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Abstract

In this paper, we derive an EM algorithm for nonlinear state space models. We use
it to estimate jointly the neural network weights, the model uncertainty and the noise
in the data. In the E-step we apply a forward-backward Rauch-Tung-Striebel smoother
to compute the network weights. For the M-step, we derive expressions to compute the
model uncertainty and the measurement noise. We find that the method is intrinsically
very powerful, simple, elegant and stable.
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1 Introduction

In 1961, Kalman and Bucy (Kalman and Bucy 1961) developed an optimal linear-Gaussian
state space filter that has become an essential component of any modern tracking and time
series analysis tool-box or text. The Kalman-Bucy filter is a recurrent estimator of the hidden
states of a state space model. The model consists of two linear matrix equations. The first
one, known as the measurements equation, defines a set of measurements in terms of a linear
combination of several hidden states and an additive Gaussian noise process. The second one,
known as the process or dynamics equation, describes the evolution of the states in terms of
a linear combination of previous values of the states and an additive Gaussian noise process.
To estimate the hidden states optimally, the Kalman filter assumes that the measurements,
the noise statistics and parameters governing the linear transformations are given.

Later, in 1965, Rauch, Tung and Striebel (Rauch, Tung and Striebel 1965) proposed a
combination of forward and backward filtering to obtain improved estimates over stationary
data segments. This en bloc estimation technique is widely know as linear Kalman smoothing.
Other extensions to the original work on Kalman filtering include coloured noise filters and
nonlinear estimators linearised about the current estimates. The latter are known as extended
Kalman filters (EKFs).

A well known limitation of Kalman estimators is the assumption of known a priori statis-
tics to describe the measurement and process noise. In many applications, it is not straightfor-
ward to choose the right noise covariance matrices (de Freitas, Niranjan and Gee 1997, Jazwin-
ski 1970). Moreover, the matrices of parameters governing the linear transformations in the
measurement and process equations are typically unknown. Unfortunately, the optimality of
the Kalman filter often hinges on the designer’s ability to formulate these matrices a priori.
To circumvent this limitation and ensure optimality, it is important to design algorithms for
estimating the noise covariances and parameter matrices without leading to a degradation in
the performance of the Kalman estimator. In the remainder of this paper, we will refer to
the problems of computing the model states and the model parameters, including the noise
covariances, as inference and learning respectively.

Several researchers in the estimation, filtering and control fields have attempted to solve
the problem of learning the noise covariances (de Freitas et al. 1997, Jazwinski 1969, Mehra
1970, Mehra 1971, Myers and Tapley 1976, Tenney, Hebbert and Sandell 1977). Mehra (Mehra
1972) and Li and Bar-Shalom (Li and Bar-Shalom 1994) have written brief surveys on this
topic. In stationary environments where data is available in batches, it is possible to address
the general problem of learning in a principled way, via the expectation maximisation (EM)
algorithm (Dempster, Laird and Rubin 1977). This paper will focus on this learning approach
and will aim at extending the current work on EM learning and linear Kalman smoothing to
nonlinear Kalman smoothing.

In Section 2, we present a brief history of attempts to use the EM algorithm to learn linear
state space models. Section 3 introduces the nonlinear state space modelling scheme adopted
in this work. The approximation of nonlinear state space models with multi-layer perceptrons
trained by extended Kalman smoothing is discussed in Section 4. Section 5 presents a brief
derivation of the EM algorithm, which is used as a step towards the derivation of the EM
algorithm for nonlinear state space models in Section 6. Section 7 examines some of the
results obtained, while Section 8 provides a critical analysis of these results.



2 Background

The application of the EM algorithm to learning and inference in linear dynamical systems
has occupied the attention of several researchers in the past. Chen (Chen 1981) was one of
the pioneers in this field. In particular, he applied the EM algorithm to linear state space
models known in the statistics literature as MIMIC models. In these models one observes
multiple indicators and multiple causes of a single latent variable. Chen’s MIMIC model was
implemented in a simulation study relating social status and participation.

Watson and Engle (Watson and Engle 1983) have suggested using the EM algorithm, in
conjunction with the method of scoring, for the estimation of linear dynamic factor, MIMIC
and varying coeflicient regression models. They evaluated their paradigm experimentally by
estimating common factors in wage rage data from several industries in Los Angeles, USA.

