it is shown how the case of coplanar points
is handled: a very important consideration for reconstruction from planar contours. Finally, the

algorithm is presented in a top-down fashion.

"Randomised time bounds refer in this case to the performance on the worst possible input averaged over
random orders of insertion of points in the triangulation. The Delaunay tree algorithm is not output sensitive in

some cases as intermediate triangulations can be much larger than the final triangulation [6].

40

6.5.2.1 Data Structure

[asz [abcj [aczj [bczj

b

Delaunay Trees: (a) The triangulation of points
a,b,c and the corresponding Delaunay tree. =z

denotes the infinite point.

abz - acz bcz

(abd) (acd) (bcd)

b

Delaunay Trees: (b) d lies in the circumcircle of
the finite root node abc (grey) and therefore kills
it. The facets of abc which remain are shown
bold: in this case the facets are shared with the

infinite simplices.

6.5.2.2 Balls and Conflicts

Every node of a Delaunay tree represents a simplex
(recall that this is a triangle in 2D or a tetrahedron
in 3D). It is not formally a tree but rather a directed
graph with the structure of a family tree: every
node has two parents. At the roots of the tree lie
one node corresponding to a finite simplex and d+1
corresponding to infinite simplices, each sharing a
different facet of the finite simplex. Together, these
cover all of R% The adjacent Figure (a) shows the
roots of a 2D Delaunay tree.

When a new point ¢ is inserted in the Delaunay
triangulation 7 of a set of points 9, it lies in or on
the circumball (ball) of at least one simplex (if ¢
is not already in S). This is because 7 (including
infinite simplices) is a tessellation of all of R% and
each simplex is within its ball. A simplex s whose
ball contains ¢ is said to conflict'®with ¢. When ¢
is inserted in 7', s is said to be killed.

By definition of the Delaunay triangulation, a killed
simplex is not a Delaunay simplex for SU {¢}. If s
is adjacent to an unkilled simplex n through some
facet f, then the Delaunay triangulation of SU{q¢}
contains a new simplex fg with vertices f U {q}. In
the Delaunay tree, fq becomes a child of s and n.
All connections in the Delaunay tree arise this way.
Figure (b) shows the new connections for Figure
(a). The Delaunay triangulation of the set of points
which have been inserted in a Delaunay tree is thus
just the set of simplices represented by the unkilled

nodes.

The parameters of the ball of a finite non-flat simplex with vertices qi—o..4 may be trivially

derived by considering the conditions that each vertex lies on a sphere (c,r) with centre ¢ and

radius r. Shift the origin to qo, defining ¢ := ¢x — qo, ¢ := ¢ — ¢o. Then,

2

(g —)2=r = r2=¢"and ¢,.c = ¢,°/2 (0.3)

which for £ = 1...d is a square non-singular linear system.

8Here the balls are considered open and so a point on the ball does not conflict.

6. THE ALGORITHM 41

To test if a point ¢ lies in an open sphere (c,r), one may test whether (¢ — ¢)? < r%. It is
interesting to notice that if ¢? is computed just once for any point and r? — ¢2, 2¢ are stored for
each simplex, a more efficient equivalent is the point-in-half-space test (2c).q < (r? — ¢? — ¢?).
This is one way of viewing the relation of Delaunay triangulations to convex hulls [16, 41]. Also
observe that on division by r2, this second test implies that a point ¢ should be considered to
conflict with an infinite simplex {q. 4, 00} iff it lies in the half-space on the infinite side of the

finite face, as long as it is not coplanar with that face. That is, whenever

) 1 --- 1 1
Ay, u(q) = sign
G G2 g
= _SignAQLHd(Q) (0'4)

for some arbitrary point g which lies strictly outside that half-space. This is illustrated in Figure
(c) below. Points coplanar with the finite facet g and hence having A, ,(¢) = 0 are considered
to conflict iff they lie in the ball of the neighbour through g. This definition is of particular

importance when treating data of which large subsets are coplanar and is illustrated in Figure

(d).

© (d)

Delaunay Trees: (c) Addition of a new point e to the example of the previous page. ¢ lies in the half-plane for
the current convex hull-edge ab and therefore kills node abz (grey). The already killed node abc is shown in
black. Finite facets of killed simplices shared with unkilled neighbours are shown bold. (d) New point f lies
on edge ac which is a convex hull edge and is therefore taken to conflict with it. f also lies in the circumcircle

of adc.

42

6.5.2.3 Construction

Construction of a Delaunay tree proceeds incrementally, except for the creation of the root
simplices, for which any set of d 4 1 linearly independent points is required. At the insertion of
a point ¢ the set of simplices K which are killed by ¢ is obtained by an efficient search procedure
named locate. Then new simplices are made directly from those in K and their neighbours

19

in the present triangulation in a procedure called create'”. Thus, the top-level procedure for

triangulating a point set looks like:

Algorithm: delaunay
Input: a point set .S
Output: a Delaunay tree D containing the Delaunay triangulation of S

construct the roots of D from a suitable subset R C S
for each point g€ S— R
K« 0
for each root node s of D, locate(s, K, ¢)
create(K, q)

return D

The simplices of the triangulation itself may be obtained by traversing the resulting tree and
listing all unkilled nodes. If the same loop as in this procedure is made for an arbitrary point set
it constitutes the insert-vertices function that shall be regularly used in the following sections.
In practice other combinations of locate and create may be used to monitor the appearance and
disappearance of particular edges in a triangulation or to simply find which simplex contains a

particular point.

The following property is fundamental to the correctness of locate [8].

Property 5 The ball of a simplex is contained in the union of its par-

ents’ balls.

For example, in the adjacent figure the ball of abe is contained within

that of its parents abec and abd.

Property 5 implies that if a point conflicts with a simplex, then it conflicts with at least one
of its two parents. Applying this argument up the tree it is clear that to locate all conflicting
simplices one need only start at the roots and recursively test any child simplex which conflicts.
Figure (e) illustrates this. Redundant searches may be eliminated using a last-visit entry in each
node of the tree, as shown by the following pseudocode?’:

19Observe the similarity with arrangement construction. This is not only the superficial fact that both algo-

rithms are incremental: insertion in each case locates a zone, then splits it to create a replacement.
2°A minor difference from the version proposed by Boissonnat [8] here is that simplices are not marked killed

in locate, but only by create so that locate may also be used purely for point location.

6. THE ALGORITHM 43

abz %,,// acz bcz
LA
acd [bcd) [cfzj bez

beg

Delaunay Trees: (e) On the insertion of point g, observe how the killed root node abc (hatched) is useful in

locating the three new killed nodes.

Algorithm: locate
Input: a point g, a simplex s, a list of simplices K
Effects: last-visit is updated, simplices are appended to K
if s[last-visit] # q

s[last-visit] < q

if ¢ conflicts with s
for each child ¢ of s, locate(t, K, q)
if s is not already killed, append it to K

The union of the simplices in £ is a simply connected region, whose boundary consists of a
set of facets F. The new simplices are then created in a procedure named create. The following

property is fundamental to the correctness of create:

Property 6 The new simplices are all simplices of the form fq for each f in F.

