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Abstract

In this paper, we show that a hierarchical Bayesian modelling approach to sequen-
tial learning leads to many interesting attributes such as regularisation and automatic
relevance determination. We identify three inference levels within this hierarchy, namely
model selection, parameter estimation and noise estimation. In environments where
data arrives sequentially, techniques such as cross-validation to achieve regularisation or
model selection are not possible. The Bayesian approach, with extended Kalman filtering
at the parameter estimation level, allows for regularisation within a minimum variance
framework. A multi-layer perceptron is used to generate the extended Kalman filter
nonlinear measurements mapping. We describe several algorithms at the noise estima-
tion level, which allow us to implement adaptive regularisation and automatic relevance
determination of model inputs and basis functions. An important contribution of this
paper is to show the theoretical links between adaptive noise estimation in extended
Kalman filtering, multiple adaptive learning rates and multiple smoothing regularisation
coefficients.



Contents

Introduction

State Space Models, Regularisation and
Bayesian Inference

Hierarchical Bayesian Sequential Modelling

Parameter Estimation

4.1 Linear-Gaussian Estimation . . . . . . . . ... . .. ... ... ... ... .
4.2 The Extended Kalman Filter . . . . . . .. .. ... .. .. ... . .......
4.3 Training MLPs with the EKF . . . . . . ... ... . ... ... ... ...

Noise Estimation and Regularisation

5.1 Adaptive Distributed Learning Rates and Kalman Filtering . . . ... ... ..

5.2 Sequential Bayesian Regularisation with Weight Decay Priors . . . . . . . . ..

5.3 Sequential Evidence Maximisation with Sequentially Updated Priors . . . . . .
5.3.1 Scalar process noise estimation . . . . . ... ... Lo
5.3.2 Scalar measurement noise estimation . . . . . . ... ... oL
5.3.3 Multiple noise hyper-parameters estimation . . . . . ... ... ... ..

Automatic Relevance Determination

Experiments

7.1 Experiment 1: Comparison Between the Various Noise Estimation Methods . .

7.2 Experiment 2: Sequential Evidence Maximisation with Sequentially Updated
Priors . . . . . e e e e e e e e e e

7.3 Experiment 3: Automatic Relevance Determination. . . . . . .. .. ... ...

7.4 Application: Pricing Financial Options . . . . . . . . .. ... ... ... ....

Conclusions
Acknowledgements

Bayesian Derivation of the Kalman Filter

A.1 Prior Gaussian Density Function . . . . . ... ... .. ... ... .......
A.2 Evidence Gaussian Density Function . . . . .. ... ... ... .. .......
A.3 Likelihood Gaussian Density Function . . . .. ... ... ... .........
A.4 Posterior Gaussian Density Function . . . . . . ... ... ... ... ...

Computing Derivatives for the Jacobian Matrix

ii

17

18
18

20
21
22

24

25

25
25
26
26
26

27



1 Introduction

Sequential training of neural networks is important in applications where data sequences either
exhibit non-stationary behaviour or are difficult and expensive to obtain before the training
process. Scenarios where this type of sequence arise include time series forecasting, tracking
and surveillance, control systems, fault detection, signal and image processing, communica-
tions, econometric systems, demographic systems, geophysical problems, operations research
and automatic navigation.

Although “different” regularisation techniques are being spawned at an almost alarming
rate in the machine learning literature, they are all based on the same assumption. That is,
they all assume that the process generating the data obeys certain smoothness constraints.
In other words, for small changes in the model input data, we expect small variations in the
outputs. Regularisation is the simplest and yet one of the most useful forms of incorporating
a priori knowledge (smoothness) in model selection.

In addition, most of the proposed regularisation techniques have been targeted at scenar-
ios where the data can be processed in batches. Regularisation in sequential environments
has not enjoyed much attention. When data arrives sequentially, conventional techniques
such as cross validation for regularisation or model selection, and bootstrapping to deal with
model uncertainty, are inapplicable. In this paper, we show how, starting from a Bayesian
derivation of the extended Kalman Filter (EKF), several ideas can be developed to deal with
regularisation, model selection and automatic relevance determination (ARD) in sequential
environments.

One of the main purposes of this report is to show several interesting mathematical cor-
relations between the problems of adaptive filtering, regularised error functions and adaptive
learning rates. In the late sixties, Jazwinski (Jazwinski 1969, Jazwinski and Bailie 1967)
proposed an algorithm for adaptive Kalman filtering based on the maximisation of the prob-
ability density function of the new data given all the past data (evidence probability density
function). His algorithm employed adaptive noise parameters. In the early nineties, Sutton
(Sutton 1992a, Sutton 1992b) showed for linear networks that distributed adaptive learning
rates can be used to improve conventional error back-propagation. We extend Sutton’s ideas
to nonlinear neural networks and relate them to other learning paradigms. Also in the early
nineties, Mackay (Mackay 1992) introduced a method for estimating multiple regularisation
coeflicients, previously known in the Bayesian literature, to the neural network field. His
method was also based on maximising the evidence density function. In this work, we show
that multiple adaptive regularisers, adaptive process noise parameters and adaptive learning
rates are mathematically equivalent.

Intuitively, imagine we are trying to descend on a landscape with numerous peaks and
troughs. If we want to reach a low trough in an efficient manner, we have to avoid the
upper troughs without having to spend too much energy in doing so. Three options arise: we
can descend efficiently by varying our speed (adaptive learning rates), by jumping while we
descend (adaptive noise estimation) or by smoothing the whole landscape before we attempt
to descend (smoothing error functions).

In this paper, we focus on regression tasks. Nonetheless, the results may be easily ex-
tended to online classification. In Section 2, we present an overview of the sequential learning
problem. In particular, we discuss state space modelling, optimal Bayesian inference and the
minimum variance estimation framework as a regularisation approach to sequential learning.
Section 3 describes the sequential learning task within a three-level hierarchical Bayesian
structure. The three levels of inference adopted correspond to a noise estimation level, a pa-
rameter estimation level and a model selection level. In Section 4, we propose a solution to the



parameter estimation level based on the application of the extended Kalman filter to neural
networks. Section 5 is devoted to the noise estimation level and the regularisation/tracking
dilemma. It describes several algorithms for noise estimation and regularisation, including
adaptive distributed learning rates, adaptive smoothing regularisers and adaptive noise es-
timation. Section 6 discusses the topic of automatic relevance determination of inputs and
basis functions. Finally, we present our results in Section 7 and point out several areas for
further research in Section 8.

2 State Space Models, Regularisation and
Bayesian Inference

To study the many sequential processes manifested in the real world, we need to create
abstractions or models that capture the essence of these processes. State space models provide
a suitable representation:

Wipr = fio(wi) +di (1)
Ve = 8k(Wi,Xik) + Vi (2)

where k denotes the discrete time index. The output measurements of the system (y, € ®™)
depend on a nonlinear, multivariate, time-varying function of the system inputs (xx € R9)
and a set of states (wy € R4). In this work we assume that the states correspond to the
model parameters. However, it is possible to incorporate other variables, for example the
model outputs, into the state vector.

The measurements nonlinear mapping gy (.) is approximated by a multi-layer perceptron
(MLP) whose weights are the model parameters w. Nonetheless, the work may be easily
extended to encompass recurrent networks, radial basis networks and many other approxima-
tion techniques. The measurements are assumed to be corrupted by noise vy, which in our
case we model as zero mean, uncorrelated noise with covariance Ry. It is possible to extend
the work to other noise models such as correlated and coloured noise.

We model the evolution of the model parameters by assuming that they depend on a
deterministic component fi (wy) and a stochastic component dy,. The process noise dy may
represent our uncertainty on how the parameters evolve, modelling errors or unknown inputs
such as target manoeuvres. We assume the process noise to be zero mean with adaptive
covariance Q. In addition, we assume no knowledge of the drift function fi(.), that is the
parameters are generated by a first order Markov process W1 = Wi + di. In certain appli-
cations, such as image tracking (Reynard, Wildenberg, Blake and Marchant 1996) and speech
enhancement (Niranjan, Cox and Hingorani 1994), we may know the equations governing the
evolution of a subset of the states. In such scenarios, the drift function may be modelled for
that particular subset of states, while the remaining states are assumed to obey a first order
Markov process.

