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Abstract

Maximum likelihood linear regression (MLLR) is an adaptation technique suitable for
both speaker and environmental model-based adaptation. The models are adapted using a
set of linear transformations, estimated in a maximum likelihood fashion from the available
adaptation data. As these transformations can capture general relationships between the
original model set and the current speaker, or new acoustic environment, they can be effective
in adapting all the HMM distributions with limited adaptation data. T'wo important decisions
that must be made are (i) how to cluster components together, such that they all have a
similar transformation matrix, and (ii) how many transformation matrices to generate for a
given block of adaptation data. This paper addresses both problems. Firstly it describes
two optimal clustering techniques, in the sense of maximising the likelihood of the adaptation
data. The first assigns each component to one of the regression classes. This may be used
to generate standard regression class trees. The second scheme performs a fuzzy assignment
of base class to regression class, so the transformation associated with each component is a
linear combination of a set of transformations. Secondly two schemes are examined which
address the problem of how to determine the number of regression classes, transforms, for
a given amount of adaptation data. Two schemes are examined here. A cross-validation
scheme based on the auxiliary function of the adaptation data is described. Another scheme
based on the use of iterative MLLR is also detailed. Both these schemes require no a-priori
thresholding information. An initial evaluation of the techniques was performed using data
from the ARPA 1994 test data. On this task, though “good” trees, in terms of the likelihood of
the adaptation training data were generated, neither of the optimal clustering schemes yielded
gains in recognition performance. The performance of the cross-validation scheme was found
to be comparable to an empirically determined threshold scheme. The best performance was
achieved using iterative MLLR, which outperformed both fixed classes and threshold based
schemes.
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1 Introduction

Current state-of-the-art speaker independent (ST) speech recognition systems are capable of achiev-
ing impressive performance in clean acoustic environments for speakers that are well represented
in the training data. However, performance can be relatively poor for some speakers e.g. for
non-native speakers using a system trained on speech from native speakers. Furthermore, the
performance degrades, often dramatically, if there is some mismatch between the training and test
data acoustic environments. For complex speech recognition systems a large amount of data is
required to retrain the system for a particular speaker or acoustic environment. Hence, it is very
desirable to be able to improve the performance of an existing system while only using a small
amount of speaker-specific or environment-specific adaptation data.

Some environmental adaptation techniques require no speech data in the new acoustic envi-
ronment to adapt the model parameters [3, 12], only noise samples. However these schemes make
assumptions about the form of the acoustic environment. Other techniques can only update dis-
tributions for which observations occur in the adaptation data, such as those using maximum
a-posteriori (MAP) estimation [5, 6]. These require a relatively large amount of adaptation data
to be effective. Another approach is to estimate a set of transformations that can be applied to the
model parameters. If these transformations can capture general relationships between the original
model set and the current speaker or new acoustic environment, they can be effective in adapting
all the HMM distributions. One such transformation approach is maximum likelihood linear re-
gression (MLLR) [8, 9] which estimates a set of linear transformations for the mean parameters of
a mixture Gaussian HMM system, such that the likelihood of the adaptation data is maximised.
As many components are assumed to share the same transformation, it 1s possible to adapt all
the components of recognition system with little data. It should be noted that while MLLR was
initially developed for speaker adaptation, since it reduces the mismatch between a set of models
and adaptation data it can also be used to perform environmental compensation by reducing a
mismatch due to channel or additive noise effects.

In this paper two problems associated with MLLR adaptation are examined. The first prob-
lem is to decide how components should be clustered together, such that they all have a similar
transformation matrix. The second problem is how to decide how many transformations to gen-
erate, given a particular set of adaptation data. Initially the paper describes the basic theory of
maximum likelihood linear regression. The two clustering schemes considered, a hard clustering
scheme and a fuzzy clustering scheme, are described. The use of cross-validation and iterative
MLLR to determine the optimal number of transforms is then discussed. Finally some initial
experiments with simple regression class generation are described and the various transformation
selection techniques investigated.

2 Maximum Likelihood Linear Regression

MLLR is a technique for finding the optimal, in the sense of maximising the likelihood of the
adaptation data, linear transformation of the model parameters to represent the adaptation data.
In general there will be little adaptation data compared to the number of model parameters. Hence
it 1s necessary to cluster model parameters together into regression classes. It 1s assumed that all
components in a given regression class transform in a similar fashion.

2.1 Maximum likelihood linear regression

The new estimate of the mean, i, is found by

= We (1)

where W is the n x (n + 1) transformation matrix (n is the dimensionality of the data) and & is
the extended original mean vector

E=[1 m o] (2)



It is simple to see that
W=[b 4] (3)

where b is a bias on the mean and A is a transformation matrix, which may be full, block
diagonal, or diagonal. The aim is to find the transformation W that maximises the likelihood
of the adaptation data. This optimisation was originally described in [7] and is described in
appendix A.

