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Abstract

This paper examines the application of linear transformations for speaker and environmen-
tal adaptation in an HMM-based speech recognition system. In particular, transformations
that are trained in a maximum likelihood sense on adaptation data are investigated. Other
than in the form of a simple bias, strict linear feature-space transformations are inappropriate
in this case. Hence, only model-based linear transforms are considered. The paper compares
the two possible forms of model-based transforms: (i) unconstrained, where any combina-
tion of mean and variance transform may be used, and (ii) constrained, which requires the
variance transform to have the same form as the mean transform (sometimes referred to as
feature-space transforms). Re-estimation formulae for all appropriate cases of transform are
given. This includes a new and efficient “full” variance transform and the extension of the
constrained model-space transform from the simple diagonal case to the full or block-diagonal
case. The constrained and unconstrained transforms are evaluated in terms of computational
cost, recognition time efficiency, and use for speaker adaptive training. The recognition perfor-
mance of the two model-space transforms on a large vocabulary speech recognition task using
incremental adaptation is investigated. In addition, initial experiments using the constrained
model-space transform for speaker adaptive training are detailed.



1 Introduction

In recent years there has been a vast amount of work done on estimating and applying linear
transformations to HMM-based recognisers [2, 4, 12, 16]. Though not the only possible model
adaptation scheme, for example maximum a-posteriori adaptation [9] may be used, linear trans-
forms have been shown to be a powerful tool for both speaker and environmental adaptation. The
transformations may be estimated in many ways, but for the purpose of this paper only maximum
likelihood (ML) estimation will be considered. Here, the transformation is trained on a partic-
ular set of adaptation data, such that it maximises the likelihood of that adaptation data given
the current model-set. The theory behind these ML trained transforms is well established [21].
However the actual forms of the transform that have been applied to date are limited, due to the
complexity of optimising the transformation parameters. The aim of this paper is to present the
various forms of maximum likelihood linear transformations that may be applied to an HMM-based
speech recognition system and how they may be simply estimated.

Usually linear transformations are described as being applied in either the model-space or
feature-space [20]. This paper uses the same labelling, but applied in a very strict sense. Thus
a feature-space transform is required to only act on the features, it is not allowed to alter the
recogniser stage in any way!. A variety of linear feature-space transformations for adaptation and
compensation for speech recognition have been proposed in the literature [11, 14, 15]. ML training
of linear feature-space transformations may be shown to be, not surprisingly, inappropriate for
speech recognition (see appendix A). In contrast, model-space transformations, which act on the
model parameters themselves, have been shown to be useful. There are two main forms of model-
space transformation®. First, there is the unconstrained case (e.g. [12, 8]) where the transforms
on the means and variances are unrelated to each other. Alternatively, for the constrained case
(e.g. [4]), the mean transformation and variance transformation are required to have the same
form, other than the bias. Both forms of transform may be used for speaker adaptation [12, 4] and
environmental compensation [20, §].

Re-estimation formulae for both forms of model-space transform are given in this report. For
the unconstrained transform the various cases of variance transform are described. These include
a new and efficient variance transform. Extension of the constrained model-space transform from
the simple diagonal case to the full or block-diagonal case is also presented. These transforms are
then compared in terms of efficiency at run-time and in training the transform.

There has also been much interest in using adaptation techniques in both training and testing [1,
10]. Here, instead of applying the test set adaptation transforms to a speaker-independent model-
set they are applied to a model set trained using that adaptation scheme. Thus the model-set
used in adaptation should model just the intra-speaker variability rather than both the intra and
inter-speaker variability. Speaker adaptive training (SAT) [1] is one such scheme. Standard SAT
uses an unconstrained model-space transform of the mean in both training and testing. The use
of constrained model-space transforms for SAT is presented here. Tt yields simple re-estimation
formulae, overcoming some of the problems associated with traditional SAT training.

The next section describes the two possible linear model-space transformations. For the uncon-
strained model-space transform an efficient new variance transform is described. The theory behind
constrained transformations is extended so that full, or block-diagonal, linear transformations may
be trained in addition to the diagonal case described in [4]. Various implementation issues involv-
ing linear transformations are then detailed including speed and applicability for speaker adaptive
training. Finally, experiments on a large vocabulary task are described and conclusions drawn.

! This disagrees with the “definition” in some papers (e.g. [21]), where the linear “feature-space” transform used
is a constrained model-space transformation described in section 2.2. The descriptions of the transforms given is
more consistent with that of [4]. However for non-linear transformations this definition does not permit a set of
possibly useful transformations.