In 1982, Shumway and Stoffer (Shumway and Stoffer 1982) proposed the use of the EM
algorithm and linear state space models for time series smoothing and forecasting with missing
observations. To demonstrate their method, they considered a health series representing total
expenditures for physician services as measured by two different sources. The time series
produced by each source have similar values but exhibit missing observations at different
periods. In Shumway and Stoffer’s approach, the two series are automatically merged into an
overall expenditure series, which is then used for forecasting. Nine years later, Shumway and
Stoffer (Shumway and Stoffer 1991) extended their work to switching linear dynamic models.
In essence, they derived a state space representation with measurement matrices that switch
according to a time varying independent random process. They illustrate their method on an
application involving the tracking of multiple targets.

The method of learning and inference in linear state space models via the EM algorithm
has also played a role in the fields of speech analysis and computer vision. Digalakis, Rohlicek
and Ostendorf (Digalakis, Rohlicek and Ostendorf 1993) applied it to the speech recognition
problem. They made a connection between this method and the Baum-Welch estimation
algorithm for hidden Markov models (HMMs). North and Blake (North and Blake 1998)
have implemented the method to learn linear dynamic state space models used for tracking
contours in images. Rao and Ballard (Rao and Ballard 1997) have also explored the relevance
of the EM algorithm together with state space estimation in the field of vision. They have
developed a hierarchical network model of visual recognition that encapsulates those concepts.

Ghahramani (Ghahramani 1997) has embedded the EM method for learning dynamic lin-
ear systems in a graphical models framework. He treats computationally intractable models
such as factorial HMMs and switching state space models by resorting to Gibbs sampling and
variational approximations. In another paper, Roweis and Ghahramani (Roweis and Ghahra-
mani 1997) make use of the EM algorithm and linear state space representations to present a
unified view of linear Gaussian models including factor analysis, mixtures of Gaussians, stan-
dard and probabilistic versions of principal component analysis, vector quantisation, Kalman
smoothing and linear hidden Markov models.

In this paper, we join the discourse on learning and inference with the EM and Kalman
smoothing algorithms by extending the work to nonlinear estimators. In particular, we make
use of a multi-layer perceptron (MLP) to model the nonlinear mapping between the hidden
states and the output measurements.

3 Nonlinear State Space Modelling

To investigate the application of the EM algorithm to state space learning, we shall focus on
the following nonlinear state space representation:

Wi4+1 = Awy + dy, (1)
Yk g(Wi, Xx) + Vi (2)



where the output measurements of a system (y; € ®™) depend on a nonlinear, multivariate
function of the system inputs (x; € R¢) and a set of states (wj, € R9). A graphical represen-
tation of this model is depicted in Figure 1. In this work we assume that the states correspond
to the weights of a neural network. However, it is possible to incorporate other variables, for
example the model outputs, into the hidden state vector.

Figure 1: Nonlinear state space model. The symbol Z~! denotes the delay operator.

The measurements nonlinear mapping g(.) is approximated by a multi-layer perceptron
(MLP). Nonetheless, the work may be easily extended to encompass recurrent networks, radial
basis networks and many other approximation techniques. The measurements are assumed
to be corrupted by noise v, which in our case we model as zero mean, uncorrelated Gaussian
noise with covariance R.

We model the evolution of the model parameters by assuming that they depend on a
deterministic component Awy and a stochastic component di. The process noise di may
represent our uncertainty in how the parameters evolve, modelling errors or unknown inputs
such as target manoeuvres. We assume the process noise to be a zero mean, uncorrelated
Gaussian process with covariance (). The matrix A contains information about how the states
evolve. It is particularly useful in tracking applications. However, when the above model is
employed merely for parameter estimation in neural network models, the matrix A should
be viewed as a mechanism to achieve directed trajectories in state space. In other words, A
allows for more general jumps than the simple random walk that would result by excluding A
from the model. Although we derive analytical expressions for estimating A, we have found
no obvious way of using it to improve the training of MLPs.

We need to estimate the model states Wy, and a set of parameters § = {R,Q, A} given
the measurements Y, = {y1, ¥2, -+, ¥x}- The problem of estimating the states is known
as inference, while the problem of estimating the parameters may be referred to as learning.
The problem of estimating wy given Y, is also called the smoothing problem if k£ < 7; the
filtering problem if £ = 7; or the prediction problem if k > 7 (Gelb 1974, Jazwinski 1970). In
this paper, we shall concentrate on the smoothing problem.

4 Inference with MLPs and extended Kalman smoothing

4.1 The extended Kalman smoother

The extended Kalman filter (EKF) is a versatile and computationally efficient algorithm for
suboptimal nonlinear state estimation. The EKF is a minimum variance estimator based
on a Taylor series expansion of the nonlinear function g(.) around the previous estimate



(Bar-Shalom and Li 1993, Gelb 1974). That is,
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Figure 2: Extended Kalman filter predictor-corrector representation.