2.2 Regression classes

As previously described all components associated with a particular regression class are assumed to
transform in a similar fashion, ie W is the same for all components. These regression classes may
be pre-determined and fixed prior to adaptation. This will be referred to as fized regression classes.
Alternatively the regression classes may be determined dynamically according to the amount of
adaptation data available using a regression class tree.

®
AN e
w@ o

Figure 1: A binary four base class regression class tree

A simple binary regression class tree with four base classes® is shown in figure 1. A regression
class tree, T, consists of a hierarchy of regression classes, {r1,72,r3} and a set of base classes,
{ca,c5,c6,c7}. These base classes may also be regression classes. When building a regression
class tree, it is necessary to assign base classes to regression classes according to some appropriate
criterion. Currently the regression class tree clustering is normally based on one of two schemes.

1. Phonetic knowledge. Here expert knowledge is used to decide which components are to be
transformed together. For example, the components may be split according to broad classes,
nasal, glide, or at a lower level into phones.

2. Acoustic space. Components are clustered according to how close they are in acoustic
space, irrespective of which phone they belong to. This has the advantage of being a “data-
driven” approach with no need for expert knowledge.

Little difference between the two techniques has been observed on relatively small tasks [7].

When using a regression class tree, there will typically be different amounts of adaptation data
for each speaker. There needs to be some method of deciding how far down the regression class tree
to go. For example, in the diagram a solid arrow and class indicates that there is “sufficient” data
for a transformation matrix to be generated using the data associated with that class, a dotted
line and class indicates insufficient data. Previously the concept of “sufficient” data has been
determined by using an empirically set threshold for the minimum number of frames to robustly
estimate a transformation [7]. Such a scheme is described below.

A simple top-down scheme starts the search at the root node (assuming that the root node has
sufficient data) and then:

LA base class is the lowest clustering of components that may be independently transformed. In the limit, of
course, there is a separate base class per-Gaussian. However this requires a vast amount of adaptation data to be
used.



For a node A
if A has children B and C
if B has sufficient data
search through node B
else
let A be the regression class for base classes in B
if C has sufficient data
search through node C
else
let A be the regression class for base classes in C
else
let A be the regression class for base classes in B and C

This will be referred to as the threshold stopping criterion.

3 Optimal Clustering Schemes

Neither of the clustering techniques described earlier are necessarily optimal, in the sense of max-
imising the likelihood of the adaptation data. The first scheme using phonetic knowledge assumes
that all components of a particular phonetic unit all transform in a similar fashion. Alternatively
in the acoustic space scheme, the components that are “close” in acoustic space transform the
same. It is felt that neither is necessarily true. To achieve an optimal? clustering it is necessary

to find
~ S ~
T= argmj@x{zg Q(s)(M,M|T)} (4)

where
QU (M, M|T) = (5)

M T
Ki = 2£(0r1M) 32 57 () [ +108(18 ) + (07) — i) 25} (0(7) — fo)]

m=171=1

and fi,, is the new estimate of the mean obtained using the transformation obtained using regression
tree 7. Though it is not normally feasible to obtain the globally optimal tree, it is possible to
guarantee that at each split a locally optimal split is made. Moreover, schemes based on this
approach are only guaranteed to obtain a local maximum auxiliary function value at each split.
Two possible schemes are described below.

3.1 Hard clustering

Hard clustering requires a unique assignment of a base class to one regression class. This is the
standard MLLR scheme, so the new mean is found using equation 1. The problem is how to
optimally assign a particular base class, ¢, to one of the possible regression classes. Consider the
regression class tree shown in figure 1. There are two transformations, W2 and W) associated
with regression classes ry and rs respectively, and an initial assignment of base classes ¢4 and c5
to regression class ry, and ¢g and ¢7 to regression class r3. The aim is to rearrange the base class
to regression class assignment to maximise the likelihood of the training adaptation data given the

current estimate of transforms W(2) and W®),

2Wherever the term optimal is used in this paper it means optimal in the sense of maximising the likelihood of
the adaptation data.



To optimise the hard clustering, an initial clustering is assumed, typically from acoustic clus-
tering. For each base class, ¢, the assignment to regression class r, with associated transformation
W () is determined by

S
7 = arg max{z Qgs)(/\/t,/\;ﬂr)} (6)
s=1

where
QL) (M, Mlr) = @
1 _ M, TG)
Ki— 5£(0F)|M) Lin(7) [ K +108(1Zm]) + (0(7) = )T 25, (o(7) — i)
m=171=1
and
a1 =we = AUy 4 b (8)

and 7 is the new estimated regression class for base class ¢. This is performed for all base classes.

This process is guaranteed not to decrease the overall auxiliary function value, as each base
class will only swap regression class if it increases the auxiliary function. If the regression class
has changed for any of the base classes, it is necessary to re-estimate the transforms, W), This
is performed using the standard MLLR estimation formulae described in appendix A and is again
guaranteed to increase the auxiliary function. This process may then be repeated until none of the
base classes changes regression class. At each iteration the auxiliary function value is guaranteed
to increase, eventually arriving at a local maximum.

