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Abstract

This report addresses the problem of automatic speech recognition in the presence of inter-
fering noise. The approach adopted is to compensate the parameters of a clean speech model
given the statistics of the interfering noise. In this work these statistics are assumed to be
modelled by a Hidden Markov Model (HMM). The basic theory of static coefficient Parallel
Model Combination (PMC) is reviewed and placed within the framework of approximating
the Maximum Likelihood (ML) estimate of the corrupted speech model, given the clean speech
and interfering noise models. In addition the paper examines the problem of compensating
delta coefficients in a PMC framework. FExpressions for ML estimates of delta coefficients
are derived and computationally efficient approximations of these estimates are given. The
effectiveness of compensating delta parameters is discussed.
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1 Introduction

As speech recognition technology moves from the laboratory to real applications, there is a need to
make systems which are robust to a wide variety of background noises. Many different approaches
to achieving noise robustness have been studied [12]. These approaches may be split into two
groups.

Firstly, the corrupted waveform may be preprocessed in such a way that the resulting param-
eters are closely related to those of clean speech. Techniques in this category include spectral
subtraction [13, 11] spectral mapping [7] and inherently robust parameterisations [5]. These meth-
ods only use statistical information about the interfering noise in the compensation process, no
account is made of what was said.

The second class of methods attempt to modify the pattern matching stage in order to account
for the interfering noise. Methods in this approach include noise masking [6, 4], state based
filtering [15], cepstral mean compensation [1, 16] and HMM decomposition [3].

This paper is concerned with the latter approach to noise robustness. In particular the scheme
based on Parallel Model Combination (PMC) [9, 10]. The basic concept behind PMC assumes
that the performance of speech recognition systems is optimum when there is no mismatch between
training and test conditions. Specifically, PMC considers the case where there is interfering additive
noise. Invariably in real applications, there is some mismatch between training and test conditions,
so some method for compensating the parameters of the models, or re-training of the models is
required. If the effect of the ‘mismatch’ is known, for example in interfering additive noise, it
should be possible to modify the training data to match this new test condition and then re-train
the models. This would require that the whole database be stored and modified whenever the
conditions change, a highly computationally expensive task. It is therefore necessary to compress
the training data into a more manageable form. One method is to store statistics derived from the
training data. The task is then to train a new set of models using these training statistics. To this
end the standard HMM re-estimation formulae are modified to accommodate statistical training
data. The modifications are described in section 2, where re-estimation formulae for Maximum
Likelihood (ML) estimates of the parameters are given. The theory is then applied to the specific
case where the training data is modelled using HMMs.

In section 3 the theory of PMC is reviewed and placed within the concept of making a ML
estimate of corrupted speech models where there is interfering additive noise. Here, both the
speech and the interfering noise are required to be modelled. As previously stated, the speech may
be modelled using standard HMMs. If there is significant temporal information in the interfering
noise, it is also necessary to model the noise using an HMM. Computationally highly efficient
approximations to the true ML estimates are derived.

The basic theory of PMC is extended to include delta, differential, parameters in section 4. If
model compensation techniques are to be applied to large vocabulary tasks, where it is essential to
use dynamic coefficients to achieve good recognition performance, methods for compensating the
dynamic coefficients must be found. Firstly, it is necessary to find what effect the ‘mismatch’ has
on delta parameters. Approximations are then made of this mismatch function which allow the
model parameters to be compensated using the statistics obtained from standard HMMs. Again
computationally efficient approximations are derived.

Section 5 details the experimental work carried out on the NOISEX-92 database. Firstly the
performance of the static coefficient compensation schemes is examined. Both the approximate
scheme and numerical integration of the exact values are compared to uncompensated models and
models trained under the noise conditions. The performance of delta coefficient compensation is
then examined.

2 Training HMMs on Statistical Data

It is well known that the performance of HMM based speech recognition systems degrades rapidly
as the mismatch between the training and test conditions increases. A scheme which modifies the
parameters of the models to compensate for this mismatch in conditions is therefore required. If