Note that because the covariance of the process noise dix is estimated adaptively, the
evolution of the states may be described by a nonlinear trajectory. This way, we avoid
the problem of having to estimate fi(wy). We have proven that the drift function may be
estimated via extended Kalman smoothing and the EM algorithm (de Freitas, Niranjan and
Gee 1998). However, the approach is only applicable to stationary environments. In this
paper, we favour the approach of estimating the noise covariances because it will lead us to
an elegant framework for regularisation and automatic relevance determination in sequential
learning.

The sequential learning problem involves estimating the model parameters wy, estimating
noise models and selecting the right model on the basis of a set of past measurements Y; =
{y1, ¥2, -+, ¥x}.- The problem of estimating wy given Y is called the smoothing problem if
k < 7; the filtering problem if k¥ = 7; or the prediction problem if k¥ > 7 (Gelb 1974, Jazwinski



1970). In the filtering problem, the estimate Wy can be used to predict future values of the
output.

In non-stationary environments we should favour the filtering approach to generate models
of the sequential process being studied. In stationary environments, however, we only require
to train the model until its performance is acceptable and, subsequently, we can let the model
operate without further training. In the latter case, it needs to be emphasised that models
for describing dynamical systems should be structured so as to account for time-dependent
behaviour. Examples of models that conform to this requirement include ARMA models,
recurrent networks and networks with tapped delay lines. In stationary environments, the
smoothing approach, with forward and backward filtering, produces better estimates than
plain forward filtering.

For optimality reasons, we want wj, to be an unbiased, minimum variance and consistent
estimate (Gelb 1974), where:

e An unbiased estimate is one whose expected value is equal to the quantity being esti-
mated.

e A minimum variance (unbiased) estimate is one that has its variance less than or equal
to that of any other unbiased estimator.

e A consistent estimate is one that converges to the true value of the quantity being
estimated as the number of measurements increases.

The minimum variance estimation framework leads to smooth estimates for the parameters
and model outputs. Accordingly, it constitutes a regularisation scheme for sequential learning.

The uncertainty in the model parameters and measurements leads naturally to a proba-
bilistic treatment of the problem. In addition, the sequential learning nature of the problem
motivates a Bayesian framework whereby our prior belief about the unknown quantities is
improved each time new data arrives. That is, the unknown quantities are described by prob-
ability density functions, whose widths indicate the range of values that are consistent with
the prior information and the new data (Jaynes 1986).

The conditional probability density function of wy given Y}, (p(wi|Yy)) constitutes the
complete solution of the estimation problem (Bar-Shalom and Li 1993, Ho and Lee 1964,
Jazwinski 1970). This is simply because p(wy|Yx) embodies all the statistical information
about wy given the measurements Y} and the initial condition wy. The estimate Wy can be
computed from p(wy|Yx) according to any of the following criteria:

MAP estimation : Maximise the probability such that the solution is the largest mode
(peak) of p(wy|Yy). For uniform fixed priors, the resulting solution is the maximum
likelihood estimate.

Minimum variance estimation : Minimise the integral error [ ||wi — Wi|[*p(Wi|Yi)dwi
so that the estimate corresponds to the expected value or conditional mean E[wi|Yy].

Minimax estimation : Minimise the maximum of |w — W| so that the estimate is the
median of p(wy|Yy).

The criteria are illustrated in Figure 7. As discussed above, the minimum variance estimate
is the quantity of interest in our approach.
The Bayesian solution to the optimal estimation problem is given by (Ho and Lee 1964):

P(Wki1, Yit1|Yi)
P(¥ict1|Yi)
J P(¥ir1|Yie, Wi 1) (Wi g1 [ Wi ) p(wi [ Yy ) dwye 3)
J [ p(ie1[Yie, Wit 1) P(Wie 1 [Wie) p (Wi | Yie ) d Wiy 1 dwic

P(Wit1|Yi41)
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Figure 1: Estimation criteria based on the conditional density function of the model param-
eters.

where the integrals run over the parameter space.

The functional integral difference equation governing the evolution of the posterior density
function (equation (3)) is not suitable for practical implementation (Bar-Shalom and Li 1993,
Jazwinski 1970). It involves propagating a quantity (the posterior density function) that
cannot be described by a finite number of parameters.

Two alternative routes have been proposed to surmount this problem, namely sampling
techniques (Black and Reed 1996, Carter and Kohn 1994, Isard and Blake 1996) and Gaussian
approximations (Bar-Shalom and Li 1993, Ghahramani and Jordan 1995). Sampling methods
require extensive computational resources. Gaussian approximations are less computation-
ally demanding, but suffer from several drawbacks, especially when the probability density
function being approximated has a large number of modes.

In this particular work we adopt the use of Gaussian approximations because they provide
an elegant unified treatment of the problems of regularisation, sequential learning and model
selection. In addition, several successful applications of Gaussian approximations for neural
networks in the automotive industry have been registered (Puskorius and Feldkamp 1991,
Puskorius, Feldkamp and Davis 1996).

As mentioned above, the implementation of the optimal estimator involves a functional
recursion and is therefore of limited feasibility. The situation for linear-Gaussian state space
models is vastly simpler. There the mean and covariance are sufficient statistics for describing
the Gaussian posterior density function. In addition, the state can be computed in an optimal
fashion with the Kalman filter (Anderson and Moore 1979, Bar-Shalom and Li 1993, Gelb
1974, Jazwinski 1970). This motivates an approach based on Gaussian approximations that
employs linear approximations about the current estimates. These two approximations lead
to the formulation of the well known extended Kalman filter (EKF).

We show in this paper that, within a hierarchical Bayesian inference framework, the EKF
constitutes the solution to the parameter estimation level. It, however, does not constitute
the solution to the entire inference process.

3 Hierarchical Bayesian Sequential Modelling

To represent a particular sequential process, we need to infer the model parameters, noise
covariances and the likelihood of a particular model. This inference problem may be formu-



lated in terms of three hierarchical hypothesis spaces. In each space, probabilities for each
quantity are defined in terms of Bayes rule:
Likelihood
Posterior = ———  Prior
Evidence
We adopt the philosophical stance of representing the state of knowledge about the pa-
rameters, noise covariances and model choice within a hierarchical Bayesian framework. The
notion of hierarchical probabilistic modelling and inference permeates throughout most areas
of human endeavour, including physics, philosophy and mathematics.
We propose the following inference levels:
Level 1: Parameter estimation

P(¥k+1|Wit1, Mj, Ric, Qk)
P(¥k+1| Yk, Mj, R, Qi)

P(Wit1|Yiq1, Mj, Ry, Q) = P(Wiet1|Yie, Mj, R, Qi) (4)

Level 2: Noise estimation

P(Yit1|Yx, Mj, Ry, Qi)

Y; = Y., M;
P(Ri, Qr|Yrs1) et [Ye, M) (R, Qr|Ye, M) (5)
Level 3: Model selection
P(Yict1|Yie, Mj
p(M;[Vey1) = BV M) s 6)

P(¥Vict1|Yi)

where M represents the j-th model. It should be noticed that the likelihood function at a
particular level constitutes the evidence function at the next higher level. Therefore, by max-
imising the evidence function in the parameter estimation level, we are, in fact, maximising
the likelihood of the noise covariances Ry and @Q)j as the new data arrives. This result shall
play an important role when we devise methods for estimating the noise covariances.

At the parameter estimation level, we shall apply the EKF algorithm to estimate the
weights of a multi-layer perceptron. The EKF, however, requires knowledge of the noise
covariances. To overcome this difficulty, in Section 5, we present techniques for estimating
these covariances in slowly changing non-stationary environments. In environments where the
noise statistics change rapidly, we shall favour the implementation of dynamic mixtures of
models with different noise covariances (Li and Bar-Shalom 1994). This remark brings us to
the topic of model selection. Model selection can be formulated in two ways; dynamic model
selection and static model selection.

In static model selection, the model assumed to be valid throughout the entire process is
one of r hypothesised models. That is, we start with » models and compute which model
describes the sequential process most accurately. The remaining models are, subsequently,
discarded. In dynamic model selection, one particular model out of a set of r operating models
is selected during each estimation step. Dynamic mixtures of models are far more general
than static mixtures of models. However, in stationary environments, static mixtures are
obviously more adequate. Dynamic mixtures of models correspond to a generalised version of
hidden Markov models (Li and Bar-Shalom 1994). Mixtures of models are not covered here.