The EKF equations for the model of equations (1) and (2) and a linear expansion of g(.)

are given by (see Figure 2):

Wipir = Awg

Poppp = APAT+Q
Kiy1 = PoanGrea[R+ Gy Pk Graa] ™!
Wit1 = Wepik + Kep1 (Yra1 — (X6, Wiq1x))
Pir1 = Puyir — Kir1Giyp Posji

where Kj1 is known as the Kalman gain matrix. In the general multiple input, multiple
output (MIMO) case, g € R™ is a vector function and G represents the Jacobian matrix:
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Since the EKF is a suboptimal estimator based on linearisation of a nonlinear mapping, w
is only an approximation to the expected value and, strictly speaking, Pj is an approximation

to the covariance matrix. In mathematical terms:

Q

Wk E[Wk|Yk]

P, = E[(wk—Wk)T(Wk—Wk)|Yk]

It is also important to point out that the EKF may diverge as a result of its inherent approx-
imations. The consistency of the EKF may be evaluated by means of extensive Monte Carlo

simulations (Bar-Shalom and Li 1993).



In this paper, we avoid the divergence problem by smoothing the EKF estimates and
applying the EM algorithm in the learning phase. As shown in the following section, the EM
algorithm will always grant convergence to a local maximum of the data likelihood.

Smoothing often entails forward and backward filtering over a segment of data so as to ob-
tain improved averaged estimates. Various techniques have been proposed to accomplish this
goal (Gelb 1974, Jazwinski 1970). In our work, we make use of the well known Rauch-Tung-
Striebel smoother (Gelb 1974, Rauch et al. 1965). After computing the forward estimates
wy and P, with the EKF, over a segment of N samples, the Rauch-Tung-Striebel smoother
makes use of the following backward recursions:

Jier = P ATP)

[k—1
Wiy = Wi—1Jp—1(Wg v — AWg_1)
Poyn = P+ Je1(Pon — Prjp—1) 751

Py~ PoJE  + Ji (Prt1,k/N — AP)JE

where the parameters, covariance and cross-covariance are defined as follows:
E[Wk|YN]
E[(w), — Wi)T (wi — Wy)|Yav]

Pir-1yn ~ E[(wp— W) T (Wh_1 — We_1)[Yn]

Q

WiIN

Q

Pyn

They may be initialised with the following values:

WNN = Wy
Pyn = Pn
Pyn_yn = (I-KnGYy)APy_y

The extended Kalman smoother provides a minimum variance Gaussian approximation
to the posterior probability density function p(w|Y") (de Freitas et al. 1997). In many cases,
p(w|Y) is a multi-modal (several peaks) function. In this scenario, it is possible to use
a committee of Kalman smoothers, where each individual smoother approximates a par-
ticular mode, to produce a more accurate approximation (Bar-Shalom and Li 1993, Blom
and Bar-Shalom 1988, Kadirkamanathan and Kadirkamanathan 1995, Kadirkamanathan and
Kadirkamanathan 1996). The parameter covariances of the individual estimators may be used
to determine the contribution of each estimator to the committee. In addition, the parameter
covariances serve the purpose of placing confidence intervals on the output prediction.

The immediate availability of confidence intervals and of mixing coeflicients, required to
generate mixtures of models, has motivated us to train neural networks with the extended
Kalman smoothing algorithm.

4.2 Training MLPs with the EKF

One of the earliest implementations of EKF trained MLPs is due to Singhal and Wu (Singhal
and Wu 1988). In their method, the network weights are grouped into a single vector w
that is updated in accordance with the EKF equations. The entries of the Jacobian matrix
are calculated by back-propagating the m output values {y1(t), y2(t),- -+, ym(t)} through the
network. An example of how to do this for a simple MLP is presented in (de Freitas et al.
1997).

The algorithm proposed by Singhal and Wu requires a considerable computational effort.
The complexity is of the order mg? multiplications per estimation step. Shah, Palmieri
and Datum (Shah, Palmieri and Datum 1992) and Puskorius and Feldkamp (Puskorius and
Feldkamp 1991) have proposed strategies for decoupling the global EKF estimation algorithm



into local EKF estimation sub-problems. For example, they suggest that the weights of each
neuron could be updated independently. The assumption in the local updating strategies is
that the weights are decoupled and, consequently, P is a block-diagonal matrix.