the compensation process is to be rapid it is normally not possible to compensate the whole of
the training database for the ‘mismatch’ and then re-train the models. This would firstly require
that all the training data is available on line and that sufficient time is available to compensate
it all. Both are unlikely under real test conditions. An alternative is to use statistics derived
from the training data. If all the information from the training data is accurately represented in
these statistics and the ‘mismatch’ correctly modelled, there will be no degradation in performance
compared to training and testing under the same conditions. Assuming that such statistics exist,
it is necessary to modify the standard HMM re-estimation formulae to accommodate the use of
statistical data, instead of actual observations. Firstly an optimisation criterion must be chosen.
For this work a Maximum Likelihood estimate will be used. The notation adopted in this section
of the report is based on that used in the HTK Manual [14]. A more detailed discussion of HMM
theory and application for speech recognition is given by Rabiner [8]. Looking at the standard
re-estimation formula of the new mean of mixture M,, of state S, jijm
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¢jm 1s the mixture weight associated with mixture M, of state .S,
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where ¢;(t) indicates state S; at time ¢ and
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This can then be expressed in terms of the expected values of random variables instead of true
observations. As 1" — co equation 1 can be rewritten

fim = TE {ij(T)YT} _ E{ij(’r)y.,}
I TE{Ljm (7))} E{Ljm(7)}

Similar expressions for the variance and mixture weights in terms of expected values may be
obtained.

So far nothing has been assumed about the form of the statistics. Given the nature of the
speech signal, highly correlated data with temporal information, it is not possible to accurately
store all the information about the database in a small number of statistical parameters. If this
were possible, the task of speech recognition would be far easier. However, it is possible to store
considerable information about the speech using HMMs. HMMs have been shown to achieve
good recognition performance and hence may be assumed to contain sufficient information about
the training data for recognition purposes. Furthermore, there exist elegant and efficient training
algorithms for HMMs. If HMMs are used to model the training data and the frame state allocation
is not altered then

(7)
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For multiple Gaussian mixture HMMs the re-estimation formula becomes
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Similarly the re-estimation for the covariance matrix becomes
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The transition matrix will remain the same as the frame state allocation is assumed to be unaltered.
All the above expressions may be seen to be functions of

E{Km(y)} = / Ko (¥)p(y) dy (13)
J
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If a single Gaussian mixture model is to be estimated, M = 1, then
Kn(y) =K(y) =1 (16)

and the formulae may be simplified accordingly.

No assumptions have been made in the above analysis about the form of the probability dis-
tribution of y. If it is derived from a standard HMM then it may either be a single or multiple
Gaussian mixture. For both single and multiple Gaussian mixtures the analysis is valid. It is not
necessary to assume that the frame state allocation is fixed, however given the poor assumptions
of the HMM with regards to most real signals and the poor durational modelling of the standard
HMM, little will be gained by relaxing this assumption. If multiple Gaussian mixtures are to be
estimated it is necessary to iterate in a standard FM fashion to obtain the ML estimate, unless
the same number of states is to used in the compensated models as were in the training statistics
and the form of y = F(), where F() describes the effect of the mismatch on the clean parameters,
is linear, or a single mixture is to be used.



3 Basic PMC Theory

The objective of any HMM based noise compensation scheme is to estimate, according to some
objective function, the corrupted speech model given information about the clean speech and
interfering noise. If the corrupted speech is to be modelled by a standard HMM, then to obtain
the ML estimate of the noise compensated speech model it is necessary to estimate the mean and
covariance of the corrupted speech. This is a specific example of training HMMs on statistical data,
as described in the previous section. For PMC the mismatch is caused by interfering additive noise.
It is necessary to define the ‘mismatch’ function for this case. To obtain this function a series of
assumptions are made.

1. The speech and noise are independent.

2. The speech and noise are additive in the linear domain. In addition it is assumed that there
is sufficient smoothing on the spectral estimate so that the speech and noise may be assumed
to be additive at the power spectrum level.

3. A single Gaussian or set of Gaussian mixtures contain sufficient information to represent the
distribution of the observation vectors in the log domain.

4. The frame state allocation is not altered by the addition of noise.

The ‘observations’ are then given by the ‘mismatch’ function
yi(t) = O;(t) = F(S;(1), Ni(1)) = log(g exp(S;(1)) + exp(Ni(1))) (17)

where ¢ is a gain matching term introduced to account for level differences between the clean speech
and the noisy speech, S'(¢) is the clean speech and N'(¢) is the interfering noise. Throughout the
rest of this paper the superscript will be used to indicate the domain of the variable. Thus O¢(t)
is the corrupted speech observation in the cepstral domain, O'(t) is in the log spectrum domain
and O(t) is in the linear spectrum domain. Furthermore O°(t) will represent the observation at
time ¢, the associated random variable will be O¢. All variables in bold are vectors or matrices,
subscripts indicating elements of the vector or matrix. In the above expression a log() compression
function has been used, as is normal with the use of cepstral coefficients. An appropriately modified
‘mismatch’ function may be used with any compression function, however, the approximations used
in this section are specific to the log() compression. For simplicity of notation only one state of
each model will be considered. The way in which multi-state models are combined is detailed in
previous work [10].
Substituting equation 17 in equation 10, the new estimate of the mean is