4 Parameter Estimation

In this section, we tackle the problem of estimating the model parameters. We start with a
Bayesian derivation of the Kalman filter in the linear-Gaussian case and extend the approach
to the nonlinear-Gaussian scenario. Subsequently, the application of the EKF algorithm to
train multi-layer perceptrons (MLPs) is expounded.



4.1 Linear-Gaussian Estimation

If we simplify our state space representation (equations (1) and (2)) to the following linear
Gauss-Markov process

Wit1 = Wi +dg W)
Y = Hpwi+ vy, (8)

it is possible to apply Bayes rule to estimate the posterior density function for the model
parameters after the new data arrives.

Since the prior, evidence and likelihood are Gaussian and the system is linear, the posterior
will also be Gaussian. This implies that in order to update the estimator we only need to
know two quantities, namely the mean and the covariance of the conditional density function.
This follows from the fact that the mean and covariance are sufficient statistics to describe
a Gaussian process. An additional consequence of having a Gaussian posterior, is that the
minimax, minimum variance and maximum a posteriori estimates will be identical.

Under the assumptions that the state space model noise processes are uncorrelated with
each other and the initial estimates of the parameters wy and their covariance matrix P,
we can model the prior, evidence and likelihood functions as follows (Anderson and Moore
1979, Candy 1986, Ho and Lee 1964) (see also Appendix A):

Prior = P(Wit1| Yk, Mj, Ric, Q) ~ N (Wi, Py + Qx) 9)

Evidence = P(¥kt1|Yie, Mj, Ric, Qi) ~ N (Hicy 1 Wie, Hiep1 (Pic + Que)Hiy 1 + Ricy1) (10)
Likelihood = P(¥i+1[Wit1, M, Ric, Qi) ~ N (Hicp-1Wict1, Ric1) (11)

where P corresponds to the covariance of the model parameters and the symbol T denotes
the transpose of a matrix.
Substituting equations (9), (10) and (11) into (4), yields the optimal Bayes estimate:

1 . _ N
P(Wict1 [ Yier1, M, Rie, Qi) = A1 exp ( —5(Wic1 — Wit 1)Pity (Wi — Wipn) ) (12)
where the coefficients Ay, are represented by the following expression:

|Hyr1(Po + Qr)HE,y + Riya|'/?
(27)9/2| Rpy1 |V/2| Py, + Q|72

Apy1 =

and Wy41 and P41 are given by:

Wit1 = Wi+ Kit1(Vier1 — Her1 W) (13)
Piy1 = P+ Qr— Kpp1Hip1(Pr + Qp) (14)

where K, is known as the Kalman gain:
K1 = (Pe + Qi) H 1 [Rir1 + Hyr (Pe + Qi) Hi ]! (15)

Equations (13), (14) and (15) correspond exactly to the Kalman filter equations (Bar-Shalom
and Li 1993, Gelb 1974, Ho and Lee 1964). Alternatively, the Kalman filter equations may be
derived by adopting the minimum variance approach. That is, by minimising the following
cost functional (Gelb 1974):

Jk = trace (Pk) (16)

The Kalman filter algorithm may be easily implemented by computing K, w and P recursively.
This is shown in the predictor-corrector form in Figure 2.
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Figure 2: Extended Kalman filter predictor-corrector representation.

4.2 The Extended Kalman Filter

In view of the simplicity and versatility of the Kalman filter, it would be desirable to have
a framework for nonlinear estimation similar to the one for linear-Gaussian estimation. The
extended Kalman filter (EKF) constitutes an attempt in this direction (Bar-Shalom and
Li 1993, Gelb 1974). The EKF is a minimum variance estimator based on a Taylor series
expansion of the nonlinear function g(w) around the previous estimate. That is,

BW) = B(W) + 05 | gy (w W) 4 -

The EKF equations for a linear expansion are given by:

Kit1 = (Po+ Qu)Grtr[Ri + Grpq (P + Qi) Gryr] ™ (17)
Wirt = Wi+ Kpp1(Ye1r — kg1 (Wi, Xi)) (18)
Piy1 = Po+Qr— Ki1Giyy (Pe + Q) (19)

In the general multiple input, multiple output (MIMO) case, g € R™ is a vector function
and G represents the Jacobian matrix:

og1 9g2 ... 08m T
owq w1 Ow1
og1
_ ag _ BWZ
G =g | w=w) = : :
Og1 . 08m
Owgq Owg

Since the EKF is a suboptimal estimator based on linearisation of a nonlinear mapping, w
is only an approximation to the expected value and, strictly speaking, Pj is an approximation
to the covariance matrix. It is also important to point out that the EKF may diverge as
a result of its inherent approximations. The consistency of the EKF may be evaluated by
means of extensive Monte Carlo simulations (Bar-Shalom and Li 1993).

The EKF provides a minimum variance Gaussian approximation to the posterior proba-
bility density function. In many cases, p(wi|Yk) is a multi-modal (several peaks) function. In
this scenario, it is possible to use a committee of Kalman filters, where each individual filter
approximates a particular mode, to produce a more accurate approximation (Bar-Shalom and
Li 1993, Blom and Bar-Shalom 1988, Kadirkamanathan and Kadirkamanathan 1995, Kadirka-
manathan and Kadirkamanathan 1996). The parameter covariances of the individual estima-
tors may be used to determine the contribution of each estimator to the committee. In



addition, the parameter covariances serve the purpose of placing confidence intervals on the
output prediction.

The immediate availability of confidence intervals and of mixing coefficients, required
to generate mixtures of models, has motivated us to train neural networks with the EKF
algorithm.

4.3 Training MLPs with the EKF

One of the earliest implementations of EKF trained MLPs is due to Singhal and Wu (Singhal
and Wu 1988). In their method, the network weights are grouped into a single vector w
that is updated in accordance with the EKF equations. The entries of the Jacobian matrix
are calculated by back-propagating the m output values {y;(t), y2(t),- - -, ¥m(t)} through the
network. An example of how to do this for a simple MLP is presented in Appendix B.

The algorithm proposed by Singhal and Wu requires a considerable computational effort.
The complexity is of the order mg? multiplications per estimation step. Shah, Palmieri
and Datum (Shah, Palmieri and Datum 1992) and Puskorius and Feldkamp (Puskorius and
Feldkamp 1991) have proposed strategies for decoupling the global EKF estimation algorithm
into local EKF estimation sub-problems. For example, they suggest that the weights of each
neuron could be updated independently. The assumption in the local updating strategies is
that the weights are decoupled and, consequently, P is a block-diagonal matrix.

The EKF is an improvement over conventional MLP estimation techniques, such as on-
line back-propagation, in that it makes use of second order statistics (covariances). These
statistics are essential for placing error bars on the predictions and for combining separate
networks into committees of networks. As a matter of interest, it has been proven elsewhere
that the back-propagation algorithm is simply a degenerate of the EKF algorithm (Ruck,
Rogers, Kabrisky, Maybeck and Oxley 1992).

However, the EKF algorithm for training MLPs suffers from serious difficulties, namely
choosing the initial conditions (wg, Pg) and the noise covariance matrices R and Q. In our
work we place more emphasis on the problem of automatically estimating the noise covari-
ances. To initialise the weights and their covariances we make use of a maximum likelihood
method (Levenberg-Marquardt optimisation (More 1977)). This prior is subsequently im-
proved with the EKF recurrent algorithm.

5 Noise Estimation and Regularisation

A well known limitation of the Kalman-Bucy filter (Kalman and Bucy 1961) and the extended
Kalman filter, is the assumption of known a prior: statistics to describe the measurement and
process noise. In many applications, it is not straightforward to choose the noise covariances
(Jazwinski 1970). In addition, in environments where the noise statistics change with time,
such an approach can lead to large estimation errors and even to a divergence of errors.