3.2 Fuzzy clustering

A hard clustering scheme does not make optimal use of the transformation matrices generated.
Where few transformations are generated, it is unlikely that all base classes will be exclusively
assigned to one transform. Hence the use of a fuzzy clustering scheme is proposed. Here, each
base class makes use of all the transforms available, using a weighted sum to form the complete
transformation.

For a fuzzy grouping the following transformation of the mean is used

P P
ji= [Z va(")] £=Y pp (9)
p=1 p=1

This is a simple extension of the hard clustering scheme where

_ { 1, base class in question is in regression class p (10)
= 0, otherwise

An example of fuzzy clustering is shown in figure 2. Again, a solid arrow and class indicates that
there is sufficient data for a transformation matrix to be generated using the data associated with
that class, a dotted line and class indicates insufficient data. There are thus three transformation
generated, W) W) and W®)_ Tt is assumed that there are sufficient frames assigned to each
of the regression base classes to estimate the smoothing parameters, so each of the base classes has
three “weights” associated with it.

Once the transforms are generated the regression class tree disappears and may be replaced
by figure 3. For very small regression class trees and fixed regression classes this scheme is fine.
However, as larger regression class trees are used the description of the regression class tree becomes
very complicated. The weights are a function of all the transformations generated. Thus for each
possible combination of transforms a different set of weights must be generated For example in the
3-level binary regression tree illustrated in figure 2 there are 16 possible transformation sets for each
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Figure 2: A binary four base class regression class tree with smoothing parameters
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Figure 3: A flattened regression class tree with smoothing parameters
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of the base classes. These must all be stored and different transforms calculated for each possible
set of weights if multiple iterations of fuzzy clustering are used. When there are no constraints on
the sets of transforms that may be used this will involve a very large computational overhead. It
is therefore preferable to reduce the range of possible weights. The simplest constraint is to allow
a base class to only use a limited number of transforms selected in the tree, or to use pre-defined
regression classes not a regression class tree3.

When fuzzy clustering is used there are far more parameters in the regression class tree. However
these parameters are learnt from the training data, not at run-time. It is therefore valid to compare
systems with fuzzy and hard clustering.

The estimation task is to find the ML estimate of the set of weights associated with each base
class, ¢, v(¢). This weights vector is obtained as

s
’y(c)_argmax{z ol M./\/l|’y)} (11)

where
QL (M, MJy) = (12)
1\4c 7(s)
Ky - _L: L (7 Am +log(|Zm) + (o(7) — /:‘m)TE;ql (o(r) — /:‘m)]
m:l 7=1
and
P
= 27(C)W(p)5 (13)
p=1

Note the transformation weights are not constrained to be positive, nor are they required to sum
to one. In appendix C, the expression for the ML estimate of the weight vector 4(°) is obtained
and is found to be a unique solution. For the same reason as the hard clustering scheme, the
transformations may be re-estimated using the new weights vectors. The standard formulae are
no longer applicable, but in appendix B it is shown how to obtain an ML estimate of a set of
transforms given a set of weights. This whole process may then be repeated until the base class
weights remain unaltered or a maximum number of iterations performed.

3.3 Practical considerations

There are a number of factors which need to be considered when building trees to maximise the
auxiliary function given in equation 4.

1. Number of base classes. As previously described the base classes are the smallest collection
of components that may be adapted independently. In the limit each base class will consist
of an individual component. It is preferable to have as many base classes as possible in the
system as this allows the greatest flexibility in building the regression class trees. However as
the number of base classes increases, so the amount of tree-building data required increases
in order to make a robust estimate of the base class to regression class assignment.

2. Number of speakers. It is, of course, desirable to have as many speakers as possible in
the tree-building data. However, this must be offset by the need to robustly estimate the
transformation matrices for each speaker.

3. Depth of tree. Both the above aspects become more important as the depth of tree, or
number of tree nodes, increases. The deeper the tree the larger the amount of tree-building
data required.

31f no constraints are placed on the fuzzy clustering then this is a globally optimal regression tree.



4. Transformation form. There are many forms that the transformations can take, for ex-
ample diagonal, block diagonal or full [10]. The optimal regression tree will be dependent on
the type of transform being considered. The more complex the transformation, the longer it
takes to train the regression tree. In addition, more data from each speaker is required to
robustly estimate the transform.

4 Run-Time Fuzzy Clustering

The use of fuzzy clustering during the generation of regression class trees has been described. An
alternative approach is to calculate a set of weights for a particular speaker given a set of transforms
calculated on the adaptation data for that speaker. This has the advantage that a specific fuzzy
clustering is performed for each speaker, rather than averaged over all training speakers. However,
it is now also necessary to ensure that the set of weights for each speaker is robustly estimated.
This again may be achieved using a regression class tree. Note less data is required to achieve
this than to estimate the transforms themselves. This is a disadvantage of the run-time fuzzy
clustering as the depth to which it is sensible to go in the regression class tree is a function of the
amount of adaptation data. This is in contrast to using fuzzy clustering to generate the original
regression class tree, where each of the base classes has a different weight vector associated with it.
In the same way as the global class weight estimation, this may be iterated with new transforms
estimated, then new weights estimated. In practice this was found to give yield difference in
performance and is not considered in this work.
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Figure 4: A binary four base class regression class tree with smoothing parameters

Figure 4 show the use of a regression tree in such a case. Here a dotted line indicates that
there is insufficient data to calculate a transform, but sufficient to calculate a set of weights. It
is interesting to note that the weights associated with base-class 4 are [ 0 0 1 ] as there is a
specific transformation matrix associated with that base class and the transforms are not iteratively
estimated.