l RLdSlRLle [Km(S', N') log(g exp(S!) + exp(N}))p(S")p(N)]
fi(m) = JaST JANT [ (87, NI p(S1)p(N)] (18)
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where fil(m) is the " element of the mean associated with the m®® mixture. F(S. N!) is non-
linear so if multiple mixture models are to be estimated then it is necessary to use an iterative
scheme. If only a single mixture HMM is to be estimated then K,,(S',N') = 1 and the above
expression may be simplified to

i :R/ndi/nm log(g exp(S!) + exp(N!))p(S")p(N) (19)

Throughout the rest of this report only single Gaussian mixture models will be considered, so it
is not necessary to use an iterative scheme to obtain the ML estimate. The covariance estimation
formula can be written in the same form. Substituting equation 17 in equation 11 yields

S, = [d5![N'og(g exp(S!) + exp(N.))log(y exp(S]) + exp(N (S )p(N) — g (20)
R™ Rm



There are no weights to re-estimate.

If the speech and noise are modelled by separate HMMs trained on cepstral feature vectors
having Gaussian distributions with parameters {u¢, £} and {7, £¢} respectively, it is necessary
to map these parameters to the log spectrum domain. For the speech

po= e (21)
» = cTlzeehHt (22)

and similarly the noise parameters {4, f]c} may be mapped to {, 5]’} where C is the matrix
representing the discrete cosine transform. No additional assumptions are required at this stage,
as the linear combination of Gaussian distributed random variables is itself Gaussian distributed.

There is no closed form for either the compensated mean, i’ or covariance, f]l, as described
by equations 19 and 20. So to obtain exact forms for the above expressions would require multi-
dimensional numerical integration. However, if it is assumed that the sum of two lognormally
distributed variables is itself approximately lognormally distributed then it is only necessary to
calculate the mean and the variance in the linear spectrum domain. Given the previously stated
assumptions that the speech and noise are independent and additive in the linear spectrum domain

gp+ ji (23)
¢S+ 3 (24)

M> =
|

where the parameter set {y, X} are the mean and covariance respectively of the lognormal distri-
bution associated with the Gaussian distribution {u!, £'} and similarly {, £} and {j’, Z'} . The
parameters of the clean speech in the linear and log spectrum domains are related by

pi = exp(p + =i;/2) (25)
Sij =y [exp(Ey;) — 1] (26)
and similarly for the noise [10]. As the corrupted speech is assumed to be lognormally distributed

in the linear spectrum domain, the required distribution in the log spectrum domain, {f', f]l},
may be obtained using the inverse of the above expressions. Hence

. N 1 i
pi = log(f) - §log( 5+ 1) (27)
Hi
S = log| /L +1 28
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If cepstral parameters are to be used in the recognition stage, then we use the final mapping
pe = Cu (29)
¥ = cx'ct (30)

This process can be viewed as an approximation to the ML estimate of a Gaussian distribution
of the observed corrupted speech signal, O°(¢) given the Gaussian distributions of the clean speech
and interfering noise, with minimal computational overhead.

4 Delta Coefficient Compensation Theory

For large vocabulary speech recognition it is necessary to incorporate dynamic coefficients in the
speech parameterisation to achieve good recognition performance. The basic theory for PMC
has relied on the fact that the speech and noise are additive. Hence the corrupted speech signal
is a simple combination of the speech and noise signal in the linear spectrum domain. When
dynamic coefficients are used this simple combination is not possible. To implement delta coefficient



compensation within the PMC framework it is necessary to obtain the new ‘mismatch’ function.
If the speech is now parameterised using

0% ()" = [0°(t)", AO°(1)"] (31)
where AO“(t) are the simplest form of dynamic coefficients, delta coefficients, then
AO(1) (0O°(t+1) = 0O°(t—1))
C(O'(t+1) -0t —1))
= Clog[(O(t+1))/(0(—-1))] (32)

where / is elementwise division. Using the assumption that the speech and noise are additive,
O(t) = S(t) + N(¢), and substituting this in the above equation

AO°(t) =Clog[(SE+ 1)+ N(t+1))/(S(t—1)+N(t — 1))] (33)

This may be expressed in terms of the delta coefficients of the speech, AS(t), and noise, AN(?),
in the linear domain