This holds because every Delaunay facet is associated with exactly two simplices (otherwise the
Delaunay triangulation would not be a triangulation). Only those facets in F are missing a
simplex after removal of . The missing simplices cannot be created from any point other than
¢ since otherwise they would still be Delaunay simplices, contradicting the fact that they are
missing.

Thus create connects every facet of F to ¢. Each new simplex is made a child of the simplex
it killed and of the neighbouring simplices which it did not kill. Finally the adjacency relations

between the new simplices are obtained, leaving the Delaunay tree ready for the insertion of a
new point, as in:

44

Algorithm: create
Input: a point ¢ and a list of killed simplices K
Output: a list £ of all new simplices

Effects: simplices in K are killed, their children are created

for each simplex s in K, mark s as killed
L0
for each simplex s in K
for each unkilled neighbour n of s through a facet f
create simplex fg and append it to £
make fq the neighbour of n and child of n and s
for each simplex s in £
for each unassigned neighbour of s through facet f
make s neighbours with the other simplex containing f,

which comes after s in £

6. THE ALGORITHM 45

@ (b) ©

FIG. 16: Insertion of midpoints for conforming triangulation. (a) The original polygon to conform to with
vertices marked as little disks. The polygon edges which are missing from the Delaunay triangulation of these
vertices are shown in bold. (b) The polygon after one round of midpoint insertion. A shorter total length
remains to be conformed to. (c) The polygon after the final stage of midpoint insertion: no edges are missing

from the Delaunay triangulation of these vertices.

6.5.3 Conforming Triangulation

A simple way to construct a conforming Delaunay triangulation for a set of edges £ is to repeat-
edly insert the midpoint m of any edge with endpoints @, b in & which does not appear in the
triangulation, replacing edge ab in £ by the pair of edges am, mb. This process is illustrated in
Figure 16. When inserting midpoints, it is important to preserve the sense and order of edges
in £ in order that they continue to represent a division of each face into regions in and out of
the object being reconstructed.

To implement this, it is necessary to efficiently query a triangulation as to whether or not
it contains a given edge. A simple solution would be to use an array where element (i, j) is 1 if
triangulation contains edge v;, v;, and 0 otherwise. However, the number of edges in a Delaunay
triangulation is on the average a good deal smaller than the size of this array. Also, the size of
the array is not fixed. Therefore, a hash-table should be used to represent sets of edges for this

query.
The overall method is formalised by the following algorithm:

Algorithm: conform
Input: a dynamic Delaunay triangulation D and a graph G = (5, £) to conform to
Effects: new points are inserted in D, and G updated accordingly

until the triangulation in D conforms to the input graph

Ep « the set of edges in D
do
Snew — (b, gmissmg — & — (c/'D
for cach edge ab in Enissing
append the midpoint ¢ of ab to Spey and S
replace ab by ac,chin &
for each point ¢ in S,y
insert ¢ in D, updating £p accordingly
while S,,.,, is not empty

6.5.4 Obtuse-Segments

In order that the circumcentres of the facets of tetrahedra lying in 2-faces (2-face triangles) and
containing at least one contour segment as an edge provide a good approximation to the centres

of splits, they should lie within their triangles. A necessary and sufficient condition for this

46

is that such triangles be acute. To discuss this it is helpful to define an obtuse-segment as a

contour segment, one of whose neighbouring 2-face triangles is obtuse.

@ (b) ©

FIG. 17: (a) A Delaunay triangulation conforming to the edges shown in bold. Edge ¢ is an obtuse-segment.
The centre of the circumcircle C' lies outside its triangle. (b) Removal of obtuse-segments like e by insertion
of the projection p of the opposite vertex ¢ makes the centres of the circumcircles of triangles involving parts
of the original edge lie within their triangles. (c) A set of edge-free minidisks for the same polygon with
extra vertices shown as black disks: the triangulation of these vertices conforms to the graph and is without

obtuse-segments.

The natural way to remove an obtuse-segment is to project the vertex in the obtuse neigh-
bouring triangle perpendicularly onto it. This is illustrated in Figure 17 and results in an
algorithm like the following:

Algorithm: delete-obtuse
Input: a graph G = (S, €) and a dynamic Delaunay triangulation D conforming to G
Effects: new points are inserted in G and D until no obtuse-segments remain
do
Snew 0
for each edge € in £
if ¢ is an obtuse-segment for a surface triangle with third vertex ¢

p < perpendicular projection of ¢ onto e
append p to Sy, and update G

insert-vertices(D, Sycy)

while S,,.,, is not empty

This algorithm does not guarantee that all obtuse-segments are permanently removed since
when conform is repeated after this, obtuse-segments may be re-introduced. Another method
is to alternate between conform and delete-obtuse until no obtuse-segments remain. Geiger
[24], could give no proof that this procedure would converge and such a proof is not given
here. Instead, it is pointed out that if conform adds vertices to contours so that every contour
segment has a minidisk (the smallest disk passing through both ends of the contour) empty of
other contour segments then there is no need for a delete-obtuse stage of the algorithm at all.
This is because an obtuse triangle may not be made from an edge with an empty minidisk since
the angle in a semi-circle is a right-angle. Such a conforming triangulation may be obtained by
the algorithm of [38]. This scheme was not implemented here, but would be a sensible step in

any future implementation.

6. THE ALGORITHM a7

6.5.5 Splitting Points

Now the addition of splitting points is given in detail. First the general principle is described
and a means of efficiently implementing it is indicated. Finally, the requisite algebra is provided
and the method summarised in an algorithm.

Recall from Section 5.4.3 that splitting points are vertices approximating the locations where
the Delaunay surface splits. The planes are divided by contours into interior regions and exterior
regions. The points between such regions on the contours shall be known here as boundary
regions. Splitting points occur when a ball tangent to an interior point of one plane first hits
more than one separate boundary point on another plane in the same 3-face. The extra vertices
are then at the points tangent to the balls.

Finding these vertices is readily achieved by first walking around all loops in the graph to
which the triangulation conforms and listing all 2-face triangles which are out of the object to
be reconstructed. Such triangles are termed out-triangles and 2-face triangles which lie in the
object are called in-triangles. As shall soon be seen, it is useful to label any in- or out-triangles

as such in this pass.

FIG. 18: A pentahedral 3-face abedef with out-triangle ghi on 2-face befe whose circumcircle is shown and has
centre p. A loop over 2-faces might first find the ball tangent to 2-face adeb and containing the circumcircle
of ghi. This ball hits adeb at gq. Next the ball found might be that tangent to 2-face acfd and containing the
circumcircle of ghi which hits at ». The projections for the other two 2-faces lie outside the 3-face, so do not
receive further consideration. If ris an interior point, it is chosen as the projection since it is nearer to p than

q is. Obviously, if ris exterior and ¢ is interior then g is chosen instead.