The EKF is an improvement over conventional MLP estimation techniques, such as back-
propagation, in that it makes use of second order statistics (covariances). These statistics are
essential for placing error bars on the predictions and for combining separate networks into
committees of networks. It has been proven elsewhere that the back-propagation algorithm
is simply a degenerate of the EKF algorithm (de Freitas et al. 1997, Ruck, Rogers, Kabrisky,
Maybeck and Oxley 1992). That is, the back-propagation algorithm, in its basic form, makes
no use of second order statistics and adaptive, distributed learning rates.

However, the EKF algorithm for training MLPs suffers from serious difficulties, namely
choosing the initial conditions (wq, Fp), the noise covariance matrices R and @) and the state
dynamics matrix A. In our work, we make use of smoothing and parameter estimation via
the EM algorithm to obtain estimates for the initial conditions, noise covariances and state
dynamics matrix. To understand how this is done, we need to review the EM algorithm
briefly.

5 The EM algorithm

So far, we have shown that given a set of parameters § = {R,Q, A} and a matrix of N
measurements Y, it is possible to compute the expected values of the states with an extended
Kalman smoother. In this section, we present a treatment of the EM algorithm that will
allow us to learn the parameters 6 of nonlinear state space models.

The EM algorithm is an iterative method for finding a mode of the likelihood function
p(Y']8). Its most remarkable attribute is that it ensures an increase in the likelihood function
at each iteration. Roughly speaking, the EM algorithm proceeds as follows: (1) estimate the
states w given a set of parameters 6, (2) estimate the parameters given the new states, (3)
re-estimate the states with the new parameters, and so forth.

It is convenient to think of w either as missing observations or as latent variables. EM is
particularly useful because many models, such as mixtures and hierarchical models, may be
re-expressed in augmented parameter spaces, where the extra parameters w can be thought
of as missing data. That is, in situations where it is hard to maximise p(Y|0), EM will allow
us to accomplish this by working with p(Y, w|6).

In some pattern recognition scenarios, it is useful to interpret w as the latent causes
responsible for generating a particular density model (Bishop, Svensén and Williams 1996). In
such applications, the number of hidden variables is typically much smaller than the number
of observed variables. Therefore, complex idiosyncrasies in the data may be mapped into
much lower dimensions, where patterns, such as causes, are clearly manifest. Figure 3 shows
a schematic representation of this data visualisation technique proposed by Bishop (Bishop
et al. 1996).

To gain more insight into the EM method, let us express the likelihood function as follows:

p(w|Y,6) _p(w,Y|0)

p(Y10) = p(Y|0)p(w|Y,9) - p(w|Y,8)

Taking the logarithms of both sides, yields the following identity:
Inp(Y|6) = lnp(w,Y|0) — Inp(w|Y, 6)

Let us treat w as a random variable with the distribution p(w|Y, 6'¢), where 6°'® is the current
guess. If we then take expectations on both sides of the previous identity, while remembering
that the left hand side does not depend on w, we get:

Inp(¥]6) = Elln p(w, Y|6)] — Elln p(w]Y 6)] (3)
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Figure 3: Data visualisation with latent models.

where the expectations involve averaging over w under the distribution p(wl|Y,6°'¢). For
example:

Eflnp(w, Y|9)] = / [In p(w, ¥ |9)]p(w|Y, 6°)dw

A key result for the EM algorithm (see Appendix A for a proof) is that the second term
on the right side of equation (3) is maximised for #°'¢. That is:

E[lnp(w|Y,6°)] > E[lnp(w|Y, )]

for any 6.

To apply the EM algorithm, we need to compute the first term on the right side of equation
(3) repeatedly. The aim is to maximise this term at each iteration. One method of maximising
it is discussed in detail in the next section. For the time being, let us assume that we can
maximise it, that is:

E[lnp(w,Y[6*™)] > E[lnp(w, Y]6°%)]
Then, it follows that the likelihood function also increases at every iteration. To demonstrate
this important result, consider the change in likelihood for a single iteration:
Inp(Y[6*") —lnp(Y|6~*) = (E[np(w,Y|0*")] — E[lnp(w,Y|[§¢)])
— ( E[lnp(w|Y,6"")] — E[lnp(w|Y,6°)])

The right hand side of the above equation is positive because we are averaging under p(w|Y, 6°'¢).
Consequently, the likelihood function is guaranteed to increase at each iteration.