2Here the terms constrained and unconstrained refer to the form of variance transform and are not related to the
use of constrained as used in [4] where it refers to the constraint that many components share the same transform.



2 Linear Model-Space Transformations

As previously described there are two forms of model-space linear transformation. First an uncon-
strained transformation may be used where the mean transformation and the variance transform
are independent of one another. Alternatively a constrained transform may be used, where the
transformation of the variance must correspond to that applied to the mean. Both these transforms
are described in detail below.

In all cases the parameters of the linear transform are found using an EM approach [3]. The
parameters of the transforms are found by optimising the following equation
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where (™) and (™) are the transformed mean and variance for component m (the superscript
(m) will be used to indicate the component for the model parameters), M is the total number of
components associated with the particular transform, and

Ym (T) = plgm(7)|M, O7) (2)

¢m (7) indicates Gaussian component m at time 7. K is a constant dependent only on the transition
probabilities, K(™) is the normalisation constant associated with Gaussian component m, and
Or ={o(1),...,0(T)} is the adaptation data on which the transform is to be trained.

2.1 Unconstrained Model-Space Transformations

Unconstrained linear model-space transformations allow any transform of the mean and variance.
They are therefore more flexible than the constrained case. The general linear transform of the
mean, 4, is given by

= Ap+b=We 3)
¢ is the extended mean vector, [ 1 u” ]T and W is the extended transform, [ bT AT ]T.
The variance transform may be modified either using

)

3 = LHLY (4)
where L is the Choleski factor of the original covariance matrix X, or
3 = HSH? (5)

In both cases H is the transformation matrix to be obtained. Solutions for various specific cases
of these general transforms can be obtained.

2.1.1 Mean transform

The general transformation of the mean may be solved [8]. The following equation is used

M
vec(Z) = (Z kron(V(m), D(m))> vec(W) (6)
m=1

where vec(.) converts a matrix to a vector ordered in terms of the rows, kron(.) is the Kronecker
product,

T
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and
D™ — £(m)€(m)T (9)

Solving this expression is computationally expensive as it involves inverting an (n? +n) x (n?+ n)
matrix. In [12] the case of the general linear transformation of the means is solved for the diagonal
covariance case. This is known as maximum likelihood linear regression (MLLR). It is shown that
the " of the inverse of the transform is given by

w! =Gz (10)
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Equation 10 requires the inverse of an (n + 1) x (n + 1) matrix®. If an approximate solution to
the estimation of the mean constrained model-space transformation is available, then it is possible
to iteratively refine this solution rather than starting from scratch. Considering only the diagonal
covariance matrix case and differentiating with respect to w;; gives

Ym (T (Oi(T) - Wiﬁ(m)) 5§m)T (12)
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Using the definition of G(*) as given in equation 11 and equating to zero, this may be expressed as
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where Z is defined in equation 8. At each iteration this is guaranteed to increase the likelihood®*.
As this is an indirect optimisation solution, it 1s not possible to state the number of iterations
required for a “good” solution, however there is now no need for inverting G,

2.1.2 Variance transform

When the variance is to be transformed in addition to the means, the optimisation is performed
in two stages [8]. First the mean transformation is found, given the current variance (and variance
transform). Second the variance transform is found given the current mean (and mean transform).
The whole process may then be repeated. Thus the following set of inequalities are set up.

L(O7|M) > L(O7|M) > £(O7|M) (15)

where the models M have just the means updated to 4™, ..., i™) and the models M have both
the means and the variances (1 ), .,E( ) updated.

3The cost of diagonal covariance transforms may be compared with the cost of full covariance cases. For the full
case, using standard inversion routines, the inversion takes O(ne) operations. This may contrasted with the cost of
the diagonal case, MLLR, which is O(n") operations.

4This is simple to show as

52 Q(MM i
= ) 0 ()™ (1)
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this indicating a maximum. Note there is also the constraint that there are no numerical accuracy problems.
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In [16] the case of a bias on the mean with a simple scaling of the variance is described. In [§]
this is extended to the case where a general transform of the mean is applied. It should be noted
that for the simple diagonal variance transform case, the same results are obtained using either
equation 4 or 5. In [8] the form of the variance transform is also extended to the case where
non-diagonal transforms are used in equation 4. Tt is shown that

- 5L |5 amnlo(r) - i) ol - )] 10 | »

Unfortunately, the computational cost associated with recognition using the transform obtained
from 16 is high. In fact it is comparable to the full covariance case, though not necessarily with
the memory requirements [8], since the likelihood must be calculated as

,C(O(T_);/,L,E,A,b,H):N(o(r);ﬂ,f]) (17)

and 3 is now a full covariance matrix.