Given an out-triangle, any splitting point corresponding to it can be found by looping over
all 2-faces of the 3-face under consideration (see Figure 18). For each 2-face f the ball tangent
to f which contains the circumcircle of the out-triangle in its boundary is solved for, when there
is such a ball (it shall be seen below that there are two such tangent balls for a plane, but at
most one can hit a given 2-face). It is necessary to find out whether the point of tangency is in
the 2-face and is an interior point. This is termed the interiorness test. Of those points found
in the loop which are interior, that which is nearest to the circumcentre of the out-triangle is
chosen.

In order to make this into an efficient procedure, first note that there is no point finding
balls for 2-faces which have no interior regions. Secondly, note that the interiorness query is

equivalent to finding whether the point of tangency lies in an in-triangle. The answer is clear

48

if the 2-face is IN (see Section 5.3): a point-in-convex-polygon test [41] may be applied. To

answer for PART faces, the locate function of the Delaunay tree (Section 6.5.2) is used for the

tangent point and the returned simplices are looped over to find which has the point in one of its

facets. The in-triangle/out-triangle labelling performed in the initial loop then concludes this

decision?!. More efficient methods of finding splitting points for which it is unnecessary to search

every 2-face (analogous to ray-shooting in convex polyhedra [41]) could no doubt be devised for

situations where large numbers of splitting points are to be found. In the present application,

it is unusual to have a large number of 2-faces in a boundary and efficient ray-shooting schemes

tend to be rather complicated.

Now a formula for the appropriate ball B (centre ¢g and radius rg)
given a circumcircle C' (centre ¢, radius r and unit normal to its plane
k) and plane A (unit normal n, distance from origin d) is derived (see the
adjacent figure for these definitions). The conditions that B be tangent
to h at a point p and that it contain C' are

—eg)m=rg, pn=d, r*+X=r% cg=c+ Ik
p y P) B ’
which imply that r* +* = (d — c.n — k.n))? (0.5)

for some scalar A. The roots of this quadratic are shown in the adjacent
figure: there are two balls B1, B2 containing C' and tangent to h at
points pl,p2. The correct choice for p is that which lies on the same
side of the line of intersection of A with the plane of C' as the 2-face for
which A was obtained. This is readily computed if each 2-face stores a
point internal to it as was suggested in Section 6.2. Taylor expansion
is necessary in the solution of this formula when the planes are nearly
parallel. In this case, only one root is sensible and the position of p
becomes independent of r. Finally, note that once A, rg are known, p is
obtained as p = ¢+ Ak + rgn.

In summary, the algorithm for adding splitting points is as follows:

2Tt might be imagined that performing the interiorness test in order of increasing distance from the circumcentre

of the out-triangle would also improve the complexity since fewer faces would require searching. This is not true

for worst-case complexity since the sort increases the dependence on the number of 2-faces and in the worst case,

all faces need to be examined for interiorness anyway.

6. THE ALGORITHM 49

Algorithm: split-lines
Input: a 3-face g, a graph G = (S, €) and a dynamic Delaunay triangulation D conforming to G

Effects: new points are inserted in G and D to approximate splitting points

label and list all in- and out-triangles in the unkilled nodes of D
Snew < 0
for each out-triangle ¢
¢ < oo (an infinite point)
(¢,r, k) < circumcircle of ¢
for cach pART or IN 2-face f of g
compute the tangent point p for f and (c, r, k)
if [is PART, use locate for D to see if p is interior
else if f i1s 1IN, do a point-in-convex-polygon test for p
if p is an interior point and |p—¢|> < |¢—¢|?, ¢ < p
if ¢ £ oo, append ¢ to Spew and to S

insert-vertices(D, Sycu)

6.5.6 Sculpted Triangulation

As described in Section 5.4.4 tetrahedra are removed if they have out-edges or if they are part
of a non-solidly connected group.

Tetrahedra with out-edges are easily found by walking around each loop on each 2-face in
the conforming triangulation. At each vertex all incident edges which are not part of a loop are
considered to find any which lie in the 2-face of the current loop and are clockwise of it. The
query of finding all edges incident on a vertex is efficiently supported by a pair of hash tables:
one maps from any vertex to a list of edges incident on that vertex and the other maps from any

edge to a list of tetrahedra containing those edges. Together these form a tetrahedral incidence

graph.

A\ A

A A N
— ——

@ (0) ©

FIG. 19: Types of non-solid tetrahedra, a parallel plane example. (a), (b) Two types of E-non-solid tetrahedron

l‘“;

are shown in bold. (c) When the E-non-solid tetrahedron of (b) is removed, two V-non-solid tetrahedra result.

Two types of non-solid tetrahedron are relevant: those which are connected only along edges
and those which are connected only at vertices. To formally define these, recall from Section 5.4.4

that a facet in an in-region is called an in-facet. A tetrahedron s is said to be E-non-solid if
1. s has no in-facets,

2. s has an edge e, in a 2-face,

50

3. neither of the facets of s incident on e is shared with a tetrahedron which has an in-facet.
A tetrahedron s is said to be V-non-solid if there is some 2-face f for which

1. s has a vertex in f,

2. s does not have an edge in f,

3. s does not share a facet with a tetrahedron which has an edge in f.

These definitions are illustrated in Figure 19. They are direct generalisations of those used in
[24]. All these definitions can be directly turned into test procedures which work in terms of the
planes in which the vertices of a tetrahedron lie and the neighbouring relations of a tetrahedron.

The following obvious property is central to the ordering of the sculpting procedure:

Property 7 Deletion of tetrahedra with out-edges leads to F-non-solid tetrahedra but not vice

versa, while deletion of F-non-solid tetrahedra leads to V-non-solid tetrahedra but not vice versa.

Therefore sculpting first removes tetrahedra with out-edges, then E-non-solid tetrahedra, then
V-non-solid tetrahedra.

When sculpting is complete, although the results contain no edges in violation of the input
contours, they may still violate them by not attaching all in-regions to parts of the reconstruction.
This is due to the deletion of V-non-solid tetrahedra which contained in-facets. This was seen to

be a property of the solidly connected nearest neighbour and Delaunay surfaces in Section 5.4.1.
In summary, sculpting proceeds as follows:

Algorithm: sculpt
Input: a triangulation 7 conforming to a set of directed loops M

Output: a subset of the simplices of the input 7 (returned in 7))

compute the incidence graph of 7
for each loop My, in M
for each vertex a of My
for each edge ab incident on a which is still in 7
if ab is clockwise of M
delete all tetrahedra incident on ab
delete all remaining E-non-solid tetrahedra from 7T

delete all remaining V-non-solid tetrahedra from 7T

6.6 Complexity

This section discusses the worst-case and average-case time complexity of the reconstruction
algorithm in 3D. Each procedure called by reconstruct is considered, then the total complexity

is obtained. The size of the input to reconstruct is measured in terms of

ny — the total number of planes and

ne — the maximum number of contour points per plane.

6. THE ALGORITHM 51

The following table summarises the time-complexities demonstrated in the next pages for all
calls made to each procedure during one execution of reconstruct. It should be borne in mind
that the worst case is unrealistic and that the figures given for it ignore delete-obtuse and

split-lines.