5 Stopping Criterion

If the regression classes are not fixed a-priori, it is necessary to choose an appropriate stopping cri-
terion. When building regression class trees using either phonetic knowledge or acoustic clustering
it is possible to build very large trees with base classes consisting of individual components. As
previously mentioned, there is usually insufficient data to estimate a transform for each component.
According to the CART literature [1], the choice of stopping criterion is very important. Previous
work [7] has used a minimum number of frames (see section 2.2). This requires the “learning” of an



appropriate threshold, which varies according to the nature of the transformation. Two alternative
schemes are described here. The first scheme uses cross-validation techniques [1] to decide on the
regression classes to use. The second is primarily geared to static unsupervised adaptation tasks
and uses an iterative MLLR, scheme.

5.1 Cross-validation

A simple V-fold cross-validation scheme is considered here. Let the adaptation data for a given
speaker, O, be divided into V subsets, with the proviso that all the data from one utterance is
placed in the same subset?, O,, v = 1,..., V. Define the v'* learning sample as

0" =-0_0, (14)

A simple top-down scheme starts the search at the root node with Wév) = I° and then:

For a node A
generate V transforms W((lv) using O for A
if (2021 G(0u M, W) > TV G(0, 1M, W)
if A has children B and C
search through node B with WI(,U) = W((z )
v) _

search through node C with VVIE7 = ng)
else
let A be the regression class for base classes in A
else

let parent of A be the regression class for base classes in A

where

Ca M. T,

GOUM WD) =3 > > L) (Km — 5 (o) — ) 25 (o() - ﬂm)) (15)

c=1m=17=1

and
fim = WWE,, (16)

This should generate an “honest” set of regression classes [1]. However there are practical diffi-
culties. It is preferable to make V' as large as possible, as when generating W((zv) only (V -1)/V
of the total adaptation data is available for estimating the transform. However, the upper limit
on V is the number of sentences, or sub-sentence blocks, in the adaptation data. As V increases
there is an approximately linear increase in both computation and memory requirements, as V'
transforms must be generated at each node. If full transformation matrices are used this can be
computationally very expensive. Furthermore, the statistics required to calculate equation 15 is
the sum and sum squared of the observations for each subset for each component when calculated
directly. This load can be reduced by storing statistics at the base class level [4].

The use of cross validation techniques greatly increases the computational and memory require-
ments for adaptation. As such it is most suited to static adaptation tasks, though may be used for
incremental tasks.

4This is preferable due to the correlation between frames. It is feasible to break the data into blocks, smaller
than utterances, but this has not been examined.

5Here I is the extended identity transformation, thus I¢ = .
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5.2 Iterative MLLR

An alternative scheme for selecting regression classes is to use iterative MLLR. Originally the
technique was used to provide improved transcriptions for adaptation [14]. Here it is used to make
the best use of the adaptation data and regression class tree. It relies on the fact that when
transformations are not robustly estimated, they will “learn” the transcription of the adaptation
data. By always using the the best, latest, transcription, it is possible to overtrain® the transforms
without degrading performance.

The procedure is:

1. Starting at the root node of the regression class tree and the speaker-independent transcrip-
tion for the current adaptation data.

2. Given the current hypothesised transcription and regression class tree estimate a new set of
transforms.

3. Generate a new hypothesised transcription given the current transformation set and adapta-
tion data.

4. Tf the new hypothesised transcription is different to the previous transcription go down one
level of the regression class tree and goto step 2.

This scheme is guaranteed to overtrain the regression transforms. The main problem with the
scheme occurs when the tree is very unbalanced, ie some regression classes at a particular level of
the regression class tree have very little adaptation data assigned to them compared to others in
that level. This results in some transforms being non-robustly estimated very early in the iterative
MLLR process, which may be detrimental to the overall performance of the scheme.

This scheme is only applicable to unsupervised adaptation tasks. Furthermore, as multiple
iterations are required 1t is more suited to static adaptation tasks than incremental adaptation
schemes.