Several researchers in the estimation, filtering and control fields have attempted to solve
this problem (Jazwinski 1969, Li and Bar-Shalom 1994, Mehra 1970, Mehra 1971, Mehra
1972, Myers and Tapley 1976, Tenney, Hebbert and Sandell 1977). Mehra (Mehra 1972) and
Li and Bar-Shalom (Li and Bar-Shalom 1994) have written brief surveys on this topic. In
our work we make use of these results, from the adaptive estimation field, to improve the
existing algorithms for training neural networks with the EKF algorithm (Kadirkamanathan
and Niranjan 1992, Kadirkamanathan and Niranjan 1993, Puskorius and Feldkamp 1991,
Puskorius and Feldkamp 1994, Puskorius et al. 1996, Shah et al. 1992, Singhal and Wu 1988,
Williams 1992). We achieve this in a principled manner by adhering to a hierarchical Bayesian
methodology. In doing so, we are able to place some of the heuristic algorithms in the
estimation field within a proper theoretical framework. Furthermore, this framework serves
to unify important results concerning regularisation and the training of neural networks.



It is important to note that algorithms for estimating the noise covariances within the
EKF algorithm can lead to a degradation of the performance of the EKF. By increasing
the process noise covariance @), the Kalman gain also increases, thereby producing bigger
changes in the weight updates (refer to equations (13) and (15)). That is, more importance is
placed on the most recent measurements. Consequently, it may be asserted that filters with
adaptive process noise covariances exhibit adaptive memory.

Additionally, as the Kalman gain increases, the bandwidth of the filter also increases (Bar-
Shalom and Li 1993). Therefore, the filter becomes less immune to noise and outliers. The
amount of oscillation in the model prediction clearly depends on the value of the process noise
covariance. As a result, this covariance can be used as a regularisation mechanism to control
the smoothness of the prediction.

It is important to keep in mind that when designing algorithms for updating the noise
covariances, we should beware of not degrading the performance of the parameter estimation
algorithm. This problem is also encountered in Bayesian methods for inverse problems, for ex-
ample image reconstruction (Sibisi 1989) and neural networks (Mackay 1992, Mackay 1994b),
where the regularisation coefficients are computed automatically from batches of data. An
underlying requirement for updating the noise covariances without degrading the performance
of the parameter estimation algorithm, is that the convergence of the parameter estimator
to an acceptable solution should be faster than the variation of the noise statistics (Jazwin-
ski 1969, Li and Bar-Shalom 1994). As mentioned in Section 3, for rapidly changing noise
statistics mixtures of models with different noise statistics should be employed.

Subsequently, we present three alternative methods for updating the noise covariances,
namely multiple back-propagation, sequential evidence maximisation with weight decay pri-
ors and sequential evidence maximisation with updated priors. The multiple back-propagation
method allows us to establish a theoretical connection between back-propagation with adap-
tive distributed learning rates and Kalman filtering. It has the advantage of being a compu-
tationally efficient algorithm for improving the computational speed of Kalman filtering.

The evidence maximisation technique with weight decay priors will serve to illuminate the
relationship between smoothing regularisers and adaptive noise covariances. Finally, the se-
quential evidence maximisation with updated priors will be appropriate for illustrating various
issues including the regularisation/tracking dilemma and automatic relevance determination
of network inputs and basis functions.

5.1 Adaptive Distributed Learning Rates and Kalman Filtering

The work of Richard Sutton with linear networks (Sutton 1992a, Sutton 1992b) sheds light
on the relationship between adaptive distributed learning rates in gradient descent algorithms
and adaptive Kalman filtering. To merely simplify the exposition, without loss of generality,
we shall restrict our explanation of this topic to a linear network with a single neuron. Later,
we extend the ideas to nonlinear networks. Consider the following linear mapping:

Y = Z xgj)w,(:) + v

where xgj) indicates the i-th input to the network at the k-th estimation step, w,(f) the network
weights and v a white noise sequence.

In its simplest form, gradient descent updates are computed according to the following
equation: ' . .
DW= + iy — gi)ey
where 7 represents a learning rate parameter. An obvious improvement on this algorithm is

to adapt the learning rates for each weight (Jacobs 1988, Sutton 1992a). That is,

7f’l(c?rl = ﬁ’l(ci) + 771(:) (yr — Z)k)wff)



If we compare the above equation with the Kalman filter equation for updating the same

network T
(Pr + Qr)x;,
Rit1 + Xk (Pr + Qr)x}

we find that the adaptive distributed learning rate corresponds to the following adaptive
distributed term in the Kalman filtering framework:

n = (Px + Q)
Rict1 + Xk (P + Qu)xf

Wiyl = Wi + (yx — Ur),

The above result indicates that the problem of sequentially updating the learning rates
in gradient descent algorithms and the problem of updating the process noise covariances in
Kalman filtering are equivalent.

Sutton (Sutton 1992b) has proposed a gradient descent approach for updating the Kalman
filter equations. The aim of his method was to reduce the computational time at the expense
of a small deterioration in the performance of the estimator. Another important aspect of
Sutton’s algorithm is that it circumvents the problem of choosing the process noise covariance
@. To understand how this is done, we need to write the Kalman filter equations in the
following format (Gelb 1974):

Kit1 = PoeH{ [Riyr + Hopn PeH
Wit1 = Wi+ K1 (Yper — Hip1Wy)
Poyw = P+ Qi — Kpr1Hyy1 Py

In this format, only the parameters’ covariance update equation depends on (). Sutton elimi-
nates the problem of choosing @) by updating P with a variation of the least-mean-square rule
(Jacobs 1988, Sutton 1992a). More specifically, Sutton’s technique involves approximating P
with a diagonal matrix, whose i-th diagonal entry is given by:

pii = exp(0;)

where (; is updated by the least-mean-square rule modified such that the learning rates for
each parameter are updated sequentially. The diagonal matrix approximation to P implies
that the model parameters are uncorrelated. This assumption may, of course, lead to poor
results.

To circumvent the problem of choosing the process noise covariance () when training
nonlinear neural networks, while at the same time increasing computational efficiency, it is
possible to extend Sutton’s algorithm to the nonlinear case. In doing so, the weights covariance
matrix is approximated by a diagonal matrix with entries given by:

Pgq = €xp(By)

where 3 is updated by error back-propagation. That is

Bopy = Bk + ndirojk output layer
* Bk + Nwijk6ik0jr (1 — 0jr)Tar  hidden layer

where the index 7 corresponds to the i-th neuron in the output layer, j to the j-th neuron in
the hidden layer, d to the d-th input variable and & to the estimation step. §;; represents the
k-output error for neuron ¢. The symbols o; and 7 denote the output of the i-th neuron in layer
1 and the learning rate respectively. This learning rate is a parameter that quantifies another
parameter P;. We shall refer to it as a hyper-parameter. We have found, in practice, that
choosing this hyper-parameter is easier than choosing the process noise covariance matrix.
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In a similar fashion to the linear case, the Kalman gain K} and the weights estimate Wy,
are updated using the following extended Kalman filter equations:

Kit1 = PiyGiy1[Rir + GE 1 PiGrya] ™!

Wit1 = Wi+ K1 (Yir1 — i1 (Wi, Xie1)),

while the weights covariance P is updated by back-propagation.

5.2 Sequential Bayesian Regularisation with Weight Decay Priors

A further improvement on the EKF algorithm for training MLPs would be to update R and
@ automatically at each estimation step. This can be done by borrowing some ideas from
the Bayesian estimation field. In particular, we shall attempt to link the work on Bayesian
estimation for neural networks (Mackay 1992, Mackay 1994b) and inverse problems (Sibisi
1989) with the EKF estimation framework. This theoretical link should serve to enhance
both methods. To pave the way for linking these methods, we shall briefly discuss David
Mackay’s Bayesian estimation approach to neural networks.
We begin by considering Bayes theorem at the parameter estimation level:

p(Yi|w)
p(Yi)

Mackay expresses the prior and likelihood density functions in terms of the following Gaussian
functions:

p(w|Yi) = p(w)

pw) = 5 exp(-aF) (20)
p(Yilw) = ﬁmexm—%) (21)

where F,, represents a regularisation prior, Fp is an error function and Z,, and Zp are
normalisation factors. The hyper-parameters a and 3 control the variance of the prior dis-
tribution of weights and the variance of the measurement noise. o also plays the role of the
regularisation coefficient as will be shown soon.