Alternatively the variance transform described in equation 5 may be used. In appendix B an
iterative solution for the non-diagonal variance transform case is given, assuming that the original
covariance matrices were diagonal. Tt is shown that

(h—l)i _ CiG’(i)_l (Z%:l Z:i Tm (T)> (18)
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and ¢; is the i? row vector of the cofactors of H™!. The optimisation described is thus an iterative
one over rows, since each row is related to the other rows by the cofactors. It is guaranteed to
increase the likelihood at each iteration. The optimisation has the same form as the semi-tied
full-covariance optimisation [7], where an indirect method over the rows was previously presented.
The advantage of the indirect method was that it did not involve the inversion of G(*). Tn contrast
to the variance transform in equation 4, the likelihood calculation at run time may be implemented
efficiently when the original models have diagonal covariance matrices as

£ (O(T);Na 3,Ab, H) =N (H_]O(T); H_]ﬂ) 2) — log (|H|) (20)

Thus by appropriately modifying the means the additional cost at recognition time is just a matrix-
vector multiplication and a simple addition.

The transform using a simple bias on the variance [19, 21] is not considered here, as for many
situations it can give an inappropriate transformation. For cases where the variance bias is not
constrained to be positive any unobserved component may end up with negative variances unless
some variance flooring is used. Unfortunately constraining the variance bias to be positive is a
major restriction as in many cases, particularly with cepstral parameters currently popular in
speech recognition, the variance tends to decrease. This is true for both speech corrupted by
additive noise and when performing speaker adaptation.

2.2 Constrained Model-Space Transformations

The constrained model-based transform was first described in [4]. Here the transformation applied
to the variance must correspond to the transform applied to the means. Thus the general form is

ji=A'u-b (21)



and
=A'SA7 (22)

In [4] the problem is solved for the diagonal transformation case. Here, a solution for the full

transformation case which is guaranteed to increase the likelihood of the adaptation data is given.

It is assumed for this work that the original models to be adapted have diagonal covariance matrices.
Substituting equations 21 and 22 in equation 1 and re-arranging

R 1 M T
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so W is again the extended transformation matrix, [ b” AT ]T, and ((7) is the extended ob-

servation vector, [ 1 o(n)t ]T. An iterative solution to this optimisation problem is described

in appendix C. It is shown that the " row of the transform is given by

where p; is the extended cofactor row vector [ 0 e1 ... ¢ ], (ei; = cof(Aij)),
. M T
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and « satisfies a simple quadratic expression given in equation 71. Again this is an iterative
solution over the rows since the rows of the transform are dependent on one another via the
extended cofactor vector p;. In appendix C an iterative solution over the rows, which does not
require inverting G() is also given.

Equation 23 illustrates a possible advantage of the constrained model-space transformation
compared to the unconstrained case. The constrained transform may be implemented as a trans-
formation of the observed features and a simple addition of the term log(]A|)®. Thus during
recognition the likelihoods are calculated as

L(o(r); 1, 2, A, b) = N (Ao(r) + b; 4, 2) + log (|A]) (28)

Furthermore there is no need to adapt the original model parameters, which may in some circum-
stances be computationally expensive.

3 Implementation Issues

3.1 Complexity versus specificity

The play off between the complexity of the transformation, e.g. full, block-diagonal or diagonal,
versus the number of transformations that may be robustly estimated is an important one. Nor-
mally the complexity of the transformation is selected then an appropriate number of transforms

5This addition is the reason that it is not a feature-space transform, though of course when using a single
transformation it does not alter the performance, but is necessary when multiple transformations are used



generated. The question of what the appropriate number of transforms is for a particular set of
adaptation data and how the components should be grouped together is interesting and is dis-
cussed in [6]. The question of complexity versus specificity was also examined in [16], where using
an unconstrained block-diagonal mean transformation was shown to be better than a diagonal
transformation. This may be contrasted with variances where the use of a diagonal transform was
found to be about the same as block-diagonal or full transforms [§], but at a considerably increased
computational cost (as the transformation was implemented using equation 4).

