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Abstract

A novel approach to visual servoing is presented,
which takes advantage of the structure of the Lie alge-
bra of affine transformations. The aim of this project
is to use feedback from a wvisual sensor to guide a
robot arm to a target position. The sensor is placed
in the end effector of the robot, the ‘camera-in-hand’
approach, and thus provides direct feedback of the robot
motion relative to the target scene via observed trans-
formations of the scene. These scene transformations
are obtained by measuring the affine deformations of
a target planar contour, captured by use of an active
contour, or snake. Deformations of the snake are con-
strained using the Lie groups of affine and projective
transformations. Properties of the Lie algebra of affine
transformations are exploited to integrate observed de-
formations to the target contour which can be compen-
sated with appropriate robot motion using a non-linear
control structure. These techniques have been imple-
mented using a video camera to control a 5§ DoF robot
arm. Ezperiments with this implementation are pre-
sented, together with a discussion of the results.

1 Introduction

The use of real-time video information for robotic
guidance is increasingly becoming a more attractive
proposition. Advances in the power and availability of
image processing capabilities have made possible the
tracking of complex features, such as surface contours
[1], at frame or field rate on standard workstations.
This has enabled visual servoing of sufficient accuracy
that many useful tasks may now be accomplished.

Here we present an approach which takes advan-
tage of the structure of the Lie algebra of affine trans-
formations to provide an accurate, efficient and stable
servoing system. This approach provides a substantial
advantage over traditional image-based visual servoing
techniques due to the manner in which the structure
of the two-dimensional affine transformation group is
used to implicitly embed three-dimensional knowledge
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within an image based system.

The applications which motivate this work are tasks
such as welding of automotive or ship parts. These
tasks are characterised by the need to accurately place
a tool onto a workpiece which may be inaccurately
located in relation to the robot. The use of vision to
assist in solving these tasks is attractive because of the
capability to respond accurately and rapidly to errors
in part placement that are difficult to detect by other
means.

1.1 Background

The approach proposed here, makes use of image
based visual servoing [2, 3], in which the control loop
is closed in the two-dimensional image domain rather
than in the three-dimensional workspace. This is by
contrast to systems which explicitly use the three di-
mensional nature of the world [4, 5] (often referred to
as position-based visual servoing systems).

The two dimensional approach works in the image
domain, and computes error measurements directly,
such as the (x,y) location of target points [3]. The
system then attempts to move so as to minimise this
observed error typically using a Jacobian which relates
robot motions to changes in observables.

There are two natural locations in which to mount
a visual sensor [6], namely static with respect to the
world, and static relative to the robot. Our system
uses the latter approach with a single camera mounted
in the robot’s end effector. This constrains the vi-
sual servoing problem since the sensor directly mea-
sures the relationship between the robot and work-
piece. There is the additional benefit of scaling; as
the robot approaches the target position, the size of
features on the workpiece grows in the image plane.

This work uses the principle of teaching by show-
ing, in which the supervisor shows the system the cor-
rect location by placing the robot in the desired rela-
tive pose to the target. The system then learns this
pose by storing sufficient reference information, cap-
tured whilst in that pose, to characterise the three-



dimensional relationship between the end effector and
the workpiece. This is accomplished by observing one
or more contours located on the surface of the work-
piece. By recording the view of these contours from
the correct target position, any observed deviations
from this view can be detected and corrected for by
appropriate robot motion.

Contours form a particularly useful feature to track
for visual servoing for a number of reasons. Firstly, ad-
vances have been made in the robust tracking of con-
tours such that they can be tracked reliably amongst
clutter [7]. Secondly, an accurate measure of image
motion can be obtained from contours due to the large
number of measurements that can be made by integra-
tion of normal velocities around the contour [8]. Fi-
nally, a planar contour can be readily constrained to
undergo affine or projective deformations. The affine
deformation group, GA(2), has six dimensions and
thus theoretically (and in practice) provides enough
information to guide a robot through space. Since
such motions can be described by the group of rigid
three-dimensional motions, E(3), also having six di-
mensions. The use of the affine/projective constraint
separates this method from previous work using de-
formable models such as [9] which relies on a more
traditional dynamical model of active contours.

The robot control system is based on a Jacobian
between the robot motions and the generators of the
group of deformations of the contour. Properties of
the Lie Algebra of this group are exploited to provide a
consistent representation for integrating general affine
(or other group) deformations to the contour. This ap-
proach allows a single Jacobian, computed once near
the target location, to be used across a large range of
perturbations.

1.2 System Overview

The system comprises two separate threads which
operate concurrently within a workstation which re-
ceives a live video feed from the robot, and communi-
cates directly to the robot controller, as illustrated in
Figure 1.