By choosing a weight decay prior given by

1 1o
By = glwlP = 53w
i=1
the prior density function becomes:

p(W) = Grsaraaars o~ I (22)

Similarly, by choosing a Gaussian noise model, the likelihood function becomes:

n

p(Yi|w) = W exp ( — g Z(yk — &n,q(W,xx))?) (23)
k=1

where g, (W, xk) corresponds to the model prediction. We emphasise that this prediction
depends on the number of samples and the model complexity.
Using equations (22) and (23) and taking into account that the evidence does not depend
on the weights, the following posterior density function may be obtained:
p(w|Yi) =

exp(—aEy — BEp) = exp(—S(w)) (24)

_ _
Zs(a, B) Zs(a, B)
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For the prior and the likelihood of equations (23) and (24), S(w) is given by
_ ¢ 2, By - 2
Sw) = 21wl + 23 vk~ gna(w x0) (25)
k=1

Mackay approximates the posterior density function with a Gaussian density function.
This is done by applying a Taylor series expansion of S(w) around a local minimum (wyp)
and retaining the series terms up to second order

1
S(w) = S(wwmp) + §(W — WMP)TA(W — WMp)
Hence, the Gaussian approximation to the posterior density function becomes:

A7 P (5~ war) A ware)) (26)

p(W|Yk) =
Maximising the posterior probability density function involves minimising the error function
given by equation (25). Equation (25) is a particular case of a regularised error function.
More generally

n
S(w) = Z(yk — &nq(w,x1))” + 0
k=1
where v is a positive parameter that serves to balance the tradeoff between smoothness and
data approximation. A large value of v places more importance on the smoothness of the
model, while a small value of v places more emphasis on fitting the data. The functional 2
penalises for excessive model complexity. In batch learning, the regularisation parameter is
often obtained by cross-validation (Stone 1974, Stone 1978, Wahba and Wold 1969).

Several methods have been proposed for the design of the regularisation functional. In our
work we shall focus on weight decay regularisers. As a matter of interest, Girosi, Jones and
Poggio (Girosi, Jones and Poggio 1995) have proposed and alternative regularisation approach
using a functional that clearly shows the relationship between regularisation and smoothness:

Q_/w Ee d

where the tildes indicate Fourier transforms and 1/H(s) is chosen to be a high-pass filter.
In other words, the functional returns the high frequency components (oscillations) of the
mapping. Therefore, a large value of v simply indicates that any excessive oscillation will
constitute a major contribution to the modelling error.

In Mackay’s estimation framework, also known as the evidence framework, the parameters
w are obtained by minimising equation (25), while the hyper-parameters a and 3 are obtained
by maximising the evidence p(Y}|a, 8) after approximating the posterior density function by
a Gaussian function centred at wyp. In doing so, the following recursive formulae for a and
[ are obtained:

Y
Ap+1 = ¢ 32 (27)
3:1 w?
n—=7
EZ:1(yk - gn,q(wka xk))2

Br+1 (28)

The quantity -y represents the effective number of parameters and is given by

oy
’Y:Z)\i‘i‘a

q
=1
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where the A; are the eigenvalues of the Hessian of the error function Ep. The effective number
of parameters, as the name implies, is the number of parameters that effectively contributes
to the neural network mapping. The remaining weights have no contribution because their
magnitudes are forced to zero by the weight decay prior.

Instead of adopting Mackay’s evidence framework, it is possible to maximise the posterior
density function by performing integrations over the hyper-parameters analytically (Buntine
and Weigend 1991, Mackay 1994b, Williams 1995, Wolpert 1993). The latter approach is
known as the MAP framework for @ and 3. The hyper-parameters computed by the MAP
framework differ from the ones computed by the evidence framework in that the former makes
use of the total number of parameters and not only the effective number of parameters. That
is, a and B are updated according to:

q
Ar+1 = T<Sg o (29)
1wy

n
ZZ:1 (yx — gn,q(wka Xi))?

Mackay (Mackay 1994b) has argued in favour of the evidence framework by stating that
fitting a Gaussian around the MAP estimate, that is the peak of the posterior density function,
does not represent the best approximation to the posterior density function. On the other
hand, maximising the evidence after fitting a Gaussian to the posterior leads to a solution
that is closer to the minimum variance estimate. In our work, we have adopted both methods
for comparison purposes.

By comparing equations (9), (11) and (12) in the Kalman filtering framework with equa-
tions (22), (23) and (26), we can establish the following relations:

Br+1 (30)

P = A1 (31)
Q = a'[—-A" (32)
R = p7', (33)

where I, and I,,, represent identity matrices of sizes ¢ and m respectively.

Therefore, it is possible to update ) and R sequentially by expressing them in terms of
the sequential updates of & and 3. Implementing this idea is a straightforward task. It simply
involves computing a and 3 at each estimation step using the recursive equations (27) and
(28) or (29) and (30), and then substituting the answers into equations (32) and (33). As
in the work of Mackay, we take care that the covariance hyperparameters remain positive by
setting them to a small number each time they become negative. We believe that this thresh-
holding is one of the problems with this approach. A moving window may be implemented
to estimate 3. The size of the window is a parameter that requires tuning.

Equations (32) and (33) are extremely important in that they reveal the relationship
between adaptive noise in Kalman filtering and smoothing regularisers.

5.3 Sequential Evidence Maximisation with Sequentially Updated
Priors

Within a minimum variance framework, a weight decay prior constitutes a redundant smooth-
ing constraint. Smooth estimates may be obtained by equating the prior at the current es-
timation step to the posterior from the previous estimation step. In addition, in extended
Kalman filtering, we have cognisance of the equation describing the evidence function in
terms of the noise covariances. As mentioned in Section 3, maximising the evidence function
at the parameter estimation level is analogous to maximising the likelihood of the noise co-
variances as new data is gathered. Consequently, we can compute R and @} automatically
by maximising the evidence density:

P(Ykt1|Ye, My, R, Q1) ~ N (k1 (Wie, Xicy 1), Grerr (Pre + Qi) Gy + Ricyr) (34)
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Strictly speaking, this is not a full Bayesian solution. We are computing, solely, the likelihood
of the noise covariances. That is, we are assuming no knowledge of the prior at the noise
estimation level. For simplicity, we have restricted our analysis in this section to a single
output.
Let us now define the model residuals:
Th+i = Ykt+1 — Blyrs1|Ye, Mj, Ry, Q]
= Yry1 — k1 (Wi, Xk)

It follows from equation (34) and the definition of the model residuals that
E[Tk+1] = 0

and
Elri 1] = Grs1(Py + Q1)Grpq + Riy1

In addition, it is not difficult to prove that
E[rkrl] = 0

That is, the residuals are uncorrelated, and assuming they are Gaussian, they are also inde-
pendent (Jazwinski and Bailie 1967). Consequently

P(rry1Try2 - ThyN) = P(Th41)P(Phe2) - - P(ThaN)

where
1
(2m)/2(Gr41(Ps + Qu)Glyy + Rity) /2
1 Tiw’ )
2Gri1(Pe + Qr)GE, 1 + Ry

P(Tk+j)

exp (

The probability of the residuals is thus equivalent to the evidence function at the parameter
estimation level. That is

P(Tk+1) = P(Yk+1|Yes Mj, R, Q)

In the following subsections, we present three algorithms for updating the noise covariances
by maximising the evidence function.

5.3.1 Scalar process noise estimation

Let us assume that the process noise covariance may be described by a single parameter g.
More specifically

Q= qu
The maxima of the evidence function with respect to ¢ may be calculated by differentiating
the evidence function as follows:

L) = ———exp (= Tt )
dg (2)1/2 2 Gry1 (P + Qr)GT, | + R

1
[~ inHGfﬂ(GkH(Pk +Qr)Gipq + Ry1) ™32 4+
1
§T%+1Gk+1GkT+1 (Grr1(Pi + Qi)GEyy + Rii1)™%/2]

Equating the derivative to zero yields:

7"12c+1 = E[riH] (35)
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It is straightforward to prove that this singularity corresponds to a global maximum on [0, c0)
by computing the second derivative. This result reveals that maximising the evidence function
corresponds to equating the covariance over time r;_; to the ensemble covariance E[r7 ].
That is, maximising the evidence leads to a covariance matching method.