3.2 Computational Cost

An important consideration in the choice of adaptation algorithm is the computational load, both
in training the transform and during recognition. This is particularly important when training
and applying the transforms in an incremental adaptation mode®. For this section only the uncon-
strained and constrained model-space transformations with diagonal covariance matrices for the
original models will be considered. In both cases the cost of a full transformation matrix will be
calculated”.

1. Unconstrained model-space transformation: When calculating the transform using the
direct method with diagonal covariance matrices, it is necessary to invert an (n+1) by (n+1)
matrix for each of the dimensions of the transformation matrix. This inversion may be per-
formed in @(n3) operations®. Hence the total cost is approximately ((n*) operations per
transform. After the transformation has been estimated O(Mn?) operations are required
to transform the model means. At run-time there is no additional cost. Using the indirect
method there is no need for the inversion. The cost of each iteration is cheap, however the
number of iterations required depends on how good the initial estimate is. If a diagonal
variance transform is to also be used, the cost of calculating the transform is minimal (equa-
tion 4 using only the leading diagonal), with a cost of applying O(Mn) operations to scale
the variances. Again there is no recognition time cost. However, if a full variance transform
is to be used there is some additional cost. If the transform as described in equation 4 is
used then, though cheap to calculate, there is a large runtime cost as a full covariance matrix
likelihood must be calculated per component. Alternatively, if the form of equation 5 is used
then at runtime the cost is a matrix-vector multiplication per transform per observation vec-
tor. In this case the cost estimating the transform is approximately the same as estimating
a constrained model-space transform described below.

2. Constrained model-space transformation: Using the optimisation scheme described in
appendix C, the most expensive operation for each row is the generation of the cofactors.
Even a very naive implementation costs only %n?’ + %112 + %nQ operations per row of the
transform. Thus the total cost is approximately O(n?*) per iteration. This has ignored
the actual cost of inverting G(*) which only needs to be performed once, costing O(n?).
Unfortunately the constrained case is an indirect optimisation scheme. The total cost then
becomes (I + 1)O(n?), where I is the total number of iterations®. In reality of course when
using incremental adaptation the new transform estimate will be initialised with the previous
one, thus dramatically reducing the required number of iterations. Furthermore, it is not
necessary to invert G() as an indirect optimisation over each row may be used. During
recognition there is a cost of a matrix-vector multiplication for each transform for each
observations, in addition to a simple addition per component. Thus, for R transforms this is
O(TRn?), where T is the total number of observations.

6 The adaptation data is made available as the system is used and the models repeatedly adapted.
"Both schemes scale in the same way when block-diagonal transforms are used.
8 This may actually be done in nlog2(7) operations.

9In practice by initialising the leading diagonal terms to their diagonal transform values (this is non-iterative)
only a couple of iterations were required in the optimisation to obtain “good” transforms.



The final choice of the most appropriate transformation, solely considering speed not performance,
depends on the application and the nature of the model-set being used. For static adaptation,
for example on enrolment, the use of an unconstrained model transformation (with either none
or diagonal variance transformation) is good as the adaptation is only performed once and there
is no additional recognition time cost. In contrast where incremental adaptation is to be used, a
constrained model space transformation is good as there is no need to adapt the actual models
themselves.

3.3 Numerical Accuracy

For the general unconstrained mean transformation case with a diagonal covariance matrix, nu-
merical accuracy problems occur during the inversion of of the term G() where

M
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and (™) is the extended mean vector. Tt is simple to see that when M < n, G() cannot have full
rank. This problem can be easily handled by using singular value decomposition (SVD), where
eigenvalues that are below the accuracy of the machine are set to zero [11].

A similar situation may occur for the constrained model-space transform, or when calculating
the efficient full variance transform for the unconstrained case. Again the numerical accuracy
problem manifests itself when inverting G, though now this has the form

. M 1 T
G =" o D m () (30)

There are two solutions to this problem. The first is to use block-diagonal transformations, thus
dramatically reducing the chance of non-full rank matrices. Alternatively SVD may again be used.