Algorithm O(-) Worst Case O(-) Average Case
arrange nj, ny
split-contour and gather-graph n%{nc n%{nc
label-faces n3, + n3 nc n3, + nyne
triangulate, sculpt and output n%, + n3 nd n3, + nyne
reconstruct n?_{ + ni(ng n% + nync

6.6.1 Worst Case

The worst case of arrange depends on the following result [16]:

Property 8 The number of (k < d)-faces in a d-dimensional arrangement is O(n4,). This is

also the time complexity to compute these faces.

The cost for a sub-arrangement is also this bad since the bounding box may need to be arbitrarily
large, so arrange is O(n3,).

The number of intersections of an arrangement with a set of polygons on one plane is
O(nync). This is the maximum number of junctions per plane. Also, if a single contour is
entirely in a single 2-face, split-contour will take this long to process it. Thus calling split-
contour for all planes takes O(n3nc).

label-faces has run-time O(nj; + nj;nc¢) for the following reasons:

1. All calls of label-0-faces will visit a single 0-face at most 12 times by the assumption of
Section 6.1 that all 0-faces are the intersection of at most 3 planes. label-0-faces always
examines every junction in any plane twice. Thus all calls of label-0-faces together take
O(n3; 4+ n¥ne).

2. label-in-out considers any 2-face at most as many times as it has neighbours in the same
plane. The sum over all 2-faces of the number of coplanar neighbours is twice the number
of 1-faces in that plane. This is O(n%{) by Property 8. Thus all calls of label-in-out
together take O(n3,).

3. The labelling of any 3-face requires consideration of all its 2-faces. So in total, all 2-faces

are considered twice, giving a run-time of O(n},).

A call of gather-graph for a single 3-face collects O(nync) chain vertices, O(nyn¢) junc-
tion vertices and O(ny) O-faces. The numbers of junctions and 0-faces follow from the Dehn-

Somerville relations ([16] p. 104) which imply the following result:

Property 9 The number of (k < 3)-faces in the boundary of a single 3-face in a 3D arrangement
of ny planes is O(ny).

52

Likewise, there may be O(nync) edges in the loops. Obtaining a single vertex or edge is O(1).
Thus, gather-graph runs in O(nync) time.
The cost of triangulate is now considered for the algorithms implemented and then for the

best known algorithms.

Given n vertices the 3D Delaunay tree algorithm delaunay may take O(n?) time [8]. As
remarked in Section 6.5.3, the number of points added by conform depends on the thickness
of the graph to conform to rather than the number of vertices and edges. In particular, if the
length of edges in the graph to conform to is upper bounded by [and the separation between
edges which do not share endpoints is lower bounded by € then O(//¢) points may need adding.

delete-obtuse has a similar behaviour.

Let n’ be the number of vertices in the triangulation after delete-obtuse. split-lines considers
every out-triangle, of which there may be O(n'). This is because the outer boundary of the
triangulation prior to sculpting is the convex hull of the input points which has O(n') facets
in 3D [41]. split-lines then projects onto every 2-face, of which there are O(ny) according to
the Dehn-Somerville relations. It also performs a Delaunay tree search to find the projected
point. This may take O(n’) in the worst case. Thus the implemented version of split-lines has
run-time O(n'*ny) and adds O(n') new vertices. Another conforming operation is performed
at this stage. This time any good thickness properties of the input contours may have been

destroyed by the addition of splitting vertices.

The best known algorithms for 31D Delaunay triangulation have run-time of the same or-
der as the number of tetrahedra in the triangulation, which is at most O(n?) [1]. Recall from
Section 6.5.3 that the best known algorithm for conforming triangulation in 2D for a graph
with n. edges adds O(n?n) new points in O(n’n + n?) time [58]. A 2D conforming operation
for each 2-face is sufficient for 3D conforming. The author knows of no polynomial time con-
forming algorithm for delete-obtuse. Perhaps the best results yet for small angle conforming
triangulation are those of [59] which do not consider Delaunay triangulation. Since no appro-
priate bound is available, delete-obtuse and other later triangulation stages are omitted from
the total complexity. However, it is observed that point location in split-lines can be improved
to O(n’) preprocessing and O(logn’) location of a single point using monotone subdivisions and

fractional cascading [16].

To combine all the stages of triangulate, it is first observed that the number of edges and
vertices in the input from gather-graph for a single 2-face is O(ny + n¢). Then using the Dehn-
Somerville relations, the number of vertices on a single 3-face after the second conforming using
the best known algorithm is O(ny (ny + ne)?). This gives a total number of tetrahedra and
hence run-time of O((ny (ny + nc)?)?) = O(n?_{ + n%{ng)

Sculpting need only consider each edge O(1) times and perform a test taking O(1). The
number of edges is at most proportional to the number of tetrahedra. Thus if n” is the number

//2)

of vertices at input to sculpt, sculpting takes O(n”*) time for a single 3-face.

Fortunately, the worst cost of triangulating all O(n3,) 3-faces is not n3, times the worst cost
for a single 3-face! Firstly, the total number of chain and junction vertices is O(n3/nc¢). Consider

dividing these equally among f(ny) 3-faces and let the cost for triangulating a 3-face with n

6. THE ALGORITHM 53

edges and vertices be C'7(n). An adversarial input generator picks f to maximise
cost of reconstruct = f C'y (n%{ncf_l) (0.6)

subject to f = O(n3,) and f = Q(1). Since the exponent of n in C'r(n) is certainly greater than
1, the cost is maximal for f = O(1). The fact that not only chain and junction vertices, but
also 0-faces need triangulation does not change this argument because of the Dehn-Somerville

relations. Thus, the total run-time for reconstruct is O(n§, + n3,n¢) in the worst case??.

6.6.2 Average Case

To provide average-case results, it is assumed that the object being reconstructed is smooth

almost everywhere and is kept fixed while

1. the number of contour vertices is increased by random uniform sampling of the object

boundary, and

2. the number of planes is increased by adding random uniformly distributed planes which
cut the object.

In the average case arrange, gather-graph and sculpt will perform no better than a constant
factor of the worst case when performance is measured relative to the size of their input. However
the arguments below show that the input sizes for the latter two are reduced.

Meanwhile, the performance of triangulate is greatly improved in the average case. The
Delaunay triangulation of n uniformly distributed points has on average O(n) tetrahedra and this
is the average time taken to compute the triangulation by delaunay [8]. A similar improvement
is noted for point location using the Delaunay tree in split-lines which takes O(logn) time per
point. At the same time, care may be needed since the triangulation of n points distributed
on a pair of lines gives the O(n?) worst case. So, when the reconstructed object is reasonably
smooth, some form of removal of collinear points (thinning) has been suggested in [24]. Also, as
the separation of consecutive contour vertices is decreased, the chance that the edge joining them
will be present in the triangulation is much higher. In fact, asymptotically no extra vertices are
required in conform or delete-obtuse. This is at odds with the idea of thinning.

The average performance of reconstruct depends linearly on the number of PART 3-faces.
The fraction of these faces decreases as the number of planes grows: a surface occupies a rather
small volume. In particular, the zone of a plane has size O(nj,) [18], so the number of PART
3-faces should be O(n%) on average. Similarly, the zone of a line in a 2I) arrangement has size
O(ng). This implies the reductions in cost of split-contour, and label-faces listed in the table
of results above. More importantly, it shows that a single PaART 2-face will have O(:—Z +1)
vertices and edges in its graph. Together, these give a total cost for calling triangulate for all
PART 3-faces of O(n}, + nync).