Si(t+1) Ni(t+1)
AQO;(t) =
®) (Si(t—1)+Ni(t—1))+<Si(t—1)+Ni(t—1)
Si(t—1) )
i(t=1) | (=1 |
N.@-1) N.(-1)

The corrupted speech cepstral delta coefficients have been rewritten in terms of the static and
delta coefficients of the clean speech and interfering noise. Examining the observation time the
delta coefficient at time ¢ is dependent on the static coefficients at time ¢ — 1. This is contrary to
one of the assumptions behind the use of HMMs for speech recognition, that the speech waveform
may be split into stationary segments with instantaneous transitions between them. However, if
the segments are assumed to be long enough then the statistics of S(¢ — 1) will be approximately
the same as those of S(¢) and N(¢ — 1) the same as N(¢). With this assumption statistics exist for
all the variables of equation 34. This is then an appropriate ‘mismatch’ function.

An ML estimate of the delta parameters of the HMM is needed. Again this requires the mean
and the covariance of the signal in the log spectrum domain to be calculated. If the speech is
parameterised in the cepstral domain it must be mapped to the log spectrum domain. For the
speech

(W) = [(C' )", (O Apc)] (39)
and
EAl B |: C—lzc(c—l)T C—l&xc(c—l)T :| (36)
| clgEat(c )T ctaxzf(echHT
where dX°¢ is the covariance matrix representing the correlation between the static and delta
coefficients. A similar mapping converts the noise parameters {i®¢, f]AC} to {4, flAl}. The
ML estimates of the static coefficients are unaltered. Those for the delta coefficients are given by
substituting equation 34 in equations 10 and 11 and assuming a single gaussian mixture is to be
estimated.

Ajl = /dSl/dN’/dASl/dANlp(S’, ASYp(N', AN") log ('yi exp(AS) + exp(ANi.)) (37)
R™» R™» R=» R=
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and

58, = /dsl/le/dAs’ dAN' (39)
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If diagonal covariance matrices for the corrupted speech are to be estimated it is not necessary

to estimate dfll. To calculate the full forms of equation 37 and equation 38 again requires multi-
dimensional numerical integration, which is computationally expensive. However by making an
additional assumption that the variances on 7 and 7 are negligible then the form of the ML
estimates of the delta parameters are the same as those of the static coefficients. Hence

AAﬂz’ = Vil + AL ~ (42)
AX; = 77;A + 00, A (43)
where
SR i
£l =€ §N+1 ~ (%:_”_Ll) _ = (44)
and
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The mean and covariance can now be mapped back into the cepstral domain in a similar way to

the static coefficients

At = cAy (46)
AX° = cAx'cT (47)

5 Evaluation on NOISEX-92

In this section a number of experiments using the NOISEX-92 database [2] are reported. The data
was preprocessed using a 25 msec Hamming window and a 10 msec frame period. For each frame
a set of 15 MFCC were computed. The zeroth cepstral coefficients is computed and stored since it
is needed in the PMC mapping process. Where delta coefficients are used all 15 delta MFCC are
calculated.

For each digit, a single mixture continuous density HMM with 8 emitting states was trained
using the clean data only. The topology for all models was left-right with no skips and diagonal
covariance matrices were assumed throughout. For each test condition, a single state diagonal
covariance noise HMM was trained using the silence intervals of the test files. Recognition used
a standard connected word Viterbi Decoder constrained by a syntax consisting of silence followed
by a digit in a loop. Thus no explicit end-point detector was used and insertion/deletion errors
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occurred as well as classification errors. The results are in terms of % accuracy where for N
tokens, S substitution errors, D deletion errors and [ insertion errors, accuracy is calculated
as [([N —S — D —1I)/N] x 100%. The error counts themselves were calculated by using a DP
string matching algorithm between the recognised digit sequence and the reference transcription.
All training and testing used version 1.4 of the portable HTK HMM toolkit [14] with suitable
extensions to perform PMC.

SNR Lynz Fi6 Car
dB | Clean | Noisy | Clean | Noisy | Clean | Noisy
-06 12 54 12 50 23 79
+00 25 98 17 86 32 96
+06 59 100 50 98 75 98
+12 97 100 82 100 96 100
+18 | 100 100 95 100 99 100

Table 1: Baseline Static Performance

The initial set of experiments were performed to examine the performance of PMC compared
with the training and testing under the same condition. Table 1 shows the results for uncom-
pensated model parameters, Clean, and models trained under the test conditions, Noisy. For the
Noisy models the same complete dataset was used as for the clean training. This should therefore
be the best possible performance obtainable using model compensation techniques.