3.4 Statistics Required

An issue in the practical implementation of estimating the transform is the statistics required. For
the unconstrained case details of possible storage options are detailed in [8]. If only a mean trans-
form is to be used then either O(n?) parameters at the transform level, or @(n) parameters at the
component level. For the constrained case, if implemented directly it is necessary to store O(n?),
where n is the dimension of the feature vector, parameters per component. This can very rapidly
become expensive in terms of memory as the number of components increases. Alternatively, the
optimisation in appendix C is expressed in terms of G() along with k(*) and an occupation count
at the transform level. Tt is thus only necessary to store @(n?) counts per transform and Q(n) per
component to estimate the transform. As there are typically far fewer transforms than components
this 1s an efficient way of storing the statistics.

4 Speaker Adaptive Training

Recently there has been much interest in using adaptation techniques in both training and testing.
When using these techniques, instead of applying the test set adaptation transforms to a speaker-
independent model-set they are applied to a model set trained using that adaptation scheme. Two
currently popular transforms used are vocal tract normalisation (VTN) [10] and speaker adaptive
training (SAT) [1]. The gains obtained using VTN have been shown to be essentially additive to the
gains obtained using SAT [18]. This paper does not consider the use of VI'N as it is only concerned
with linear transformations, though VI'N would similarly be expected to improve results quoted
here. The standard SAT training uses an unconstrained model-space transformation of the means
(MLLR). This section considers the use of a constrained model-space transformation, instead of
the standard unconstrained transformation, for this task.



In standard SAT the new mean and variance are given by [1]
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and {A(s) , b(s)} is the transformation associated with speaker s'9. Unfortunately when implement-
ing these re-estimation formulae there are severe computational and memory overheads [13, 18].
In order to update the means as described in equation 31 it is necessary to store a full, or block-
diagonal, matrix for each component. This rapidly becomes impractical as the number of compo-
nents used in the system increases. Furthermore it is not possible to perform a simple update of
the model means and variances in the same pass.

These problems do not occur when the constrained model-space linear transformation is used
in SAT. The re-estimation formulae become almost identical to the standard mean and variance re-
estimation formulae'!. The training of the speaker-dependent constrained transforms is performed
as described in section 2.2. The updating of the means and variances involves optimising the
following auxiliary function

M T
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By inspection this is very similar to the standard optimisation task, hence the estimates of the
mean and variance will be given by
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Thus with the constrained model-space transform the use of speaker adaptive training is simple
and requires minimum alteration to the standard code.

10For simplicity of notation a single transform is assumed per speaker. The extension to multiple transformations
is trivial.

11The presentation given here considers linear transformations. If the alternative feature-space transformation
definition given in [21] is used instead of the strict form presented here, the same re-estimation formulae will result
for all the possible feature-space transforms, since the Jacobian will only be a function of the observation not the
model parameters.



5 Results

The results presented in this section are not meant to show a complete comparison of all possible
linear model-space transformations trained in a ML fashion. The aim is to compare some possible
constrained and unconstrained transformations for speaker adaptation, environmental adaptation
and speaker adaptive training.

5.1 Recognition System

The baseline system used for the recognition task was a gender-independent cross-word-triphone
mixture-Gaussian tied-state HMM system. This was the same as the “HMM-1” model set used in
the HTK 1994 ARPA evaluation system [22]. The speech was parameterised into 12 MFCCs, Cy
to C'9, along with normalised log-energy and the first and second differentials of these parameters.
This yielded a 39-dimensional feature vector. Cepstral mean normalisation was then applied to
this vector. The acoustic training data consisted of 36493 sentences from the SI-284 WSJO and
WSJ1 sets, and the LIMSI 1993 WSJ lexicon and phone set were used. The standard HTK system
was trained using decision-tree-based state clustering [23] to define 6399 speech states. For the H1
task a 65k word list and dictionary was used with the trigram language model described in [22].
For the S5 task a 5K vocabulary with trigram language model was used. All decoding used a
dynamic-network decoder [17] which can either operate in a single-pass or rescore pre-computed
word lattices. A 12 component mixture Gaussian distribution was then trained for each tied state,
a total of about 6 million parameters.

For the secondary channel experiments, S5, a PLP version of the standard MFCC models were
built using single-pass retraining [5] on the secondary channel training data. This was to ensure
that a reasonable initial model set was used in the adaptation process.

All recognition tests were carried out on the 1994 ARPA Hub 1 and S5 evaluation data. The
H1 task is an unlimited vocabulary task with approximately 15 sentences per speaker. The data
was recorded in a clean'? environment. The S5 task is an unknown microphone task with a 5k
word vocabulary.