Combining the cost of triangulation with the cost of computing the sub-arrangement gives

a total average-case cost for reconstruct of O(n% + nyne). This is certainly an improvement

22Tt is doubtful that this bound is tight since the best known conforming algorithm is, in the author’s opinion,

not optimal.

54

on the worst case! The second term is proportional to the total number of input points and so
cannot be improved on. Nonetheless, the cost for computing the arrangement is prohibitive for
a large number of planes and one wonders if an alternative scheme could be found which only

computes the zone of the object.

7 Inconsistent Intersections

Even for cross-sections extracted from a non-noisy source, it is unlikely that the corresponding
contours from different planes will meet exactly on the line of intersection of these planes due
to the polygonal approximation involved. However, it is vital for the labelling of faces and
formation of loops in the gathering of the graph for triangulation that intersections agree: one
cannot hope to produce results consistent with an input when the input is inconsistent with
itself. Therefore, consistent intersection was assumed at the start of the algorithm description.

This section discusses four methods for enforcing or relaxing this assumption.

7.1 Ignoring Inconsistency.

It is helpful to call each part of a 1-face which is inconsistently described by the input data a

grey segment. One solution to inconsistency is to ignore grey segments and see what happens.

Consider the pair of regions lying on 2-faces fi, fo in the

f adjacent figure. Their common 1-face has a grey segment
! ab. A Delaunay ball tangent to f; at ¢ on ab expands to

touch ¢’ first. Therefore cc’ is part of the Delaunay surface

1 although it is inconsistent with the data on f;. As cis moved

along ab it can be seen that the Delaunay surface will fill the

region between aa’ and bb'.

Since the Delaunay surface is constructed by adding line segments, it is easy to see that
ignoring inconsistency can convert exterior regions to interior ones but never vice versa. It is
also interesting to note that the size of the inconsistency introduced between reconstruction
and data is never greater than the data’s original inconsistency. This is a direct consequence
of the definition of the Delaunay surface if appropriate measures for these sizes are chosen. For
this purpose, the level of inconsistency of a grey segment e could be measured as the maximum
distance from any point on e to its closest interior point on the face which classifies e as exterior.
The inconsistency introduced could be quantified as the greatest length of any line segment
added by the Delaunay surface which lies in an exterior region. Of course, when the face which
classifies a grey segment as exterior has no interior regions, it may become entirely filled.

Implementation of this ignoring strategy requires modification of the labelling and sculpting

phases of reconstruction:

e In labelling, inconsistency can lead to uncertainty about the choice of label for 0-faces. If
a 0-face was really IN and got labelled ouT, there is no chance that the missing space in

a reconstruction could get filled later on by existing phases of the algorithm. At the same

7. INCONSISTENT INTERSECTIONS 55

time, if it was labelled IN but was really ouT, it could get removed by sculpting. Therefore

any uncertain 0-face is labelled 1N.

e In sculpting, any tetrahedron which would normally be sculpted because it has an exterior

edge is not removed if it also has an edge in a grey segment.

7.2 Morphological Filtering.

Another approach is to convolve the data with a ball of appropriate size. This is guaranteed
to produce consistent contours. Furthermore, it only causes a level of destruction of the input
data in proportion to the size of the errors which are present.

To be precise, consider the input data to reconstruction as a 3D function B(z) of spatial

coordinate z with values

+4& for z in the interior regions on planes
B(z) = 0 for x in between planes

—4& for z in the exterior regions on planes.

Here 4 is a function whose volume integral over a planar region of unit area is unity. Then define

the convolution integral
J@) = [Bla - 2)p.(a") da”

3
4mes

vanishes elsewhere. Clearly J has value between —1 and 1.

which involves a function f§.(2’) which has value inside a ball of radius € centred on 2’ and
Now consider the locus Jy of zeros of .J on any of the input planes. As e — 0, Jy clearly tends

to the original contours. However, for any € > 0, Jy consists of a consistent set of contours.
Figure 20 shows the result of applying this idea to a set of inconsistent gall bladder contours

for two different fixed values of e.

o

T
&
AN

\i'&\\ e

Sy
R

e

AR

NECHREROR N
R

FIG. 20: Convolving contours with a ball to enforce consistency. (a) Inconsistent gall bladder contours prior
to convolution. (b) Result of convolution with a ball of radius 1/20 the total length of the bladder. (c) Result
of convolution with a ball of radius 1/10 the total length of the bladder.

This example shows that although the results are consistent and resemble the input data,
the convolved contours have jagged shapes for small balls and thin sections are strongly eroded
for large balls. The issue of how to pick the appropriate value of ¢ for the convolution has not
been answered. Furthermore, this convolution took much longer to run than a reconstruction
from the contours: it was implemented as a set of planar image operators so every pixel had to

be processed independently: this goes against the philosophy of reconstruction from contours.

56

7.3 Merging Junctions.

A method which adds only one simple stage to the overall procedure and is applicable for
low noise levels is to merge inconsistent junctions. An example of this procedure is shown in

Figure 21. In this scheme, a loop is made over all lines of plane intersection with junctions.

I3 4 i3
I1

FIG. 21: Merging Junctions. (a) Before merging, the 1-face has 4 junctions, ji, ..., js and 2 grey segments.

(b) After merging, j1,j2 become the point with the average of their positions, ji, similarly, js, j4 map to j§.

Junctions are sorted along these lines and paired with their closest neighbouring junctions from
different planes with the correct orientation. A pair of junctions is replaced by a single junction
at their midpoint, connected to all four chains that the original junctions had.

It is best to apply this scheme along entire lines of intersection prior to contour partitioning
rather than to single 1-faces with junctions after contour partitioning. Firstly, this is because
1-faces may be very small, so the chances of not finding a matching junction on the same 1-face
are high. Secondly, if the search for matching junctions were extended to neighbouring 1-faces
along a line of intersection, new junctions and a new chains would need to be introduced, since

other 1-faces would be crossed by the deformed chain.

FIG. 22: Merging junctions can lead to crossing of 1-faces which were not previously crossed. This figure
shows three transparent planes, two of which have contours whose interiors are shaded. On the left is the

situation before merging and on the right that after merging.

This method may fail for a number of reasons. Firstly, not all lines of intersection have the
same number of junctions from each incident plane. This may occur even when the error in
the contours is arbitrarily small when the line of intersection is nearly tangential to the surface.
Secondly, even if suitable pairings can be made, the displacement of a junction may lead to
contours intersecting with themselves or with other contours. Thirdly, the act of deforming a
contour to make certain lines of intersection consistent may lead to crossings of other lines of
intersection and hence new junctions to match. This point is illustrated by Figure 22.