The EM algorithm’s name originates from the steps that are required to increase E[ln p(w, Y'|6)],

namely compute the Expectation and then Maximise. The EM algorithm, thus involves the
following steps:

Initialisation : Start with a guess for °.

E-step : Determine the expected log-likelihood density function of the complete data given
the current estimate 6°'%:

Ellnp(w,Y|0)] = /[Inp(w,Y|0)]p(w|Y, 07 )dw

M-step : Compute a new value of  that maximises the expected log-likelihood of the com-
plete data. The maximum can be found by simple differentiation of the expected log-
likelihood with respect to 6.



Note that at the M-step, we only require an increase in the expected log-likelihood of the
complete data. That is, we do not need to find the maximum. This is the basis for generalised
EM (GEM) algorithms (Dempster et al. 1977, Gelman, Carlin, Stern and Rubin 1995).

The price to pay for the simplicity and stability of the EM algorithm is slow convergence,
especially in the presence of large amounts of missing information (Gelman et al. 1995, Meng
and Rubin 1992). Although several methods have been proposed to mitigate the convergence
problem, they often jeopardise the simplicity and stability of the algorithm (Meng and Rubin
1992).

It is instructive to consider an alternative view of the EM algorithm, suggested by Neal
and Hinton (Neal and Hinton 1998). By marginalising the log-likelihood of the complete data,
one obtains the log-likelihood of the observed data:

Inp(Y|9) = ln/p(w,Y|0)dw

If we now consider any distribution @) over the latent variables w, we may expand the log-
likelihood of the observed data as follows:

1n/p(w,Y|9)dW = ln/Q p(W Yle)dw

> /Q(W) In %dw

= /Q(W) lnp(w,Y|9)dW—/Q(W) InQ(w)dw
= £(Q,9)

where we have made use of Jensen’s inequality (Bishop 1995). The lower bound is the negative
of the Kullback-Leibler (KL) divergence (Kullback and Leibler 1951). The KL divergence
is a measure of the distance between two distributions. Therefore, by minimising the KL
divergence (increasing the lower bound), we increase the log-likelihood of the observed data.
If we define the energy of a configuration to be —Inp(w,Y|#), the lower bound is known in
statistical physics as the free energy. It is given by the expected energy under ) minus the
entropy of (). Note that, from the results in this section, the inequality becomes an equality
when Q(w) = p(w|Y, 6°).

6 The EM algorithm for nonlinear state space models

To derive the EM algorithm for nonlinear state space models we need to develop a probabilistic
model for equations (1) and (2). We assume the likelihood of the data given the states, initial
conditions and evolution of the states to be represented by Gaussian distributions. That is,
if the initial guess of the states and covariance is given by u and II, then:

1 1
p(wi) = W exp | — §(W1 — )T (wy — ) ]
p(wk|Wk—1) = W exp |: — %(Wk — Awk_l)TQ_l(Wk — Awk_]_)]

PYelwe) = s 0 [ = 50— B )R (= g(owa,) )

Let us use Y to denote the N measurements {y; ---yn} and w to denote {wy ---wn}.
Under the initial model assumptions of uncorrelated noises and Gauss-Markov state evolution,
the likelihood of the complete data is given by:

N N

p(w,Y|0) = p(w1) H P(Wk|We—1 H (yk|we)
k=2 k=1



Hence, the log-likelihood of the complete data is given by the following expression:

p(w,Y10) = ~3" [ (e - g 00 TR 31 — g 0)) ] — NInlR
pPlw, = k_12}’kgk,k Yk — 8{Wk, Xk 2
N
—Z |: %(wk — Awk_1)TQ_1(Wk - Awk—l)] - N2_ ! In|Q|
k=2
- s - ) - ] = T D oy

As discussed in the previous section, all we need to do now is to compute the expectation
of Inp(w,Y|0) and then differentiate the result with respect to the parameters € so as to
maximise it. The EM algorithm for nonlinear state space models will thus involve computing
the expected values of the states and covariances with the extended Kalman smoother and
then maximising the parameters § with the formulae obtained by differentiating the expected
log-likelihood. Before we proceed to derive these formulas we require to revise a few basic
mathematical preliminaries.