6 Results

6.1 Recognition system

The baseline system used for the recognition task was a gender-independent cross-word-triphone
mixture-Gaussian tied-state HMM system. This was the same as the “HMM-1” model set used in
the HTK 1994 ARPA evaluation system [13]. The speech was parameterised into 12 MFCCs, C
to C'9, along with normalised log-energy and the first and second differentials of these parame-
ters. This yielded a 39-dimensional feature vector. The acoustic training data consisted of 36493
sentences from the SI-284 WSJ0 and WSJ1 sets, and the LIMSI 1993 WSJ lexicon and phone set
were used. The standard HTK system was trained using decision-tree-based state clustering [15] to
define 6399 speech states. A 12 component mixture Gaussian distribution was then trained for each
tied state, a total of about 6 million parameters. For the H1 task a 65k word list and dictionary
was used with the trigram language model described in [13]. All decoding used a dynamic-network
decoder [11] which can either operate in a single-pass or rescore pre-computed word lattices.

For the secondary channel experiments a PLP version of the standard MFCC models were built
using single-pass retraining [3] on the secondary channel training data.

The training data used to generate the regression class trees were also based on the ST-284 WSJ0
and WSJ1 sets, or subsets thereof. Where a subset of the speakers were used these were selected
at random. Where a subset of the sentences for each speaker was used, these were selected as the

SHere the term overtraining means that the transforms will not generalise. Thus the transforms will map an
observed component to be “close” the adaptation data for that component, but any unobserved components in the
same regression class will be poorly transformed. The effect of this is that the likelihoods for the observed components
become very large compared to the unobserved components. This means that the adaptation transcription will be
“learnt” by the transforms.

11



first n sentences from each speaker. All trees were generated using a block diagonal transformation
with individual blocks for the static, delta and delta-delta parameters. The initial regression trees
were generated using clustering in acoustic space. For all experiments a set of 750 base classes,
excluding silence, were used.

All recognition tests were carried out on the 1994 ARPA Hub 1 and S5 evaluation data. The
H1 task is an unlimited vocabulary task with approximately 15 sentences per speaker. The data

was recorded in a clean”

environment. The S5 task is an unknown microphone task with a 5k word
vocabulary. All the experiments described here were carried out in an unsupervised static mode
with the SI recognition transcription used for the initial alignments. This was not acceptable for
the actual evaluation, but was felt to allow better contrasts as the same alignments can be used

for all schemes.

6.2 Clustering results

All the experiments described in this section only consider the initial split from a single, global,
regression class to two regression classes. This is felt to be the split which should have greatest
affect on the recognition performance.

| Tteration | Aux. Func. | Swap (%) |

0 -61.542 —
1 -61.508 5.7
2 -61.493 9.3
3 -61.486 11.5
4 -61.480 12.9
5 -61.475 14.1
9 -61.463 17.2

Table 1: Swap (%) and auxiliary function value for hard clustering with 284 speakers and 25
sentences per speaker (run to convergence) on the training data

Table 1 shows the auxiliary function and the number of base classes that swapped regression
class at each stage for a hard clustering scheme. Here the clustering was run to convergence, where
a total of 17.2% of the base classes have changed transform. However the increase in auxiliary
function value was small, an average increase of 0.079 in auxiliary function value (or 1.082 times

higher).

| Clustering | Aux. Func. |

— -65.349
Global -63.228
Acoustic -62.995
Hard -62.910
Hard (con) -62.892
Fuzzy -62.801

Table 2: Auxiliary function value on the H1 evaluation data using hard and fuzzy clustering
schemes for the first level regression class tree split

The results shown in table 1 are from the training data. Table 2 shows the performance, in terms
of average auxiliary function, on an unseen test set, the 1994 H1 eval data. Global and Acoustic

"Here the term “clean” refers to the training and test conditions being from the same microphone type with a
high signal-to-noise ratio.
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are the performance of an acoustically clustered regression tree generating 1 and 2 transforms,
respectively. For all the optimal schemes 25 sentences from all 284 speakers were used to generate
the regression class trees. Normally five clustering iterations were used. The table shows the gain
in using the standard two transform system over a single transform. Surprisingly there is only a
very small gain in auxiliary function, 0.223. The gain obtained using hard clustering is a further
0.085 (similar to the gains on the training data). By running this clustering to convergence a
gain of 0.103 was obtained, Hard (con). This increase in auxiliary function values was observed
for all the speakers in the data. Greater gains were obtained using the fuzzy clustering scheme,
Fuzzy. Here the auxiliary function rose by 0.194, getting towards the gains obtained by using two
transforms instead of one. This shows that extensive use was being made of the fuzzy clustering.

| Clustering | Avg. Prob. | Error Rate (%) |

— -68.789 9.20
Global -66.762 8.30
Acoustic -66.536 8.21
Hard -66.451 8.22
Fuzzy -66.348 8.23

Table 3: Error Rate (%) on the H1 evaluation data using hard and fuzzy clustering for the first
level regression class tree split

Having established that the use of either fuzzy or hard clustering satisfied the criterion for a
“good” clustering scheme, the actual recognition performance on the 1994 ARPA H1 evaluation
test set was examined. Table 3 shows the performance of the various schemes and the average
probability per frames of the test data. The performance was not as expected. Comparing the single
transform standard system and the two transform standard system, there was a marked increase
in probability of the test data (not surprising as this was the adaptation data). However, only
a slight increase in recognition performance was obtained. This was surprising as the transforms
generated were felt to be well trained as the minimum number of frames assigned to the transform
was over 3300 and a block diagonal transform was being used.