When the method does not fail, results may still not be satisfactory, since sharp jagged parts
may be introduced in the contours. However, this can be overcome by a smoothed fading in of

the perturbation in the contour (with increased risk of self-intersections), for example weighting

7. INCONSISTENT INTERSECTIONS 57

with distance along the contour from the junction. Despite these difficulties this scheme has been

used successfully for reconstruction from a number of simple mathematically defined objects.

58

8 Results

This section illustrates the reconstruction method with some artificial data of an ellipsoid and a
more complex object with holes. Then some examples with real data are demonstrated: firstly
the reconstruction of a pelvis with data from the Visible Human Project [62] and secondly
reconstruction of 3D ultrasound data of gall bladders. The latter example is also used for

volume estimation.

8.1 Ellipsoid

Consider the reconstruction of an ellipsoid from random planar sections shown in Figure 23.
This shows how the reconstruction is performed 3-face by 3-face. No sculpting is necessary
here since the object is convex. However, it is necessary to include IN O-faces in order that the

reconstruction fill all IN parts of a 3-face.

‘ \\~ ‘
! “\\vA
‘X‘li

e

(c)

FIG. 23: The triangulation of 30 random planar sections of an ellipsoid. (a) The input contours. (b) The

result when one eighth of the cells have been triangulated. (c) The final object.

8. RESULTS 59

8.2 Complex Artificial Object

Figure 24 shows an extreme example of reconstruction for a single 3-face, illustrating how sculpt-
ing treats complex objects with holes and non-convexities. First the reconstruction from contours
on parallel planes is shown. This could have been achieved by the methods of [24]. Then the

input has been rotated onto perpendicular planes: sensible results are still obtained.

(d) (e)

FIG. 24: An extreme demonstration of the approach described: a pair of highly non-convex contours with

holes on perpendicular planes. (a) The contours viewed perpendicular to one of the data-planes. (b), (c)
Two views of the contours reconstructed on parallel planes. (d), (e) Two views of the reconstructed object

on perpendicular planes. Observe the hole right through its centre.

60

8.3 Pelvis Reconstructions

As part of an investigation of the simulation of childbirth [14], the reconstruction method was
used to generate a finite element model of a female pelvis using data from the Visible Human
Project [62]. The data consisted of contours extracted from parallel CT slices (numbered 1700-
1912 in the Visible Human Project female dataset) by an active contour segmentation scheme.
Since parallel slices were used, the same results could have been achieved by the method of [24].

Figure 25(a)-(d) shows four views of the reconstruction.

FIG. 25: The triangulation of CT slices from the Visible Human Project female pelvis. (a) Frontal view. (b)

Rear view. Continued overleaf.

8. RESULTS 61

The total number of input data points was 5500 and the total CPU time for reconstruction
on a SUN Ultra Sparc 1 workstation was 70 s. This reconstruction again illustrates the ability
of the method to cope with complex branching data with holes. In several slices, seven different

regions needed simultaneous treatment.

FIG. 25: continued. (c) The birth-canal. (d) Oblique view.

62

8.4 Gall Bladder Reconstructions

The gall bladder is a spongy body found within the plane of the major fissure separating the
right and left lobes of the liver. Its function is to store bile produced by the liver and bile ducts
during fasting and to pass this bile into the duodenum when food is consumed.

The gall bladder was chosen in this study for a number of reasons. Firstly it is fluid-filled and
hence easy to segment, while being less subject to internal movement than the arteriovascular
system which would otherwise be a natural choice since it is equally easy to segment. Secondly
it is usually less occluded by bone and fat than certain other organs, although bowel gas can
hinder visibility. Thirdly any entire section of the gall bladder can fit on one scan, and hence
there will be no problems with the inapplicability of the formulation of the surface from cross-
sections problem used above. This is not the case for other regularly scanned organs like the
liver and thyroid. Finally, volume measurement, an interesting application for reconstruction,
has been well-documented for the gall bladder [45].

All scan data was acquired from a single subject during a one hour session. The subject had
fasted for over 6 hours prior to scanning, and continued this fast during the scanning period.
This ensured that his gall bladder was full and easy to image. Each scan sequence was taken
over a period of approximately 20 s with a 3.75 MHz probe. The subject held his breath and
lay as still as possible thoughout.

The clinician moved the probe as steadily as possible and attempted to minimise the variation
of pressure on the skin of the subject which might induce motion of the organ. Simultaneously,
the organ section was kept as close to the centre of the scan as possible to stay in focus. The
sweeps began before one extremity of the organ and terminated after the other extremity, to

guarantee that no section of the reconstruction would be missing from the data.

L1

T1

T3

FIG. 26: Gall bladder reconstructions: L indicates reconstruction from longitudinal sections and T reconstruc-

tion from transverse sections.

Figure 26 shows the resulting reconstructions. It is interesting how 1'3 and T4 are much
smoother than the other reconstructions. This is not a matter of different numbers of planes:

T3 has more planes than the other reconstructions and T4 has less planes than the others.

8. RESULTS 63

Additionally, each reconstruction was segmented with the same parameter settings, so this does
not provide an explaination either. Furthermore, it seems that the “ends” of the gall bladder
occur abruptly. Repeated examination of the scan sequence has shown that this is not due
to early termination of segmentation — it appears that the gall bladder disappears from the
sequence at the end points shown in these figures.

The reconstructions provide an easy means of estimating an object’s volume vol in terms of
the set of all tetrahedra remaining in PART 3-faces after sculpting, I/, and the set of IN 3-faces
7

vol = wol(s) + > _ vol(f). (0.7)

seu fET

The volume vol(s) of a tetrahedron s with vertices vy 4 (treated as column vectors) is given by

1 1 1 1

U V2 U3z U4

vol(s) = (0.8)

[~

Either the vertices are sorted or the modulus of this expression taken to ensure that positive
volumes are obtained.

The volume of a 3-face f is obtained by decomposing f into tetrahedra. First an arbitrary
point p is picked to serve as an apex of all tetrahedra in the decomposition and a point py is
picked for every 2-face g5 in the boundary of f. pr should be chosen to be coplanar with g;. For
numerical precision it is preferable that p lie near the centroid of f and pp near the centroid of
gi.- The required volume is then obtained by summing the volumes of all tetrahedra with base
triangle composed of pi and a subface of g; and with apex p. This well-known decomposition

method also works for non-convex polyhedra if signed volumes are allowed.

The adjacent figure illustrates this decomposition of a 3-face. In this
figure p is the centroid of the 3-face, p; is the centroid of 2-face befc
and py is the centroid of 2-face abed. The edges of the tetrahedra

involved in the sum for befc are shown dotted. These tetrahedra are

bepip, efpip, fepip and cbpyp.

Table 1 gives the volume estimates obtained for the gall bladders illustrated on the previous

page for a number of sweeps containing various numbers of planes. These estimates are consistent

Sample L1 L2 T1 T2 T3 T4
Number of Planes 21 22 35 28 47 18
FEstimated Volume (cm3) 14.7 122 17.1 16.1 139 16.3

Mean volume 15.1 cm?, standard deviation 1.8 cm?.