Jazwinski (Jazwinski 1969, Jazwinski and Bailie 1967) devised an algorithm for updating
g according to equation (35). Since

i1 = Ger1 PGy + 4GriaGipy + Ry,
it follows that ¢ may be recursively computed according to:
T§+1—E[T§+1\q:0]

q= R+18% 4 (36)

0 Otherwise

This estimator increases ¢ each time the model errors (residuals) are greater than what
their theoretical value (the ensemble covariance) predicts. When g increases, the Kalman gain
also increases and consequently the model parameters update also increases (equations (17)
and (18)). That is, the estimator places more emphasis on the incoming data. As long as
the residuals remain smaller that the ensemble covariance, the process noise input is zero and
the filter carries on minimising the variance of the parameters (i.e. tending to a regularised
solution). Section 7.2 discusses an experiment where this behaviour is illustrated.

The estimator of equation (36) is based on a single residual and is therefore of little
statistical significance. This difficulty is overcome by employing the sample mean for N
predicted residuals, instead of a single residual. Jazwinski (Jazwinski 1969) shows that for

the following sample mean:
N

_ 1 Tk+1
mr =7 Z R/’
=1 k+1

we may proceed as above, by maximising p(m.), to obtain the following estimator:

% ifg>0
N (37)
0 Otherwise
where
E[m}|q = 0] = Sy PiS§ + 1/N,
S =SnSy+Sn—1Sk 1+ + S18]
and
N
1 1
Sy = N Z FGk—H
=1 k+1
N
1 1
Sn-1 = N Z WGIH_Z
=2 k+1
1 1
S1 = WI#TGH'N
k+N

With this estimator, one has to choose the length N of the moving window used to update
g. As the window size increases, the estimator for ¢ has less effect on the extended Kalman
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filter estimates. That is the data idiosyncrasies are interpreted more as non-stationarities
than as noise. We refer to the problem of choosing the right window length as the regu-
larisation/tracking dilemma. It is a dilemma because we cannot ascertain, without a priori
knowledge, whether the fluctuations in the data correspond to non-stationary behaviour or
noise. This problem is typical of high frequency predictions in foreign exchange markets
(Moody 1997).

5.3.2 Scalar measurement noise estimation

By maximising the evidence function with respect to Ry = rl,,, as done in the previous
section, one obtains the following estimator for r:

2 — Gp(Py + Qr)GE ifr>0
r= (38)
0 Otherwise

The hyper-parameter r is not as useful as g in controlling filter divergence. This is because r
can slow down the rate of decrease of the covariance matrix Py, but cannot cause it to increase
(equations (17), (18) and (19)). Nonetheless, it constitutes an improvement over standard
Kalman filtering. It is also possible to combine estimators for r and ¢ simultaneously.

5.3.3 Multiple noise hyper-parameters estimation

It is possible to extend the derivations of the previous sections to a more general noise model.
We may assume the following covariance model:

g 0 -~ 0
0 q2 0

Q= . . (39)
0 0 dq

Calculating the derivative of the evidence function with respect to a generic diagonal entry
of () yields:

0 r o -~
8_qP(Tk+1) = %Gkﬂ(a—qQ)Gfﬂ [ — (Gra1(Pe + Qr)Giyy + Ri) ™ +

Tas1(Grrr (P + Qk)GkT+1 +Ry) %]
Under the assumption that
0
Gk—i—l(a_qu)GkT-i-l # 0,

we obtain a relation for the maxima of the evidence function when the quantity in the square
brackets vanishes. This relation is given by:

Gk+1QG£+1 = 7'%+1 - E["i+1|Q =0] = ep1 (40)

Equation (40) represents an under-determined system of equations for the unknowns g;. Since
Q is diagonal, it may be rewritten as:

q1
gz
o o a
[ Gy Gy o (G || | =enn (41)
qq
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To improve the statistical significance of the estimator, while at the same time conditioning
it, we may use a moving window of size NV to estimate the noise hyper-parameters. That is,

(ayk+1 )2 (ayk+1 )2 (3yk+1 )2
%m %WZ %wq q1 Ek+1
(Qmy () @y || g cx
= . (42)
o _ Oyr— ‘ Oy _
Cgerr g G lal Leo

This estimator is less reliable than the estimator of Section 5.3.1. It involves estimating
more parameters and it requires a long moving window to avoid ill-conditioning. Nonetheless,
multiple hyper-parameters are very handy when one considers distributed priors for automatic
relevance determination. This topic is covered in the next section.

6 Automatic Relevance Determination

Although most of the work on learning theory has been devoted to the study of the gener-
alisation error in terms of model complexity and the number of samples, we believe that the
issues of selecting the right input variables and basis functions are equally important. Spuri-
ous input variables will invariably lead to deterioration in model performance. For instance,
in conventional neural network modelling of finite data sets, the weights in charge of scaling
the irrelevant inputs do not usually tend to zero because of random correlations between the
inputs and the output (Mackay 1995).

In addition, in many engineering and financial applications (de Freitas, Gaylard, Stevens,
Ridley and Landy 1996, de Freitas, Macleod and Maltz 1996, Niranjan 1996), we often find
that we know part of the equation governing a particular process. That is, we might have
inferred that the relationship between two measurements z and y is given by:

y=2"+g(x)

where the function g(z) is unknown. In such cases, it would be wasteful to estimate the
dependence of y on z with generic basis functions, such as Gaussians or sigmoids. Instead,
we should incorporate a quadratic basis function into the neural network structure and hence
avoid extra model fitting.

Furthermore, we might, from the outset, include different basis functions and then use
an automatic relevance mechanism to establish the significance of each basis function. When
choosing the initial basis functions, preference should be given to basis functions that appear
frequently in physical laws, such as polynomials, exponentials, sinusoids, logarithms, etc. This
strategy has been successfully employed in computing models for pneumatic control valves
and structural vibration in induction motors (de Freitas, Gaylard, Stevens, Ridley and Landy
1996, de Freitas, Macleod and Maltz 1996). It follows that this idea may also be applied to
clustering algorithms to determine the relevance of each cluster.

The problems of automatic relevance determination of inputs (ARDI) and of basis func-
tions (ARDF) can be addressed with clarity and efficiency within a Bayesian framework.
In this context, distributed priors are used to determine the relevance of the various inputs
and basis functions. For example, while addressing the ARDI problem, Mackay (Mackay
1994a, Mackay 1995) has proposed the following modification to the prior of equation (22):

1
p(wlac) = m exp ( ;acEwc)
where )
Ewc = Z w_21



and the regularisation coefficient a, controls the weight decay rates for the parameters linked
to input ¢. That is, a different regularisation coefficient is assigned to each input. The decay
rates for irrelevant inputs may, therefore, be automatically inferred to be large. Consequently,
their harmful effect on the model is prevented.

A similar technique based on multiple hyper-parameters for ARDI has been proposed by
Sutton (Sutton 1992a). Sutton implements multiple learning rates to determine the relevance
of various inputs to a linear network. The theory developed in Sections 5.1, 5.2 and 5.3
established the equivalence between multiple learning rates 7, regularisation coefficients a,
and process noise hyper-parameters q. By virtue of these results, the equivalence between
Mackay’s and Sutton’s ARDI frameworks follows immediately.

In our work on sequential learning, we choose to implement ARDI and ARDF using
multiple adaptive noise hyper-parameters g;, obtained with the algorithm described in Section
5.3.3. Different priors ¢; are assigned to each input for ARDI and to each basis function for
ARDF. By monitoring the model prediction and fluctuations in the g;’s, it is possible to
detect irrelevant inputs or basis functions. As shown in an experiment in Section 7, the
g;'s corresponding to irrelevant variables tend to fluctuate excessively. To improve model
performance, the harmful basis functions or inputs should be removed.

7 Experiments

7.1 Experiment 1: Comparison Between the Various Noise Estima-
tion Methods

To compare the performance of the various EKF training algorithms discussed in this report,
100 input-output data vectors were generated from the following nonlinear, non-stationary
process:

25z,
Thyr = 0.5k + o 4 8cos(1.2(k — 1)) + di
1+az;_,
= ﬁ +v
Y = 20 k

where z; denotes the input vectors and y; the ouput vectors of 300 time samples each.
The Gaussian process noise standard deviation was set to 0.1, while the measurement noise
standard deviation was set to 3sin(0.05k). The initial state zo was 0.1. Figure 3 shows the
data generated with this model. The changes of the measurement noise variance are similar
to the ones typically observed in financial returns data (Shephard 1996).