The performance of the hard clustering scheme was also surprising. The average probability of
the test data increased, again not surprising as the auxiliary function on the adaptation data was
greater. However the recognition performance is no better, 8.22% compared to 8.21%), though the
probabilities are higher as expected. Similarly the fuzzy clustering scheme, though increasing the
auxiliary function, gave no gains in recognition performance. From these results the use of various
clustering criteria may alter the auxiliary function value, it has little affect on the recognition
performance.

Clustering | Error Rate (%)
HI Dev | HI Eval

— 9.57 9.20
Acoustic 8.39 8.21
Run-Time 8.27 8.21

Table 4: Error Rate (%) on 1994 H1 development and evaluation data using run-time fuzzy clus-
tering

Run-time fuzzy clustering using the original first level acoustic clustering and the standard
acoustic regression class tree to determine on the number of weight vector to generate, was per-
formed. The thresholds used to determine the number of weight vectors were “reasonable” values
determined on other test sets. The results are shown in table 4 On the H1 development data a

13



slight gain in performance was observed. However, on the evaluation data no gain in performance
was seen.

6.3 Stopping criterion results

For all the experiments in this section an acoustically clustered regression class tree was used. For
the S5 unknown microphone task an additional binary split in the regression class tree was added,
so that silence could be adapted as a separate regression class from the speech (provided sufficient
data, where appropriate, was available).

Stopping Reg. Classes Error Rate (%)
Criterion | HI Dev | HI Eval | HI Dev | HI Eval

— — 9.57 9.20

1 8.49 8.30

Fixed 2 8.39 8.21

4 8.59 8.11

Threshold | 10.05 11.00 8.63 8.02

X-val. 11.95 13.25 8.72 8.07

Table 5: Error Rate (%) on 1994 H1 development and evaluation data using fixed regression classes
and threshold and cross validation stopping criteria

Various stopping criteria were considered and the results are shown in table 5. Fized indicates
using a fixed number of classes. These fixed regression classes were selected by using one level of the
acoustically clustered regression class tree. Thus four regression classes corresponds to the third
level of the regression class tree. The threshold stopping criterion, Threshold, used a minimum
number of frames per transform constraint, the threshold for these experiments were “reasonable”
values derived from previous experiments. Finally the cross-validation criterion, X-val, used cross
validation with a 6-fold cross-validation scheme.

The performance on the H1 development data was not as expected. The best performance was
obtained using the 2 fixed regression classes. The performance of both the thresholding scheme and
the cross-validation scheme on this test set were similar, but 3-4% worse than the 2 fixed regression
class case. On the H1 evaluation data, the recognition performance increased as the number of
fixed classes increased. It is interesting that despite both tasks being very similar and the amount
of adaptation data approximately the same the best fixed class schemes were very different for
the evaluation and development data. This shows one of the problems of using MLLR, that the
optimisation criterion that of ML is not directly related to error rate for the speech recognition task.
The performance of the cross-validation scheme was comparable with that of the empirically set
threshold scheme and yielded a similar average number of transformations. However the advantage
of the cross-validation scheme is that there is no need to empirically estimate new thresholds as
the task or transformation type varies.

The use of a 6-fold cross-validation scheme substantially increased the computational overhead
of calculating the regression classes and transformation matrices. This overhead can be reduced
by reducing the number of cross-validation sets. Table 6 shows the performance of two different
cross-validation schemes. In terms of the number of regression classes generated, the 2-fold cross-
validation scheme had significantly fewer regression classes than the 6-fold case. This was not
surprising as only approximately 50% of the adaptation data was available in the 2-fold case when
performing cross-validation compared with approximately 83% in the 6-fold case. On the H1
development data, in contrast to the evaluation data, improved performance was obtained with
the 2-fold scheme. As seen in table 5, the performance on the development data peaked at two
regression classes, dramatically fewer than the evaluation data. Hence, by ensuring that fewer,
more robustly estimated, transforms are generated the 2-fold scheme improved performance. On
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Cross-Validation Reg. Classes Error Rate (%)
Sets HI Dev | HI Eval | HI Dev | HI Eval

2 6.30 7.35 8.38 8.16

6 11.95 13.25 8.72 8.07

Table 6: Error Rate on the 1994 H1 development and evaluation data using 2-fold and 6-fold
cross-validation

the other hand the 6-fold scheme performed marginally better on the evaluation data where a large
number of regression classes were useful.

| Stopping Criterion | Reg. Classes | Error Rate (%) |

— 8.95

1+sil 7.27

Fixed 2+sil 7.33
4+sil 7.18

Threshold 5.05 7.24
X-val. 4.75 7.18

Table 7: Error Rate (%) on 1994 S5 evaluation data using fixed regression classes and threshold
and cross validation stopping criteria

Table 7 shows the performance of the various stopping criteria on the S5 evaluation data. The
problems of selecting the “best” set of regression classes is again illustrated with the use of two
speech regression classes giving slightly worse performance than the one and four regression class
cases. The performance of the thresholding and 6-fold cross-validation schemes were again similar.