1) The live video feed is delivered to the affine snake
tracker module which computes a series of local trans-
formations describing the deformation of the contour
of interest. Velocities in transformation space are com-
puted and maintained in order to assist in tracking
rapid motions.

2) The local transformations computed by the affine
snake are integrated using the Lie algebra of affine
transformations to obtain an accurate measure of the
the total transformation describing the current posi-

1 Image processing Locl
» thread affine
; deformation
1 2
Affine Integrate
Snake Affine
Tracker Deformation

Total affine |
deformation

{ Robot control
 thread I

: 4 3
| Compute Closed
| and Condition Loop

Jacobian Control

Figure 1: System architecture

tion of the contour.

3) The integral of affine transformation is passed to
the robot control module which uses an affine-to-robot
Jacobian, together with a non-linear control law to
compute robot motions.

4) The robot control thread also contains a calibra-
tion module which computes and conditions the Ja-
cobian by correlating trial motions of the robot with
integrated deformations of the contour of interest.

2 Lie Groups and Affine Snakes

A Lie group is a group which locally has the
topology of R” everywhere (a more precise definition
may be found in [10, 11]). There are a number of
groups which are interesting for the purposes of this
work and which can be defined by their action on
R? or R®. These are the groups E(3) (Euclidean
transformations in three dimensions), GA(2) (general
affine transformations in two dimensions) and P(2)
(projective transformations in two dimensions). The
dimension n of each group corresponds to the number
of independent ways that a small (infinitesimal)
transformation can be made. For E(3) and GA(2)
this is 6,whereas P(2) has 8 dimensions.

GA(2) is the group of all linear transformations on
two dimensional space. This describes the transfor-
mations that a planar image can undergo when viewed
under weak perspective from a camera moving in three
dimensions. The six dimensions of the group are com-
monly broken down into the differential invariants.
These transformations can be represented by matri-
ces in homogeneous co-ordinates. Those correspond-
ing to pure transformations in each of the six modes



of deformation, parameterised by « are:
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P(2) is the group of all transformations on two dimen-
sional projective space. This group has 8 dimensions
which contain the 6 dimensions of GA(2) as a sub-
group and include two additional dimensions which
produce warping in the image. P(2) describes the
transformations of a planar image under strong per-
spective.
2.1 Vector Fields and Lie Derivatives
The matrices in Equation (1) each describe a con-
tinuous one dimensional family of transformations on
R?, parameterised by a. Thus for each matrix, for
each a, a point (z,y) is mapped to some point (z',y').
Setting a to zero generates the identity transforma-
tion: (z',y') = (z,y). Differentiating with respect to
a and evaluating at o = 0 creates a vector field:
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Since differentiation is a linear operation, writing
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do gives:
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The matrices G; are referred to as generators of
the Lie Group and form a basis for the Lie Algebra
discussed in more detail in Section 3. For GA(2), the
generators are:
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The vector fields, L;, are used to compute the affine
transformation which describes the deformation of a
contour in the robot’s view. This is achieved through
the use of affine snakes. The vector fields generated
by the above matrices are:

2.2 Affine Snakes

In the system presented here, active contours
(snakes) are used to track contours on the workpiece.
These snakes are closed polygons with between 16 and

1024 vertices and are initialised by hand either inside
or outside the contour of interest. The snake then ex-
pands out (or contracts) until strong edges are located
in the image. Once the snake has locked on to these
edges, it becomes constrained to undergo only defor-
mations within some transformation group of interest.

This is achieved by searching for the contour in the
image along the normal to the snake tangent at each
node. This gives the measurement space one degree of
freedom per node on the snake. The measurement is
then projected down onto the subspace defined by the
transformation group of interest using singular value
decomposition to produce a least squares fit. The
transformation group subspace is identified by com-
puting the optical flow created by each generator of
the transformation group at each node of the snake,
in a direction normal to the tangent of the snake at
that node.

The snake tracks the contour using an estimate of
the velocity of deformation of the contour in general
affine transformation space. This is updated using the
measured deviation between the prediction and ob-
served contour to provide a reliable estimate of trans-
formation velocity (see Figure 2). The velocity esti-
mate is then combined with the observed deviation to
predict the position of the contour at the next time
step:

U = B+ (ta - )V} ©)
VP =V + G EP (ta - 1) (7)

where a; are coupling constants chosen so as to damp
oscillatory behaviour in the snake and t2 — t; is the
time elapsed in frames since the previous observation.
This allows the system to cope with missing or inter-
mittent video frames with graceful rather than catas-
trophic failure.