We then proceeded to train an MLP with 10 sigmoidal neurons in the hidden layer and
1 output linear neuron with the following methods: the standard EKF algorithm, the EKF
algorithm with Py updated by error back-propagation (EKFBP), the EKF algorithm with
evidence maximisation and weight decay priors (EKFEV), the EKF algorithm with MAP noise
adaptation (EKFMAP) and the EKF algorithm with evidence maximisation and sequentially
updated priors (EKFQ). The initial variance of the weights, initial weights covariance matrix
entries, initial R and initial  were set to 1, 10, 3 and 1 x 10~° respectively. The length of
the sliding window of the adaptive noise algorithms was set to 10 time samples’.

The simulation results for the EKF and EKFQ algorithms are shown in Figure 4. Note
that the EKFQ algorithm slows down the convergence of the EKF paramater estimates so as
to be able to track the changing measurement variance. In Table 1, we compare the one-step-
ahead normalised square errors (NSE) obtained with each method. The NSE are defined as

1A matlab demo, corresponding to this example, is available at the following web site:
http://svr-www.eng.cam.ac.uk/" jfgf/software.html .
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follows:

According to the table, it is clear that the only algorithm that provides a clear prediction
improvement over the standard EKF algorithm is the evidence maximisation algorithm with
sequential update priors. In terms of computational time, the EKF algorith with P, updated
by back-propagation is faster, but its prediction is worse than the one for the standard EKF.
This is not a surprising result considering the assumption of uncorrelated weights. The EK-
FEV and EKFMAP performed poorly because they require the network weights to converge
to a good solution before the noise covariances can be updated. That is the noise estimation
algorithm does not facilitate the estimation of the weights, as it happens in the case of the
EKFQ algorithm. The EKFEV and EKFMAP are therefore unsuitable for sequential learning

tasks.
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Figure 3: Data generated to train MLP.

NSE = \/Z(Yk — g(wi, xi))?
k

|| | NSE | Floating point operations ||

EKF 25.95 21,886,963
EKFQ 23.01 24,106,195
EKFMAP | 61.06 22,584,733
EKFEV 73.94 22,595,195
EKFBP 58.87 2,187,763

Table 1: Simulation results for 100 runs in experiment 1.
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Figure 4: Simulation results for the EKF and EKFQ algorithms.

7.2 Experiment 2: Sequential Evidence Maximisation with Sequen-
tially Updated Priors

This experiment aims at describing the behaviour of the evidence maximisation with prior
updating algorithm in a time-varying, noisy and chaotic scenario. The problem tackled is a
more difficult variation of the chaotic quadratic or logistic map. 100 input (yx) and output
(yx+1) data vectors were generated according to the following equation:

3.5yr(1—yp) +vr, 1< k<150
Yrr1 = 3.Tyr(l —yx) +ovr 150 < k < 225
3.1yk(1 —yp) +vr 225 < k < 300

where v, denotes Gaussian noise with standard deviation equal to 0.01. In the interval
150 < k < 225, the series exhibits chaotic behaviour. A 2 layer MLP with 10 sigmoidal
neurons in the hidden layer and a single output linear neuron was trained to approximate the
mapping between (yi) and (yg4+1). The initial weights, weights covariance matrix diagonal
entries, R and @) were set to 1, 100, le — 4 and 0 respectively. The sliding window to estimate
@ was set to 3 time samples.

As shown in Figure 5, during the initialisation and after each change of behaviour (samples
150 and 225), the estimator for the process noise covariance ) becomes active. That is, each
time the environment undergoes a severe change more importance is given to the new data.
As the environment stabilises, the minimum variance minimisation criterion of the Kalman
filter leads to a decrease in the variance of the output. Therefore, it is possible to design
an estimator that balances the tradeoff between regularisation and tracking. The results
obtained with the EKF and EKFQ algorithms are summarised in table 22.

2A matlab demo, corresponding to this example, is available at the following web site:
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Figure 5: Performance of the evidence maximisation for a non-stationary chaotic quadratic
map. The top plot shows the true data [- -] and the prediction [—], the middle plot shows
the output confidence intervals while the bottom plot shows the value of the adaptive noise
parameter.

|| | NSE | Floating point operations ||

EKF 31.76 21,814,011
EKFQ | 1.37 22,968,178

Table 2: Simulation results for 100 runs of the quadratic chaotic map.

7.3 Experiment 3: Automatic Relevance Determination

To test the ARDI framework using multiple process noise hyper-parameters, we generated a
data sequence with the modified quadratic map. We then trained an MLP with 20 neurons
in the hidden layer with two inputs. One of the inputs was the correct y; signal. The other
input corresponded to a zero mean random signal with variance equal to 2. As depicted in
Figure 9, the variation of the noise parameters linked to each input allows us to detect the
spurious input. This algorithm should be used with caution. If the output prediction is far
from reasonable, then we cannot expect the information given by the noise parameters to be
meaningful. During our simulations, we also found out that the noise parameters depend on
the magnitude of the inputs. Consequently, one should also monitor the values of the input
weights before a decision to neglect a particular input is adopted.

http://svr-www.eng.cam.ac.uk/~ jfgf/software.html .
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Figure 6: Automatic relevance determination by monitoring the input weights adaptive noise
covariance. The top plot shows the actual data [- - -] and the prediction [—]. The middle plot
shows the average of the weights for the relevant [- - -] and irrelevant [—] inputs. The bottom
plot shows the average of the adaptive noise parameters for the relevant [---] and irrelevant
[—] inputs.

7.4 Application: Pricing Financial Options

Derivatives are financial instruments whose value depends on some basic underlying cash
product, such as interest rates, equity indices, commodities, foreign exchange, bonds, etc. An
option is a particular type of derivative that gives the holder the right, but not the obligation,
to do something. For example, a call option allows the holder to buy a cash product, at a
specified date in the future, for a price determined in advance. The price at which the option
is exercised is known as the strike price, while the date at which the option lapses is often
referred to as the maturity time. Put options, on the other hand, allow the holder to sell the
underlying cash product.

In recent years, the mathematical modelling of financial derivatives has become increas-
ingly important for two reasons. Firstly, financial institutions have much interest in developing
more sophisticated pricing models for options contracts (Hull 1997). Secondly, options data
offers an excellent source of difficult and challenging problems to the statistical and neural
computing communities (Hutchinson, Lo and Poggio 1994, Ingber and Wilson 1998, Niranjan
1996). So far, the research results seem to provide clear evidence that there is a nonlinear
and non-stationary relation between the options’ price and the cash products’ price, maturity
time, strike price, interest rates and variance of the returns on the cash product (volatility).
The standard model used to describe this relation is the Black-Scholes model (Black and
Scholes 1973).

Hutchinson et. al. (1994) and Niranjan (1996) have focused on the options pricing prob-
lem from a neural computing perspective. The former showed that good approximations to
the widely used Black-Scholes formula may be obtained with neural networks, while the latter
looked at the non-stationary aspects of the problem. Niranjan (1996) uses a Kalman filter-
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ing framework to sequentially propagate the estimated parameters and their corresponding
uncertainties.

Our work follows from Niranjan (1996), with the aim of showing that more accurate track-
ing of the options prices can be achieved by adapting the noise covariances. We train MLPs
to generate one-step-ahead predictions of the options prices. The one-step-ahead predictions
for a group of options on the same cash product, but with different strike prices and/or time
to maturity, can be used to determine whether one of the options is being mispriced.

We train the MLPs with the conventional EKF and EKFQ algorithms. We treat the
cash product’s value normalised by the strike price and time to maturity as its inputs. The
network’s output consists of the call and put option prices normalised by the strike price®.
We used five pairs of call and put option contracts on the FTSE100 index (from February
1994 to December 1994) to evaluate our pricing algorithms. The parameters where estimated
by the following methods:

Trivial : This method simply involves using the current value of the option as the next
prediction.