TABLE 1: Volume estimation of gall bladders using reconstruction from multi-axial planes. L or T in the

sample name indicates that the scan was longitudinal or transverse.

with a 10% error in volume estimation on a single sweep (that is, if no averaging over volumes

64

from different sweeps is used). This is with the proviso that no systematic errors are present,
which is probably not the case: for one, there should be a systematic underestimation due to the
non-triangulation of END 3-faces. Many more scans on different individuals would be needed to
increase the level of significance of this error rate. In vitro studies would be required to validate
the technique to the satisfaction of clinicians.

A 10% standard deviation (fractional repeatability error) in gall bladder volume estimation
is of the same order of magnitude as in vitro measurements on gall bladder phantoms using the
sum of cylinders approach (13.5%) and another 3D method (7.4%) in [45]. Unfortunately this
paper does not give fractional repeatability errors for the in vivo case although comprehensive

in vivo studies were performed.

9 Conclusions

In this report, a novel and efficient scheme for reconstruction from arbitrary planar section
data has been described. It advances on previous work by combining a guarantee of ability
to reconstruct arbitrary data with complex holes and branching (which had previously only
been available for parallel plane data), with the ability to treat multi-axial planes (which had
previously only been available for data which satisfied a stringent looping criterion). A detailed
description of an algorithm implementing the reconstruction scheme has been given.

The technique has been illustrated with a number of complex artificial examples and with
parallel plane CT pelvis data. Finally, an application has been made to reconstruction from in

vivo 3D ultrasound data and subsequent volume estimation.

10 Further Work

There are a number of ways in which the scheme for non-parallel reconstruction could be im-

proved. For example:

1. Presently, the scheme is not fair or self-consistent in the sense of Section 3. In order to
make it so, it is necessary to include splitting points at places other than on the input

planes and caps which close off END contour portions. How can this be done?

2. Presently, the scheme generates the part of an arrangment within a bounding box. Is it

possible to only construct that part of the arrangment which will need reconstructing?

3. The method of conforming triangulation used can require an arbitrarily large number of
points for a fixed number of input points. What is the optimal number of points necessary
for conforming Delaunay triangulation? What algorithm can be used for conforming to

surfaces in 3D?

4. Is there a more satisfactory approach to the treatment of noise leading to inconsistent

intersections?

65

BIBLIOGRAPHY

[1]

[2]

[11]

F. Aurenhammer. Voronoi diagrams: a survey of a fundamental geometric data structure.
ACM Computing Surveys, 23:345-405, 1991.

G. Barequet and M. Sharir. Piecewise-linear interpolation between polygonal slices. In 10th

ACM Computational Geometry Symposium, pages 93—-102, 1994.

J-D. Boissonnat. Representation of objects by triangulating points in 3-D space. In Pro-

ceedings of the 6th International Conference on Pattern Recognition, pages 830-832, 1982.

J-D. Boissonnat. Representing 2D and 3D shapes with the Delaunay triangulation. In
Proceedings of the 7th International Conference on Pattern Recognition, pages T45-748,
1984.

J-D. Boissonnat. Shape reconstruction from planar cross sections. Computer Vision, Graph-
ics and Image Processing, 44:1-29, 1988.

J-D. Boissonnat, A. Cérézo, O. Devillers, and M. Teillaud. Algorithme dépendant de la
sortie pour la triangulation de Delaunay 3D d’ensembles de points contraints. Technical
Report RR-1415, INRIA, Sophia Antipolis, B.P. 109, 06561 Valbonne Cedex, France, 1990.
Available by ftp from ftp.zenon.inria.fr.

J-D. Boissonnat and B. Geiger. Three-dimensional reconstruction of complex shapes based
on the Delaunay triangulation. Technical Report RR-1697, INRIA, Sophia Antipolis, B.P.
109, 06561 Valbonne Cedex, France, 1992.

J-D. Boissonnat and M. Teillaud. On the randomized construction of the Delaunay tree.
Theoretical Computer Science, 112:339-354, 1993.

k. Bookstein. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge
University Press, 1st edition, 1991.

Y-K. Choi and K. H. Park. A heuristic triangulation algorithm for multiple planar contours
using an extended double branching procedure. Visual Computer, 10(7):372-387, 1994.

H. N. Christiansen and T. W. Sederberg. Conversion of complex contour line definitions

into polygonal element mosaics. Computer Graphics, 13(2):187-192, 1978.

66 BIBLIOGRAPHY

[12] L. T. Cook, P. N. Cook, K. R. Lee, S. Barnitzky, and B. Y. S. Wong. An algorithm for
volume estimation based on polyhedral approximation. IFEFE Transactions on Biomedical
FEngineering, 27:493-500, 1980.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, Massachusetts, 1990.

[14] C. R. Dance, R. J. A. Lapeer, and R. W. Prager. 3D finite element model of a female pelvis
reconstructed from CT images. In M. J. Ackerman and V. M. Spitzer, editors, Visible
Human Project Conference, Bethesda, Maryland, October 1996.

[15] J. P. Duncan and S. G. Mair. Sculptured Surfaces in Engineering and Medicine. Cambridge
University Press, Cambridge, England, 1983.

[16] H. Edelsbrunner. Algorithms in Combinatorial Geometry. EATCS Monographs on Theo-

retical Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris,
Tokyo, 1987.

[17] H. Edelsbrunner and E. Miicke. Three-dimensional alpha shapes. ACM Transactions on
Graphics, 13:43-72, 1994.

[18] H. Edelsbrunner, R. Seidel, and M. Sharir. On the zone theorem for hyperplane arrange-
ments. SIAM Journal on Computing, 22:418-429, 1993.

[19] A. B. Ekoule, F. C. Peyrin, and C. L. Odet. Surface reconstruction for arbitrarily shaped
multiple planar domains. ACM Transactions on Graphics, 10:182-199, 1991.

[20] O. D. Faugeras. Three-dimensional computer vision: a geometric viewpoint. MIT Press,
Cambridge, Massachusetts, 1993.

[21] O. D. Faugeras, E. Le Bras-Mehlman, and J-D. Boissonnat. Representing stereo data with
the Delaunay triangulation. Artificial Intelligence, 44(1-2):41-87, July 1990.

[22] H. Fuchs, Z. M. Kedem, and S. P. Uselton. Optimal surface reconstruction from planar
contours. Communications of the ACM, 20(10):693-702, October 1977.

[23] S. Ganapathy and T. G. Dennehy. A new general triangulation algorithm for planar con-
tours. ACM Transactions on Computer Graphics, 10(2):182-199, 1982.

[24] B. Geiger. Three-dimensional modeling of human organs and its application to diagnosis
and surgical planning. PhD thesis, INRIA, Sophia Antipolis, B.P. 109, 06561 Valbonne
Cedex, France, 1993.

[25] C. Gitlin, J. O’Rourke, and V. Subramanian. On reconstruction of polyhedra from parallel
slices. International Journal of Computational Geometry and Applications, 6(1), 1996.

[26] M. J. Herbert, C. B. Jones, and D. S. Tudhope. Three-dimensional reconstruction of
geoscientific objects from serial sections. Visual Computer, 11(7):343-359, 1995.