Reg. Classes Error Rate (%)
(4sil for S5) | HI Dev | HI Eval | S5 Eval
| 957 | 920 | 59 |

1 8.49 8.30 7.27
2 8.23 8.18 7.03
4 8.12 8.04 6.99
8 7.92 7.94 6.93
16 7.95 7.95
32 7.93 —

Table 8: Error Rate (%) using the iterative MLLR stopping criterion on the 1994 H1 development,
H1 evaluation and S) evaluation data

Table 8 shows the performance of the iterative MLLR scheme. In all cases the transcriptions
converged and in most cases the recognition performance increased as the number of levels was
increased. There was a slight degradation in performance, an additional one or two word errors, on
the H1 development and evaluation data. This technique does not guarantee to decrease the word
error rate. Comparing the performance figures in table 8 with those of table 5 and table 7 shows
that the use of iterative MLLR gave better performance figures than standard MLLR. Furthermore
it may be used with no threshold information in choosing the regression classes to use. However this
technique is computationally expensive. At each level it is necessary to recognise all the adaptation
data. This load is greatly reduced by using lattice to constrain the search space. Furthermore at
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each iteration the pruning becomes more effective as the transforms start to learn the transcription.

The direct comparison of the iterative MLLR scheme with the the other schemes is not com-
pletely fair as all the other schemes used the transcriptions from the SI recognition run. Whereas
the iterative MLLLR scheme used the transcription from the previous run.

7 Conclusions

This report has addressed two problems in the use of maximum likelihood linear regression. The
first problem examined was that of generating regression class trees. Two new techniques for
generating optimal, in the sense of maximising the likelihood of the clustering data, regression class
trees are described. This regression class tree building criterion is matched to the criterion used to
generate the MLLR transforms in contrast to previous techniques which used phonetic knowledge
or acoustic domain clustering. The first scheme, hard clustering, assigns each base class to one of
the possible regression classes. A fuzzy clustering scheme is also described. In this, each base class
uses a linear combination of all MLLR transforms generated for a particular set of adaptation data
to generate an optimal transform. Both these schemes were evaluated on very simple regression
class trees where only a single binary split was considered. The techniques described resulted in
better regression class trees, in the sense that they yielded higher probabilities for the adaptation
data than the standard acoustically clustered regression class tree. Unfortunately there was no
reduction in word error rate, even for the more complex fuzzy weightings. This is disappointing,
though consistent with the findings in CART literature, where performance has been shown to be
to be consistent over a wide range of reasonable splitting criteria [1].

The second problem addressed was how to select appropriate regression classes given a regres-
sion class tree and set of adaptation data. The standard techniques for selecting regression classes
is for them to be either pre-defined regression classes, fized, or a minimum number of frames as-
signed per regression class, threshold. These standard schemes were found to give highly variable
performance over the test sets examined. A cross-validation scheme and an iterative MLLR, scheme
were compared with these standard schemes. The use of cross-validation gave similar performance
to the thresholding scheme without the need to empirically determine the thresholds, though the
recognition performance gains were still inconsistent over the test sets. The lowest error rates on
all the test sets were obtained with the iterative MLLR scheme. This again requires no thresholds
to be used. However it does require multiple recognition runs on the adaptation data and is only
applicable to unsupervised adaptation tasks.
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A Maximum Likelihood Estimation of “Hard” Transfor-
mations

This appendix describes how ML estimates of the transformations are obtained when “hard”,
standard, clustering schemes are used in the regression tree.

In order to solve this maximisation problem an Ezpectation-Mazimisation (EM) technique [2]
is used. The standard auxiliary function Q(M, M) is adopted,

QM , M) = (17)
M T
Ky, — —L: (Orp|M) Z Z Lin(7) [Km + 10g(|Zm]) + (o(7) — fim) T2 (o(T) — fim)]
m=17=1

where K is a constant dependent only on the transition probabilities, K,, is the normalisation
constant associated with Gaussian m, Or = {o(1),...,0(7)} is the adaptation data and

Lin(7) = p(gm(7)|M, OrT) (18)

where ¢p,(7) indicates Gaussian m at time 7. Increasing the value of this auxiliary function is
guaranteed to increase the likelihood of the adaptation data.

Given that a particular transformation W) is used to transform all components associated
with regression class 7, then W) may be found by solving

T Cr» M. T C, M. o
YD LB o(MEn =D 03D L) 2 WIELED (19)
7=1c=1m=1 7=1c=1m=1

For the full covariance matrix case the solution is computationally very expensive [4], however, for
the diagonal covariance matrix case a closed-form solution is computationally feasible [8].