The weak perspective assumption used to compute
the affine deformation of the contour does not entirely
hold in the situation presented here. This means that
if only affine deformations are used to track the con-
tour, the tracker cannot deform to properly match
the shape of the observed contour. Consequently, the
range of deformations is extended to the full projec-
tive group in such a way that the affine component of
the observed deformation is left intact. This indepen-
dence is achieved by computing the warp vector fields
relative to the centroid of the snake. The two addi-
tional vector fields which provide this compensation

are:
he()ne(5)®

where z' and gy’ are relative to the centroid.
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Figure 2: Affine snake system

3 Lie Algebras and Affine Integration
There is a natural representation for affine trans-
formations in terms of matrices in homogeneous co-
ordinates, such as those shown in Equation (1). How-
ever, an alternative is to use a co-ordinate system to
represent small transformations near the identity. In
this co-ordinate system, the axes correspond to the
different modes of deformation and affine transforma-
tions are specified as a weighted sum of the group gen-
erators added to the identity. This leads naturally
to a local vector space representation for infinitesi-
mal transformations, in which an affine transforma-
tion matrix, A can be obtained from a vector, A by

the exponential map:
A = eXi AiGi 9)

1
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For small A4; this can be approximated by the linear
term and the G; form a basis for a vector space, known
as a Lie Algebra. Formally, a Lie Algebra is a vector
space together with a bilinear anti-symmetric opera-
tor, the Lie Bracket, satisfying the Jacobi identity:

[4,[B,C]] +[B,[C, A]| + [C,[A,B]] =0 (10)
Where a Lie Algebra is obtained from a group in the
manner identified above, the Lie Bracket is defined by
the commutator of the generators:

[A,B]=C (11)

where C is defined by

Y AB(GiG; - GiGy) =D GGy (12)
k
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The commutation relations for GA(2) are shown in
Table 1. The infinitesimal representation of the Lie Al-
gebra can be extended by considering the exponential
map for finite transformations. This defines a map-
ping from the Lie Algebra onto the group, thus provid-
ing a convenient way of representing affine transforma-
tions as vectors which, in this scenario, can be used to
drive the robot control system. Because higher order
terms are incorporated into the vector space by this
method, it is no longer possible to naively add vectors
together to obtain a vector representing the compos-
ite transformation. A new addition law must be found
which preserves the non-commutativity of matrix mul-
tiplication so that the sum of two vectors is the vector

G1 G2 G3 G4 G5 GG
Gy 0 0 -G —-Gi —-Gi —-Gs
G2 0 0 G1 —G2 G2 -G1
Gs | G2 -Gy 0 0 2G¢ —2Gs
G4 Gl G2 0 0 2G5 0
Gs | Gt —G2 —2Gs —2Gjs 0 —2G;
G¢ | G2 Gy 2G5 0 2G3 0

Table 1: Commutation relations for GA(2):
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Figure 3: Effect of correction terms on integral

representing the true product of the transformations.

Thus A=B+C
implies exi AiGi — o3 BiGi g3l CiGi

writing A = 3. A;G;, (B,C similarly) gives

T+A+3A%+...
=(I+B+iB*+...)I+C+1iC*+...)

this is solved by setting

A= B+C+%[B,C]+ [C - B,[B,C]] +...
(13)

This expression carries over into the Lie Alge-
bra, replacing the matrix commutator with the Lie
Bracket. This result is important because the correc-
tion terms provide a method of consistently adding to-
gether vectors which represent group transformations.

This can then be used to integrate a series of affine
deformations, so that the integral faithfully represents
the total deformation. Figure 3 illustrates the impor-
tance of including these correction terms in the inte-
gral to track a complex series of transformations.

One of the key advantages of this representation (as
opposed to parameterising in terms of the elements of
the matrix in homogeneous co-ordinates, for example)
is that straight lines through the origin of the vector
space are geodesics in the manifold of the Lie Group.
It is this property that allows a Jacobian computed in
one place to operate correctly across a large range of
perturbations.

4 Robot Control

The robot control thread takes the integral of affine
transformation in the form of a 6-vector and uses a
Jacobian to generate robot motions. This Jacobian
is computed from a series of trial robot motions per-
formed in the vicinity of the target location. Each of
the six possible robot motions produces in a vector of
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Figure 4: Computing the control Jacobian

integrated deformation, resulting in a 6 x 6 motion-to-
affine Jacobian. This is inverted using SVD to com-
pute the affine-to-motion Jacobian (see Figure 4).
This inverse Jacobian can then be used to compute
compensatory motion from the observed integral of
affine deformation. The control law is then simply:

AR; = —J;;* A; (14)

where AR is the desired change in robot joint angles,
J~1 is the affine-to-motion Jacobian and A is the in-
tegrated total affine transformation.

5 Results and Discussion

This approach has been implemented in the lab us-
ing a SCORBOT ER VII 5 DoF robot arm with a
monochrome video camera connected to an SGI O2
workstation (see Figure 7). The workstation is able to
track up to 256 snake nodes at video frame rate and
control the robot with a cycle time of 0.5 — 1.5 seconds.
The viewing distance when in the target position was
200mm. Because the robot has only five degrees of
freedom, the sixth was synthesised as rotation about
the optical axis of the camera.