6.1 Mathematical preliminaries

The following results are required to understand the subsequent derivations:

1. The trace of a matrix A, denoted by tr(A), is the sum of the diagonal entries of A. The
trace is invariant under circular permutations in its argument, consequently:

tr(ABC) = tr(BCA) = tr(CAB)
In addition, the trace is a linear operator:

tr(A 4+ B) = tr(A) + tr(B) and tr(ad) = atr(A)

2. The following expectation for a vector x and a matrix A holds:
ExTAx] = E[tr(x? Ax)]
= E[tr(4xx7)]
= tr(AE[xx"))

3. The following sufficient statistics, which follow from elementary probability theory, will
be required:

E[wY] = Wy
E[wywi|Y] = Pyn +WinWiy
Ewiwi Y] = Pij1n +WenWi yn

4. We shall need the following results for matrix differentiation (see for example (Graham

1981)):
Oln|Al  _ —1\T
otr(BA) T
a4 - B
otr(ATBA) T
4 BA+B*A



6.2 Computing the expectation of the log-likelihood

If we take the expectation of the log-likelihood for the complete data, by averaging over w

under the distribution p(w|Y, 6'¢), we get the following expression:

N -1
2

1 N(m +
In|@| - ;I - X7 +9)

Ellnp(w,Y|0)] = —%ln|R|— In(27)

E[yiR 'yi — yi R g(wi, %)

|
M =
N | =

~
Il
AN

— g(Wii, %) "R yk + g(Wi, %) TR g(wie, xxc) |

-

1 _ _ —
§E [wkTQ 'wi —wrQ 'Awy_1 —wi ATQ twy,

=~
[|
)

+wi_ATQ Awy_y ]
1
_§E [ will twy —will tp — p I wy + /,LTH*I;L]

We need to digress briefly to compute the expectation of the measurements mapping g(wy, xi).
We should recall that the EKF approximation to this mapping is given by:

BW) = B(W) + OB | gy (w W) 4 -
Consequently, if we take expectations on both sides of the equation, we get:

E[g(wi)] = g(Wkn)

and
Bl(g(w) — (%)) &(w) ~ g(#)] = B[ (8(#)+ S | (uosy(w — %)~ g(%)) *
(89 + D8 | oy —#) (%)) ]
= B[( ] v )7

= GT'PG
Hence, under the distribution p(w|Y, 6°'¢), it follows that:

E[g(wk)Tg(Wk)] = GEPk\NGk + g(Wk|N)Tg(Wk|N)

Using these results for the expectation of the measurements mapping, together with the results
1, 2 and 3 of Section 6.1, the expectation of the log-likelihood becomes:

N N-1
E[lnp(w,Y10)] = _Elanl -

)

=1

(m+4q)

1 N
In|Q| — 3 In |TI| — In(27)

tr (R [yrye — yi 8(Wigns Xi) — (Wi, Xi) T Ve

N | =

+ g(Win, Xk) T (Wi N, Xk) + Gi PnGi | )

10



-3

=2

tr ( Q1 [ Wk|NWkT|N + Pyn — 2A(Wk|NWkT_1|N + Pk,kfllN)T

N | =

+ A(Wp-1Wi_y y + Peoyn)AT])
1 . )
—5tr (I [y Wiy + Py = 2Wa v’ +pp” ])

Completing squares and using the following abbreviations:

N

N ~T
r = E Wi N Wi N + Prn
k=2
N
_ N AT
A = E Wi 1|NWi_1n T Pr—1|n
k=2
N
_ . .7
T = E WeINWi_1 N T Pre-1|n§
k=2

we get our final expression for the expectation of the log-likelihood:

N N-1 (m+q)

Ellnp(w,Y|9)] = —Eln|R| —— In|Q| - %ln|1'[| _N In(27)
Y1
- Z Jtr (R (yr — 8(Wipn, %x)) (yx — 8(Wiw, %x)) T
k=1

+ GkTPk|NGk] )
5t (Q7H [T - 2417 + 4AAT] )

L (I [ (o — ) - 7+ Po]) ®)

6.3 Differentiating the expected log-likelihood

To maximise the expected value of the log-likelihood with respect to the parameters 0, we
need to compute the derivatives with respect to each parameter individually. This is done in
the subsequent sections, where we make use of the results from point 4 in Section 6.1.