5.2 Constrained versus Unconstrained Transformations

The experiments carried out in this section were run using incremental adaptation. The choice
of clustering for the transformations was generated using a regression class tree [12] with the
minimum occupancy thresholds empirically derived from similar tasks for both the diagonal and
block transformation cases.

Transform Form Error Rate (%)

Set HI Dev | HI Eval || S5 Eval
| — | — [ 957 [ 920 [ 9.00 |
Constrained | Diagonal 8.47 8.48 7.99

Block 8.14 7.75 7.62
Unconstrained | Diagonal 8.61 8.48 7.93
Block 8.06 8.13 7.15

Table 1: Incremental adaptation results on H1 development and evaluation data

Table 1 shows the performance of the block-diagonal constrained model-space transform and an
unconstrained mean transform run in an incremental adaptation mode. Comparing the two forms
of transformation it is hard to obtain a consistent picture. On the evaluation data, the constrained

12Here the term “clean” refers to the training and test conditions being from the same microphone type with a
high signal-to-noise ratio.
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case performs better, on the Sh task the unconstrained case performs better. For the unconstrained
case, further slight reductions in word error rate may be obtained by compensating the variances,
for example using a diagonal variance transform on the H1 evaluation task the performance was
8.04% error rate, and on the S5 task 6.93%. What can be observed from table 1 is that the use
of block diagonal transformations, though resulting in far fewer transformations, gave consistently
better results than the diagonal transform in all cases.

5.3 Speaker Adaptive Training

All the experiments described in this section were carried out in an unsupervised static mode with
the speaker-independent recognition transcriptions used for adaptation. This was not acceptable
for the actual evaluation, but was felt to allow better contrasts as the same initial adaptation word
transcription can be used for all schemes. In all cases a block-diagonal transform was used with
separate blocks for the static, delta and delta-delta parameters.

Transform Number Error Rate (%)
Set Transforms || HI Dev | H1 Eval

Constrained 1 9.07 7.97

2 8.64 7.73

Unconstrained 1 8.49 8.30

2 8.39 8.21

Table 2: Baseline static unsupervised adaptation results

Table 2 shows the performance of the standard ST model set adapted using static unsupervised
adaptation on the test data. For unsupervised static adaptation it is again hard to assess whether a
constrained transform is better or worse than an unconstrained one. The unconstrained transform
performs better on the development data, the constrained transform performed better on the
evaluation data. This again indicates that in terms of performance the two types of transform are
comparable.

The SAT training routine used in these experiments was as follow:

1. Start with the speaker independent model set and an identity matrix transformation;
2. Estimate a speaker-dependent constrained transform given current model set;

3. Estimate new model set given current speaker-dependent transform using two iterations of
Baum-Welch re-estimation (updating all the model parameters);

4. Goto step 2.

For the experiments presented here only a single speaker-dependent transform was used during
training. During recognition two passes through the data using the speaker-independent transcrip-
tion was performed with the SAT models. The first was used to obtain a single transform for
the speaker with the SAT model. The alignments for this were felt not to be optimum?!3, so an
additional pass using this transform with the same transcription to obtain the alignments was used
to generate transforms used for recognition.

Table 3 shows the results on the H1 task. On the first iteration of speaker adaptive training
gains, over applying a constrained transform to the standard speaker-independent models, of 5%
and 7% respectively for the development and evaluation data using two transforms were obtained.
By using an additional iteration of speaker adaptive these gains were increased to 7% and 8%.
This is comparable with gains obtained using unconstrained model-space transforms in the SAT
training [1, 18], despite only using a single transform during training.

13Tn practice this was found to only make a small difference.
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Transform | Speaker Adapt | Number Error Rate (%)
Set Iteration Transforms || H1 Dev | H1 Eval

Constrained 1 1 8.42 7.44

2 8.23 7.22

Constrained 2 1 8.26 7.26

2 8.00 7.09

Table 3: Speaker adaptive models static unsupervised adaptation results

6 Conclusions

This paper has examined the use of ML trained linear transformations applied to an HMM-based
speech recognition system. It has only considered model-space transformations, as it can be shown
that a linear feature-space other than as simple bias trained in a ML fashion is not an appropriate
transformation. The various forms of model-space linear transformations are investigated. They
may be split into two groups: (i) unconstrained where the mean and variance transform are unre-
lated to one another; (ii) constrained where the variance transform has the same form as the mean
transform. For the unconstrained model-space transform solutions to both the mean and variance
transforms are derived, with a new efficient form of full variance transform being given. The range
of possible constrained model-space transforms is extended beyond the simple diagonal case to the
full or block-diagonal case. The performance of these unconstrained and constrained model-space
transforms are then compared for both speaker adaptation and environmental adaptation. In both
cases the use of block-diagonal transforms out-performed the diagonal transform case. However, it
is not clear from the experiments performed whether one or other of the model-space transforms
is better in terms of performance.