Three sets of experiments were conducted, in which
first the part was perturbed, secondly the robot was
perturbed and finally closed loop tracking was tested.

The first experiment aimed to test the range of pos-
sible perturbations of the workpiece from target posi-
tion. The experiment was conducted by moving the
robot back away from the target position to a pre-
set starting position. The part was then perturbed
and the robot asked to servo back to the target loca-
tion. The translational perturbation was limited by
the requirement to keep the contour within the image
boundary, resulting in a maximum of approximately
200mm translational perturbation in x, y and z. The
maximum rotational perturbation of the angle of in-
clination of the plane was limited to 20° about a ref-
erence angle of § = 40° with a limit of 40° about the
horizontal axis perpendicular to it (see Figure 5).
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This experiment has been repeated using the range
of contours shown in Figure 6. Contours 1-9 in this
set represent an evolving series in which only contours
8 and 9 were sufficiently degenerate to prevent sta-
ble servoing. Contours 10 and 11 are almost trian-
gular, and therefore exhibit degeneracy with respect
to strong perspective distortions but are still stable
under general affine tracking. Contours 1 and 12 pro-
vided the most stable results. The reference angle,
0, was also varied and the system was found to servo
successfully with 10° < 8 < 70° although the range of
permissible perturbations was limited at the extreme
ends of this range.

The second experiment aimed to test the accuracy
of placement of the robot under visual servoing. The
workpiece was left fixed, and the robot asked to servo
back to the target position from a series of random
starting positions. The accuracy of positioning (1
standard deviation) of the camera in this experiment
was +0.65mm in x and y and 0.3mm in z with 0.15°
in both pitch and roll. The maximum error measured
at the tool tip over a series of runs was lmm, with
almost all errors being less than 0.5mm. This is of
higher accuracy than the camera positioning due to
correlations in the position and rotation errors.

The convergence rate was also computed, with the
mean time to convergence being 2.5 cycles after the
robot has reached its non-linear control zone.

Finally, closed loop tracking was tested (see Figure
7) which aimed to test the range of acceptable per-
turbations that can be tracked gradually under closed
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Figure 6: Range of contours used

Figure 7: Closed loop visual servoing

loop. In this mode substantial perturbations extend-
ing to approximately twice those shown in Figure 5
were successfully tracked.

A cknowledgements

This work was supported by an EC (ESPRIT) grant
no. LTR26247 (VIGOR) and by an EPSRC grant no.
K84202.

References
[1] M. Kass, A. Witkin, and D. Terzopoulous. Snakes: Ac-
tive contour models. International Journal of Computer
Vision, 1(4):321-331, 1988.
[2] A.C. Sanderson, L.E. Weiss, and C.P. Neumann. Dynamic
sensor based control of robots with visual feedback. IEEE
Journal of Robotics and Automation, 3:404-417, 1987.

[3] B. Espiau, F. Chaumette, and P. Rives. A new approach
to visual servoing in robotics. IEEE T-Robotics and Au-
tomation, 8(3), 1992.

[4] R.Basri, E. Rivlin, and I. Shimshoni. Visual homing: Surf-
ing on the epipoles. In Proceedings of International Con-
ference on Computer Vision (ICCV ’98), pages 863869,
1998.

[5] W.J. Wilson, C.C. Williams Hulls, and G.S. Bell. Relative
end-effector control using cartesian position based visual
servoing. IEEE T-Robotics and Automation, 12(5):684—
696, 1996.

[6] S. Hutchinson, G.D. Hager, and P.I. Corke. A tutorial on
visual servo control. IEEE T-Robotics and Automation,
12(5):651-670, 1996.

[7] M.A. Isard and A. Blake. Visual tracking by stoachastic
propagation of conditional density. In Proceedings of the
4th European Conference on Computer Vision, pages 343—
356, 1996.

[8] R. Cipolla and A. Blake. Image divergence and deforma-
tion from closed curves. International Journal of Robotics
Research, 16(1):77-96, 1997.

[9] P.A. Couvignon, N.P. Papanikolopoulos, M. Sullivan, and
P.K. Khosla. The use of active deformable models in
model-based robotic visual servoing. Journal of Intelligent
and Robotic Systems, 17(2):195-221, 1996.

[10] V.S. Varadarajan. Lie Groups, Lie Algebras and Their
Representations. Number 102 in Graduate Texts in Math-
ematics. Springer-Verlag, 1974.

[11] D.H. Sattinger and O.L. Weaver. Lie groups and algebras
with applications to physics, geometry, and mechanics.
Number 61 in Applied Mathematical Sciences. Springer-
Verlag, 1986.