6.3.1 Maximum with respect to A
Differentiating the expected log-likelihood with respect to A yields:

(%E[lnp(w, Y|9)] = 1oy, (@' [T —24YT + AAAT])

—% (—2Q7'YT +2Q7TAA)

Equating this result to zero, yields the value of A that maximises the log-likelihood:

A=TA? (6)

6.3.2 Maximum with respect to R
Differentiating the expected log-likelihood with respect to R~! gives:
N
N _ 1 _
- In|R a —Zitr(R ' GE Py NG
k=1

0

LEHHP(W’YW)] = W(

OR!
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+ (y& — g(Wk|N,Xk))(Yk - g(Wk\N,Xk))T] ) )
N
N 1
+ (v — 8(Wign, Xi)) (Y — 8(Wiepw, xx)) ™)
Hence, by equating the above result to zero, the maximum of the log-likelihood with respect
to R is given by:
1 X
R= N Z ( GkTPk|NGk + (yr — g(Wk|N,Xk))(Yk - g(Wk|N,Xk))T) (7
k=1

6.3.3 Maximum with respect to @
Following the same steps, the derivative of the expected log-likelihood with respect to Q! is
given by:

CN-1_ 1 r r

Hence, equating to zero and using the result that A = TA~!, the maximum of the log-
likelihood with respect to @ is given by:

1 -1
Q=5—7 (T -TAa™irT) (8)

6.3.4 Maximum with respect to pu

It is also possible to treat the initial conditions as parameters and improve their estimates in
the M-step of the EM algorithm. Finding the derivative of the expected log-likelihood with
respect to the initial states gives:

0 1__ R
@E[lnp(w,YW)] = EH L ( — 2wy N + 2,u)
Hence, the initial value for the states should be:
M= VAVI\N (9)

6.3.5 Maximum with respect to II

The derivative of the expected log-likelihood with respect to the inverse of the initial covari-
ance gives:

0 m 1, . .
WEUHP(W,YW)] =573 ((Win = w)(Wyny — )" + Pyyw)
Therefore, the initial covariance should be updated as follows:

II=PFP N (10)

6.4 The E and M steps for nonlinear state space models

We can now prescribe the EM algorithm for nonlinear state space models as follows:
Initialisation : Start with a guess for § = {R, @, 4,11, u}.

E-step : Determine the expected values Wy n, Py n and Py ;_1n, given the current param-
eter estimate 6°'¢, using the extended Kalman smoothing equations described in Section
4.1.

M-step : Compute new values of the parameters § = {R, @, A, II, 4} using equations (6) to
(10).

12



7 Experiments

7.1 Simple regression example

For the purposes of demonstrating the method, we address the problem of learning the fol-
lowing nonlinear mapping from (z1,z2) to y:

y:4s1n(x1—2)+2$2+5+77

where z; and z; were chosen to be two normal random sequences of 700 samples each . The
noise process 7 was sampled from a zero mean Gaussian distribution with variance R = 0.5.
An MLP with 4 sigmoidal neurons in the hidden layer and a linear neuron in the output
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Figure 4: The top plots show the log-likelihood function and the convergence rate (log-
likelihood slope) for the simple regression problem. The bottom plots show the convergence
of the measurements noise covariance R and the trace of the process noise covariance Q).

layer was used to approximate the measurements mapping. After 50 iterations, as shown in
Figure 4, the estimate of observation variance R converges to the true value. In addition, the
uncertainty of the model @ goes to zero. As a result, the innovations covariance (variance
of the evidence function p(yx|Yx—1, Wgk—1,Qr—1, Rk—1)) tends to R over the entire data set,
as shown in Figure 5. The top plot of this figure shows that the MLP approximates the
true function without fitting the noise. That is, it generalises well. Figure 4 also shows how
the log-likelihood increases at each step, thereby demonstrating that the algorithm converges
well.

7.2 Robot arm mapping

This data set is often used as a benchmark to compare neural network algorithms!. Tt involves
implementing a model to map the joint angle of a robot arm (z1,z3) to the position of the

!The data set can be found in David Mackay’s home page: http://wol.ra.phy.cam.ac.uk/mackay/
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Figure 5: The top plot shows that the MLP fit, for the regression example, approximates the
true function; it does not fit the noise. As a result the network exhibits good generalisation
performance. The bottom plot shows that the uncertainty in the predictions (innovations)
converges to the uncertainty engendered by the measurement noise.
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end of the arm (y1,y2). The data were generated from the following model:

y1 = 2.0cos(z1) + 1.3cos(z1 + z2) + €1
y2 = 2.0sin(z;) + 1.3sin(z; + z2) + €2

where ¢; ~ N(0,02); 0 = 0.05. We use the first 200 observations of the data set to train our
models and the last 200 observations to test them.

Train set
N w

[

w

Test set

[N

Figure 6: The top plots show the training data surfaces corresponding to each coordinate of
the robot arm’s position. The Middle and bottom plots show the training and validation data
[- -] and the respective MLP mappings [—].