SNR Lynz Fi6 Car
dB | Fast | Num. | Fast | Num. | Fast | Num.
-06 | 40 41 57 52 68 63
400 | 93 91 83 86 94 94
+06 | 98 99 95 95 96 96
+12 | 100 100 100 100 95 95
+18 | 99 100 100 100 99 99

Table 2: Compensated Static Performance

Table 2 shows the performance of two model compensation schemes. The first, labelled Fast,
uses the assumption that the sum of two lognormally distributed variables is itself lognormally
distributed. With this assumption the compensation has a very low computational load. Secondly,
numerical integration to estimate the mean and variance is used, labelled Num.. This should
be a good approximation to the best ML estimate of the parameters given the statistics supplied.
Comparing the Fust performance to that of Num. there is little difference between the two schemes.
The assumption that the sum of two lognormally distributed variables is approximately lognormally
distributed itself, appears from empirical results to be good. Comparing the performance of the
compensation schemes to that of Noisy shows no significant difference. As expected the Noisy
results are slightly better. This indicates that there is enough discriminatory information contained
in single Gaussian mixture HMMs for the database used.

In order to investigate the use of delta coefficient compensation in the PMC framework, it was
decided to use only the delta coefficients in the recognition. If static coefficients are incorporated
they tend to dominate the recognition, having typically around 90% accuracy at +00dB on this
database. The first set of experiments on the delta coefficients were run assuming that the true
corrupted speech variance was known. Thus only the delta coefficient means were compensated
and the variance was set to the true variance of the corrupted speech. Table 3 shows the baseline
performance of the clean delta coefficient means, Clean, and the true corrupted speech means,
Noisy. The performance of the Clean parameters drops off rapidly below +12dB, whilst the Noisy
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SNR Lynz Fi6 Car
dB | Clean | Noisy | Clean | Noisy | Clean | Noisy
-06 26 29 13 22 28 33
400 29 54 28 59 34 43
406 66 82 77 90 68 82
+12 90 97 97 99 84 87
+18 95 97 100 100 95 98

Table 3: Baseline Delta Mean Performance

parameters achieve good performance down to +06dB.

SNR Lynz Fi6 Car
dB | Fast | Num. | Fast | Num. | Fast | Num.
-06 | 30 29 27 25 35 33
+00 | 44 44 62 61 53 43
+06 | 82 84 88 89 79 81
+12 | 95 95 99 99 88 88
+18 | 97 97 100 100 96 97

Table 4: Compensated Delta Mean Performance

Table 4 shows the performance of the compensated means. Two compensation schemes were
examined. The first used the approximation given in equation 42, labelled Fust. Secondly, the
true ML estimate, given in equation 37, was implemented using Gaussian numerical integration.
In table 4 this is labelled Num.. Again the variances were taken from the true variances of the
corrupted speech. The Fast and Num. performance is approximately the same and comparable to
the training of the parameters in noise, Noisy, in table 3.

SNR Lynz Fi6 Car
dB | Base | Comp | Base | Comp | Base | Comp
-06 | 20 32 8 20 25 29

400 | 27 44 28 93 37 37
406 | 49 64 34 82 61 50
+12 | 84 80 88 96 86 71
+18 | 97 94 96 98 95 88

Table 5: Full Delta Compensation Performance

Table b shows a comparison of uncompensated delta coefficients, Base, with compensated delta
coefficients, Comp. For the Comp scheme both means and variances were estimated using the fast
approximation. The performance of both schemes are worse than if the true variance of the delta
coefficients is used.

6 Conclusions
This report describes Parallel Model Combination in terms of estimating the Maximum Likelihood

parameters of a corrupted speech model. The corrupted speech model is trained on statistical data
obtained from the clean speech and interfering noise. These statistics are modelled by separate
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HMMs. Given the statistics and the ‘mismatch’ function, which models the effect of the addi-
tive noise on the parameter of interest, it is simple to find expressions for the ML estimates of
the corrupted model. In this report ‘mismatch’ functions are described for both static and delta
parameters, where the speech is coded using cepstral coefficients. For the static parameters, nu-
merical integration and a highly computationally efficient approximation are compared to training
and testing the models under the same noise condition. Both the approximation and the numerical
integration yield comparable recognition performance to training in the noise condition. In the
case of the delta parameters, an efficient approximation for the ML estimate is derived and shown
to give an estimate of the mean that yields good recognition results. However, the estimate of the
variance is poor. Methods of improving this estimate are under investigation.
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