The use of this constrained transform for speaker adaptive training is also described. Simple
re-estimation formulae for both the means and the variances, which avoid many of the problems
associated with the use of the unconstrained transform for SAT, may be obtained for this case.
Moreover these formulae may be implemented with little change to the standard training scheme.
The gains obtained using the constrained transform were similar to the gains reported elsewhere
for the unconstrained transform.
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A Linear Feature-Space Transformations

In [21] the general concept of ML training of transforms is discussed. The feature-space transfor-
mations described use the following expression for the probability of the transformed observation

N(o(r);n, %)
[T (6(7))]

where 6(7) is the transformed data, J,(6(7)) is the Jacobian matrix and v represents the param-
eters of the transform. Unfortunately this does not fit within the form of feature-space transform
described here as, when more than one transform is used, it is necessary to alter the recogniser to
accommodate the term [J,(0(7))|. Unless the constraint that the Jacobian is always 1 is satisfied,
this cannot be implemented as a true feature-space transform. Equation 39 covers a very wide

[’(6(7—);“’ E)U) = (39)

range of possible transforms. For the particular case of linear transformations, it results in the
same form as the constrained model-space transform described in section 2.2.

Though not the obvious thing to do, it is worth briefly investigating the strict linear feature-
space transform. In [11] the general linear feature-space transformation is

o(r) = Ao(r) +b (40)

When using a simplified form of this transform where A is the identity matrix, the maximum
likelihood estimate of this bias term is simply obtained [2]. This may be applied in either the
feature-space or the model-space [20] with identical results. For the transformation described in
equation 40, a ML solution is given in [11]. This involves an EM algorithm [3], where the following
equation must be optimised

QM, M) = (41)

M T
1 m m m m)— m
1{-522%(7) [K< ) +1og(|2™)) + (Ao(r) + b — ™) T (Ao(r) + b — u™)

m=1r=1

where K is a constant dependent only on the transition probabilities, K (™) is the normalisation
constant associated with Gaussian component m, O = {o(1),...,0(T)} is the adaptation data.
For the analysis presented here, a simpler transformation will be considered, as it well illustrates
the limitations of the true feature-space transform trained with ML estimation. Consider

6i(1) = ajoi(7) (42)

and the same transformation is to be applied to all the data. The simplified task is now to find a.
There is a closed form solution to this problem

0T (m)
Z%:l ZZ:I Tm (T) [ ((j zflz ]

i

S S () [ 352

(43)

a; =

Now consider the experiment where a linear scaling is required for all the training data. Since the
statistics required to generate a are obtained from a ML model set trained on the same data, each
scaling, a;, should be one. Otherwise the transform is felt to be inappropriate. Using the same
alignments to construct the transform as the models, equation 43 may be rewritten as

(m)2

S e | ST )

g
i

(44)

(m)2

a; =
M (m)2 ¢ T
i [ BT )

Unfortunately, this is guaranteed to be less than one. Assuming that, for the time being, ML esti-
mation yields the optimal recogniser, the use of adaptation of this form will degrade performance.
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In preliminary experiments'* in a noise corrupted environment, performance was indeed degraded
compared to the no adaptation case. Of course the problems with this form of transform are fairly
intuitively obvious, as the data has been transformed into a new domain, but the models and hence
probabilities are calculated for the original domain. This domain mapping is overcome in equa-
tion 39 via the use of the Jacobian. Thus the use of maximum likelihood estimation for obtaining
feature-space transformations, as defined in this work, is not an appropriate transformation for
speech recognition.

It is not necessary to train the feature-space linear transform with ML, indeed schemes for
hybrid connectionist HMM systems which cannot typically use model-based adaptation, have used
discriminative trained linear input transforms for both speaker and environmental adaptation [14].
Unfortunately, it is not a simple task to train the feature-space transform discriminatively for a
standard HMM-based speech recogniser.