RBF-EKF : Represents a regularised radial basis function network with 4 hidden neurons,
which was originally proposed in (Hutchinson et al. 1994). The output weights are
estimated with a Kalman filter, while the means of the radial functions correspond to
random subsets of the data and their covariance is set to the identity matrix as in
(Niranjan 1996).

BS : Corresponds to a conventional Black-Scholes model with two outputs (normalised call
and put prices) and two parameters (risk-free interest rate and volatility). The risk-free
interest rate was set to 0.06, while the volatility was estimated over a moving window
(of 50 time steps) as described in (Hull 1997).

MLP-EKF : Stands for an MLP, with 6 sigmoidal hidden units and a linear output neu-
ron, trained with the EKF algorithm. The noise covariances R and () and the states
covariance P were set to diagonal matrices with entries equal to 107¢, 10~7 and 10
respectively. The weights prior corresponded to a zero mean Gaussian density with
covariance equal to 1.

MLP-EKFQ : Represents an MLP, with 6 sigmoidal hidden units and a linear output
neuron, trained with the EKF with evidence maximisation and sequentially updated
priors. The states covariance P was given by a diagonal matrix with entries equal to
10. The weights prior corresponded to a zero mean Gaussian density with covariance
equal to 1.

Figure 7 shows the one-step-ahead predictions obtained with the EKFQ algorithm. In Table
3, we compare the one-step-ahead normalised square errors obtained with each method. It
should be mentioned that the square errors were only measured over the last 100 days of
trading, so as to allow the algorithms to converge. It is clear, from the results, that adapting
the process noise covariance sequentially leads to improved predictions with the options data.

3A matlab demo, corresponding to this example, is available at the following web site:
http://svr-www.eng.cam.ac.uk/~ jfgf/software.html.
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Figure 7: Tracking put and call option prices with an MLP trained with the EKFQ algorithm.

Strike price | 2925 | 3025 | 3125 | 3225 | 3325 |

Trivial 0.0783 | 0.0611 | 0.0524 | 0.0339 | 0.0205
RBF-EKF 0.0538 | 0.0445 | 0.0546 | 0.0360 | 0.0206
BS 0.0761 | 0.0598 | 0.0534 | 0.0377 | 0.0262

MLP-EKF 0.0414 | 0.0384 | 0.0427 | 0.0285 | 0.0145
MLP-EKFQ | 0.0404 | 0.0366 | 0.0394 | 0.0283 | 0.0150

Table 3: One-step-ahead prediction errors on call options.

8 Conclusions

We have shown that the Bayesian view of Kalman filtering has a rich set of tools to offer.
Tuning the noise parameters in a systematic way leads to many interesting attributes such
as regularisation and automatic relevance determination. In addition, the Bayesian inference
framework provides an elegant, unifying theory to the problem of sequential learning.

Although we did not estimate the drift function in this paper, we have proved elsewhere
that linear drift functions may be estimated via extended Kalman smoothing and the EM
algorithm (de Freitas et al. 1998). The method for estimating the linear drift functions with
the EM algorithm is simple, stable and elegant but exhibits very slow convergence and is only
applicable to stationary environments.

We showed that distributed learning rates, adaptive noise parameters and adaptive smooth-
ing regularisers are mathematically equivalent. This result sheds light on many areas of the
machine learning field. It places many diverse approaches to estimation and regularisation
within a unified framework.

There are many avenues for further research. These include stating our theoretical results
in a more rigorous mathematical formulation, implementing static and dynamic mixtures of
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models, implementing other model structures such as recurrent networks and, finally, testing
the algorithms on additional financial and engineering problems.
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A Bayesian Derivation of the Kalman Filter

Consider the following linear Gauss-Markov process

Wit1 = wi+dg (43)
Y = Hpwg+ v (44)

where the covariance of the process noise dy is given by @, the covariance of the measurement
noise vy is given by Rj, and the covariance of the states wy is given by Pj. The remaining
symbols have been defined in Section 2. It is possible to apply Bayes rule to estimate the
posterior density function for the model parameters after the new data arrives. In doing so,
the posterior is given by:

P(¥it1|Wit1)

P(Wit1|Yiet1) = P(Wic1]Yk) (45)
| P(Yi+1|Yx) |
That is
’ Likelihood
Posterior = ——— Prior
Evidence

Assuming Gaussian approximations to the probability density functions and uncorrelated
Zero mean noise processes, representations for the likelihood, evidence and prior can be derived
in terms of the first and second order statistics.

A.1 Prior Gaussian Density Function

The mean is given by:

E(Wit1|Yx) = E[wy + di|Yy]
= E[Wlek]
= Wy
and the covariance is given by:
COV(Wk+1|Yk) = E[(Wk —+ dk — ‘lil'k)(wk + dk — VAVk)T|Yk]
= Pk =+ Qk —+ 2E[(Wk — ‘i/k)dk|Yk]
= P, +Q
Hence, the prior is given by:
Prior = p(Wk+1|Yk) ~ N(Wk, Pr + Qk) (46)
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A.2 Evidence Gaussian Density Function
The mean is given by:
E(yk+1|Yx) = E[Hgt1Wit1 + Viegr|Yi]
= Hip1E[wiq[Yy]
= Hpp1Wig1k
= Hppiwyg
and the covariance is given by:
Cov(yr+1|Yx) = E[(Hkt1Wikt1 + Vicpr — Hiep1 W)
(Hpy1Wip1 + Vierr — Hipr W) 7| Yy
= E[(Hp1(Wicr1 — Wi) + Vipr) (Hieg 1 (Wicps — W) + Viern) T [Ya
= Hp1(Po + Qk)HIZ:rl + Riy1
Hence, the evidence is given by:

Evidence: P(Yk+1 |Yk) ~ N(Hk_,_lvAvk_i_l, Hk+1 (Pk =+ Qk)HEJrl + Rk+1) (47)

A.3 Likelihood Gaussian Density Function

The mean is given by:

E(yit+1|Wit1) = E[Hp+1Wit1 + Vier1 | Wiy ]

= HppE[Wip|[Wiy]

= Hpp1Wiyt
and the covariance is given by:

Cov(yrt1|Wit1) = E[(Hrpi1Wit1 + Vierr — HepiWicr)
(Hi41Wict1 + Vierr — Hicp1 Wier1) T [Wieq]
= Rk+1
Hence, the likelihood is given by:
Likelihood: P (¥i+1|Wk+1, Mj, Ric, Qx) ~ N (Hip1 Wi 1, Riey1) (48)

A.4 Posterior Gaussian Density Function

Substituting the equations for the means and covariances of the evidence, prior and likelihood
into equation (46) and completing squares in the exponent of the Gaussian exponential, yields
the posterior density function:
1 . _ .
P(Wict1[Yier1, Mj, Ri, Qi) = Axpq exp ( _i(wk+1 - Wk+1)Pk_|1_1(Wk+1 — Wit1) ) (49)
where the coefficients A1 are represented by the following expression:

A — |Hir1(Pe + Qe)HL ; + Ryy1|M/?
k+1 = (27T)q/2|Rk+1|1/2|Pk +Qk|1/2

and Wg41 and Pj41 are given by:

Wit1 = Wi+ Kpp1(Yer1 — Hepr Wi (50)
Pov1 = P+ Qp — Kip1Hi1(Pi + Qk) (51)
where K}, is known as the Kalman gain:
(Py + Qr)H 4
Riy1+ Hey1 (Pr 4+ Qr)HE,

Kyt =
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B Computing Derivatives for the Jacobian Matrix
For the network depicted in Figure 10, the output layer mapping is given by:
Y = w1 + w2011 + W3012

and consequently, the derivatives with respect to the weights are given by:

oy
ow; L
0
8—522011
0
6—53:012

Figure 8: Simple MLP structure for regression problems.

The hidden layer mapping for the top neuron is:

1

_ where u11 = wy + ws®; + wgd
1+ exp(—ua1) 11 4 5P1 6 P2

011 =

The corresponding derivatives with respect to the weights are:

ﬂ 0y 0Ooy1 Ouny

8w4 - 8011 a’u,n 8104
= w011 (1 —011)

0

8—55 = w2011(1 —011)®1

0

8—'56 = w2011(1 —011)®2

(53)

The derivatives with respect to the weights of the other hidden layer neuron can be trivially
calculated following the same procedure.
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