The left-hand side of equation 19 is independent of the transformation matrix and will be
referred to as Z, where

C, M. T

c=1m=17=1

A new variable G is defined with elements

g5 = ZZ vi (21)

c=1m=1
where
T
VO =3 L (r) 25 (22)
T=1
and
D™ =g, (23)
W (") is calculated using
wT = g)=1,T (24)

where \?VZ(T) is the it vector of W(") and z; is the it" vector of Z.
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B Maximum Likelihood Estimation of “Fuzzy” Transfor-
mations

This appendix describes how ML estimates of the transformations are obtained when “fuzzy”
clustering schemes are used in the regression tree.

Again, the aim here is to maximise the transformations, given a set of adaptation data and
weights. Tn order to re-estimate transform W) rewriting equation 5

R C, M, T
QM, M) = Ky — —ﬁ (Or|M) Y Y L) [Km +10g(|2m]) +y(1) "S5y (7)) (25)
r=1c=1m=17=1
where
y(r) = [o(r) = YA a® | —wiy e, (26)

By rewriting in this form the transform is obtained in exactly the same way as the standard case.
To calculate W) the following accumulates are used

R Cr M.

IS oD (r)el)” (27)

r=1c=1m=17=1

where
o (r) = o(r) — Z%C)ﬂ%) (28)
PE]
and
) =+em (29)

A new variable GU? is defined with elements

R Cp M,

PR ZZ S A dlm (30)

r=1c=1m=1

where
T
VO =3 Lo (r) 2 (31)
7=1
and
D™ = &g, (32)
W) is calculated using
wdT = gU-1,07 (33)

where w( is the it" vector of W) and z; is the i*" vector of Z. This shows that, given a
set of Welghts, the transforms may be individually optimised. This has optimised an individual
transformation given all other transforms are constant. This is not true as all transforms will be
dependent, through the weights, on each other. If optimised in this fashion it is necessary to run a

8The summation over all speakers is left out for clarity.
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few iterations updating each transformation individually. This is not as computationally expensive
as it first appears as GU?) is independent of the transforms, so need only be inverted once.

Alternatively all the transforms may be estimated in a single step. Again rewriting the expres-
sion yields the following equality when considering W (/)

R C, M. T R Cr M. R
) S MAMCE-NELTED 39 9p SPHE ) SRl T LIS
r=1c=1m=17=1 7=1r=1c=1m=1 p=1

Only considering the diagonal covariance case, the following equation must be satisfied

R 1
= 3G (35)
r=1

where
R C, M.

gD =303 > ey (36)

r=1c=1m=1

This may be written as

zz(-l)T Gl .. gURi) VAVZ(T)T
: = : : : (37)
ZZ(R)T G(RY) .. @(RRi) VAVER)T

This now requires the inversion of a (R x (n + 1))? matrix for each of the n dimensions. This
may be compared with the individual optimisation case which involves inverting R sets of (n + 1)?
matrices for each of the dimensions. As inversion is an @(n?) operation the increase in compute
time is considerable, O(R?).

C Maximum Likelihood Estimation of “Fuzzy” Weights

This appendix describes how ML estimates of the weights are obtained when “fuzzy” clustering
schemes are used in the regression tree.

The aim is obtain the best set of weights, in a ML sense, for the given set of adaptation data and
regression transforms. Tt is assumed that a transformation matrix has been obtained for each base
class, as determined by the regression classes. All that remains is to find the weights associated
with, say a particular base class (though this may be a regression class). From equation 9

SUMM) _ 66@( (Or|M) ZZZZme(o(r)—ﬂmfz,#(o(f)—ﬂm) (35)

872 r=1c=1m=171=1
Letting
iy =wog, (39)
and rewriting
o(r) — PORFRTAN R (40)
pET
It is simple to show that
6Q(M ./\/i) (41)
03
R C, M., T .
LOr|M)> S L (r) (AP DT ) — fOTSIY Lo(r) = 3400 a®)
r=1c=1m=17r=1 pEi



and rewriting slightly

IQ(M, M A - .
PO (0rian) 33575 3 bl (455! S af0i) - 7 S5tetr)) (o

i r=1lc=1m=17=1

Defining a new n x R matrix M,, where

M= [ ) ] (43)
it is possible to write
fm = Mm'AY(C) (44)
where
1T
50 = [ 2(©) 5e) ] (45)
Equation 42 can be written as
dQ(M, M R O Tsr=1r 4G) AT
QMM 200 33 3 3 b (1755t 7 850007)) (40
'}/i r=1c=1m=171=1

Equating equation 46 to zero®

R Cr M.

> ZL AT S-1M ] SO =3NS L (1)l T8 o(7) (47)

r=1c=1m=17=1 r=1cz=1m=171=1

For the global maximum value this equality must hold for all elements of 4(™). Expressing this in
matrix notation

70)30) = v0) (48)
where ZU) is a R x R matrix and v() is a R x 1 vector defined by
R Cr M.
ZZZZL AT B-IM,, (49)
r=1c=1lm=171=1

and

Q

S3YY s (wam) (50)

r=1c=1m=1

The ML estimate for ) is then given by

) = z()-1y () (51)

5 .
9The second derivative, %, is always negative indicating that the turning point is a maximum.
v
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