BIBLIOGRAPHY 67

[27] S. W. Hughes, T. J. Darcy, D. J. Maxwell, W. Chiu, A. Milner, and J. E. Saunders. Volume
estimation from multiplanar 2D ultrasound images using a remote electromagnetic position
and orientation sensor. Ultrasound in Medicine and Biology, 22(5):561-572, 1996.

[28] N. Kehtarnavaz and R. J. P. de Figueiredo. A framework for surface reconstruction from

3D contours. Computer Vision, Graphics and Image Processing, 42:32-47, 1988.

[29] E. Keppel. Approximating complex surfaces by triangulation of contour lines. IBM Journal
of Research and Development, 19(1):2-11, 1975.

[30] S. Kumar, S. Han, D. Goldgof, and K. Bowyer. On recovering hyperquadrics from range
data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(11):1079-1083,
1995.

[31] C. Levinthal and R. Ware. Three-dimensional reconstruction from serial sections. Nature,

236(5):207-210, 1972.

[32] W.E. Lorensen and H. E. Cline. Marching Cubes: a high resolution 3D surface construction
algorithm. Computer Graphics, 21(3):163-169, 1987.

[33] M. Marko, A. Leith, and D. Parsons. Three-dimensional reconstruction of cells from serial
secions and whole cell mounts using multi-level contouring of stereo micrographs. Journal
of Flectron Microscope Technology, 9:395-411, 1988.

[34] D. Meyers and K. Sloan. Surfaces from contours. ACM Transactions on Graphics,
11(3):228-258, 1992.

[35] V. Milenkovic. Robust polygon modelling. CAD, 25:547-566, 1993.
[36] M. E. Mortensen. Geometric Modelling. John Wiley, 1985.
[37] H. Miiller and A. Klingert. Surface interpolation from cross sections. Springer Verlag, 1993.

[38] .. R. Nackman and V. Srinivasan. Point placement algorithms for Delaunay triangulation
of polygonal domains. Algorithmica, 12(1):1-18, July 1994.

[39] J-M. Oliva, M. Perrin, and S. Coquillart. 3D reconstruction of complex polyhedral shapes

from contours using a simplified generalized Voronoi diagram. Computer Graphics Forum,

15(3):C 397-C 408, 1996.

[40] J. O’Rourke. Polyhedra of minimal area as 3D object models. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, pages 664-666, 1981.

[41] J. O’Rourke. Computational Geometry in C. Cambridge University Press, Cambridge,
England, 1993.

[42] J. O’'Rourke. On the scaling heuristic for reconstruction from slices. Computer Vision,
Graphics and Image Processing, 56:420—423, 1994.

68 BIBLIOGRAPHY

[43] J. O’Rourke, H. Booth, and R. Washington. Connect-the-dots: a new heuristic. Computer
Vision, Graphics and Image Processing, 39:258-266, 1987.

[44] H. Park and K. Kim. Smooth surface approximations to serial cross-sections. CAD, 28:995—
1005, December 1996.

[45] J. Pauletzki, R. Sackmann, J. Holl, and G. Paumgartner. Evaluation of gall bladder volume
and emptying with a novel 3-dimensional ultrasound system — comparison with the sum-of-
cylinders and the ellipsoid methods. Journal of Clinical Ultrasound, 24(6):277-285, 1996.

46] B. A. Payne and A. W. Toga. Surface reconstruction by multiaxial triangulation. [FEE
y g y g
Computer Graphics and Applications, 14(6):28-35, 1994.

[47] L. Piegl and W. Tiller. Algorithm for approximate NURBS skinning. CAD, 28:699-706,
September 1996.

[48] F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction. Springer-
Verlag, New York, 1985.

[49] M. A. Price, C. G. Armstrong, and M. A. Sabin. Hexahedral mesh generation by medial axis
subdivision. International Journal of Numerical Methods in Engineering, 38(19):3335-3359,
1995.

[50] L. L. Schumaker. Reconstructing 3D objects from cross-sections. Kluwer Academic Pub-
lishers, 1993.

[51] T. W. Sederberg and E. Greenwood. A physically based approach to 2-D shape blending.
Computer Graphics, 26:25-34, 1992.

[62] R. Sedgewick. Algorithms in C++. Addison-Wesley, Reading, Massachusetts, 1992.

[53] M. Shantz. Surface definition for branching, contour-defined objects. Computer Graphics,
15(2), 1981.

[54] Y. Shinagawa, T. L.. Kunii, and Y. L. Kergosien. Constructing a Reeb graph automatically
from cross-sections. IEEFE Computer Graphics and Applications, 11:44-51, 1991.

[55] Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien. Surface coding based on Morse theory.
IEEE Computer Graphics and Applications, 11:66-78, 1991.

[56] K. R. Sloan and J. Painter. Pessimal guesses may be optimal. [EEFE Transactions on
Pattern Analysis and Machine Intelligence, 10:949-955, 1988.

[57] B. I. Soroka. Generalised cones from serial sections. Computer Vision, Graphics and Image
Processing, 15:154-166, 1981.

[58] T-S. Tan. Optimal two-dimensional triangulations. PhD thesis, University of Illinois at
Urbana-Champaign, 1993.

BIBLIOGRAPHY 69

[59] T-S. Tan. An optimal bound for high-quality conforming triangulations. Discrete and
Computational Geometry, 15:169-193, 1996.

[60] G. Tracton, J. Chen, and E. Chaney. CTI: automatic construction of complex 3D sur-
faces from contours using the Delaunay triangulation. In Mathematical Methods in Medical
Imaging 111, pages 86-97, San Diego, California, July 1994.

[61] G. Turk and M. Levoy. Zippered polygon meshes from range images. In SIGGRAPH 9/,
1994. Available from http://www-graphics.stanford.edu.

[62] U. S. National Library of Medicine. The visible human project.

http://www.nlm.nih.gov/research/visible.

[63] J. K. Udupa. Interactive segmentation and boundary surface formation for 3-D digital
images. Computer Vision, Graphics and Image Processing, 18:213-235, 1982.

[64] R. C. Veltkamp. Closed Object Boundaries from Scattered Points. PhD thesis, Erasmus
University Rotterdam, 1992. Available by ftp from ftp.cwi.nl pub/remco and published

as “Closed Object Boundaries from Scattered Points, Lecture Notes in Computer Science
885, Springer, 1994.”.

[65] N. P. Weatherill and O. Hassan. Efficient three-dimensional Delaunay triangulation with
automatic point creation and imposed boundary constraints. International Journal of Nu-
merical Methods in Engineering, 37:2005-2039, 1994.

[66] 1. Weiss. 3D shape representation by contours. Computer Vision, Graphics and Image
Processing, 41:80-100, 1988.

[67] E. Welzl and B. Wolfers. Surface reconstruction between simple polygons via angle crite-
ria. In Proceedings, 1st Annual Furopean Symposium on Algorithms (FESA), volume 726 of
Lecture Notes on Computer Science, pages 397-408, 1993.

[68] J. Woodwark. Computing Shape: an introduction to the representation of component and
assembly geometry for computer-aided engineering. Butterworths, Sevenoaks, Kent, Kng-

land, 1986.