Figure 6 shows the 3D plots of the training data and the contours of the training and test
data. The contour plots also include the typical approximations that were obtained using our
algorithm and an MLP with 2 linear output neurons and 20 sigmoidal hidden neurons. Figure
7, shows the convergence of the algorithm. In this particular run the training and test mean
square errors were 0.0057 and 0.0081 (the minimum bound being 202 = 0.005). Our mean
square errors are of the same magnitude as the ones reported by other researchers (Andrieu,
de Freitas and Doucet 1999, Holmes and Mallick 1998, Mackay 1992, Neal 1996, Rios Insua
and Miiller 1998). Figure 7 also shows the two diagonal entries of the measurements noise
covariance and the trace of the process noise covariance. They behave as expected.

7.3 Classification with medical data

Here, we consider an interesting nonlinear classification data set? collected as part of a study
to identify patients with muscle tremor (Roberts, Penny and Pillot 1996, Spyers-Ashby, Bain
and Roberts 1998). The data was gathered from a group of patients (9 with, primarily,
Parkinson’s disease or multiple sclerosis) and from a control group (not exhibiting the disease).
Arm muscle tremor was measured with a 3-D mouse and a movement tracker in three linear
and three angular directions. The time series of the measurements were parameterised using

2The data is available at Stephen Roberts’ home page: http://www.ee.ic.ac.uk/hp/staff/sroberts.html
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Figure 7: The top plots show the log-likelihood function and the convergence rate (log-
likelihood slope) for the robot arm problem. The bottom plots show the convergence of the
diagonal entries of the measurements noise covariance R (almost identical) and the trace of
the process noise covariance Q.

a set of autoregressive models. The number of features was then reduced to two (Roberts
et al. 1996). Figure 9 shows a plot of these features for patient (o) and control groups (+).
The figure also shows the decision boundaries (solid lines) and confidence intervals (dashed
lines) obtained with an MLP, consisting of 10 sigmoidal hidden neurons and an output linear
neuron.

The size of the confidence intervals is given by the innovations covariance. That is, our
confidence of correctly classifying a sample occurring within these intervals should be very
low. The receiver operating characteristic (ROC) curve, shown in Figure 10, indicates that
we can expect to detect patients with a 70% confidence without making any mistakes. The
percentage of classification errors in the test set was found to be 15.17. This error is of
the same magnitude as previous results (Roberts and Penny 1998). Finally, the convergence
properties of the EM algorithm for this application are illustrated in Figure 8.

8 Conclusions

In this paper, we derived an EM algorithm to estimate the neural network weights, mea-
surement noise and model uncertainty jointly. We applied the method to regression and
classification tasks. In both cases, we found that it performs well in terms of model accuracy
and generalisation ability.

The method is able to estimate the measurement and model uncertainty via the noise
covariances R and @. As a result, it does not overfit the data and does not, necessarily,
require an additional test set to cross-validate the data.

Further research avenues include extending the method to other types of noise processes,
testing on additional data sets and investigating ways of efficiently initialising the algorithm
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Figure 8: The top plots show the log-likelihood function and the convergence rate (log-
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vergence of the measurements noise covariance R and the trace of the process noise covariance

Q.

Figure 9: Classification boundaries (=) and confidence intervals (- -) for the MLP classifier.
The circles indicate patients, while the crosses represent the control group.
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Figure 10: Receiver operating characteristic (ROC) of the classifier for the tremor data.

s0 as to avoid local minima. Variational approximations might provide an answer for the
latter issue.
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A An Important Inequality

In this section, we prove an important inequality which arises in the derivation of the EM
algorithm:
E[lnp(w|Y, 6°¢)] > E[lnp(w|Y,0)]

where the expectations are taken as follows:

/[lnp(w|Y, 6°')p(w|Y, 6°4)dw > /[lnp(w|Y, )]p(w|Y, 0°¢)dw (11)

We begin by noticing that the function z — 1 is tangent to the function Inz at z = 1. In
addition, the logarithmic function is concave, hence the following inequality holds:

Inz<z-1
As a result, it follows that:
E[lnp(w|Y,8)] — E[lnp(w|Y,6°¢)] = /[lnp(W|Y, 0) — Inp(w|Y, 6°¢)|p(w|Y, 6°'¢)dw
_ p(w|Y,6) oia
= /ln 7p(w|Y,0°1d)p(w|Y’0 )dw
p(W|Y, 0) 1d
DWIET) 171 p(w|Y,6)dw

[ Uty ~ 11 ol

=0

Hence:
E[lnp(w|Y,6°)] > E[lnp(w|Y, )]
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