B Unconstrained Variance Optimisation

This section considers the optimisation of the variance transform, H, when using an linear uncon-
strained model-space transform where the variance has the form

xm = g™y’ (45)

For the optimisation presented here it is assumed that the original covariance matrices are diagonal
and that the mean transform has already been found. Instead of estimating H the inverse is found.
Letting

A=H""! (46)
the objective is to maximise the following expression

x-Sy (m)
QM M) =K = 5 33 () k& (47)

+1og(|20™)]) — Tog(|A[%) + (Aé(m)(r))T B0t (Aé(m)(r))>]
where
6™ (1) = of(r) — ™ (43)

and (™) is the estimate of the mean of component m given the current mean transform. Differ-
entiating with respect to A

~ M T
() Z2IM S S () (FAT 4 30 (A6 () 607 (7)) (49)
m=171=1
Noting that
(aT_l)ij COf(Aij) (50)

Yk dincof(Ag)

where cof(A;;) is the cofactor of element a;;. Considering only the i*" row and equating to zero
yields

SN g (r) e = ;GO (51)

c;a;
m=17=1 L

1 These experiments performed in collaboration with Natasha Gaye and Professor Steve Young at Cambridge
University.
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where the 1 x n row vector ¢; is defined ¢;; = cof(A;;) and G () is defined as

M 1 T T
G m; <m)2;vm(r) (6(m)(r)) (6(’”)(T)) (52)

Rearranging yields

T
D Am(Me G = a2, GO el ;G (54)

Therefore

N (zfﬁ S vmw) (55)

c;Gl)-1cT

Only the positive root is considered'®, hence the final solution for row i is

a; = CiG(i)_l (Z%=1 ZZ=1 ’Ym(ﬂ) (56)

ciG(i)—lclT

The optimisation is thus an iterative one, where each row of A is optimised given the current value
of all the other rows.

The solution presented here is a direct method over the rows and indirect over the columns.
The optimisation has the same form as the semi-tied full-covariance matrix optimisation [7] where
an indirect method over the rows was presented.

C Constrained Model-Space Optimisation

The objective is to maximise the following expression with respect to A and b

M T
QM M) = K = 5 37 3 am(r) (K (57)

+1og(|=)) ~ log(|A[*) + (Ao(r) + b — p™) TSI~ (Ao(r) + b — 4™))

Let W be the extended transformation matrix, [ b” AT ]T, and ¢(7) be the extended observa-
tion vector, [ 1 o(n)t ]T, thus
o(7) = Ao(1) + b = W((7) (58)

Using the fact that only diagonal covariance matrices are being considered, it is possible to rewrite
equation 57 as (ignoring all terms independent of W)

. 1 <& . .
Q(M, M) = Blog(piw, ) — 52 (wiG(”wZT — 2wik(z)T) (59)

i=1

15Tt makes no difference whether the positive or negative root is selected as they will yield the same likelihood.
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where p; is the extended cofactor row vector [ 0 ¢1 ... ¢Cin ], (again ¢;; = cof(A;)),

™ > am () ()" (61)

i T=1

N
"
i

.

and

g = Z Z'Ym (1) (62)

m=17=1
Differentiating with respect to w; yields
9Q(M, M i G
<8w. ):gpzvr — WG k) (63)

The optimisation is on a row by row basis, noting that after optimisation each row it is necessary
to update the cofactor vector c; for the new row i to be optimised.

C.1 Direct Method over Rows

Assuming that the determinant of A is non-zero and equating to zero for row i,

’ p-I:f.T =w; GO — k() (64)
Rearranging yields

Considering the direction of the row vector w; it is simple to see that
Wi = a (piGm—l n Ak(i)Gu)—l) (66)

The task is now to find a and X. Substituting this expression for w; and post-multiplying by G ()
yields

ap;G()-1 (p;-T + Ak“)T) kO 4 Bp; = o?p; G- (p,.T ¥ Ak@T) (pi n Ak@) (67)
This may be re-arranged to
(8- a*piGO1 (pF + 2OT)) pi = a (Ao — 1) pGO~E (pF + AkOT) KO (68)
For this equality to always hold, it is necessary that
Aa=1 (69)
and
8= a’p;Gi-1 (pf ¥ )\k(”T) (70)
Rearranging this and substituting in equation 69 yields
a’p;GH~1p! + ap; G- — 3 = ¢ (71)

16



This is a simple quadratic expression in a and may be solved in the usual way. There will again
be two possible solutions, so there is the question of which root to select. It is simple to show that
both roots are maxima. Substituting

wi = (api + k(i)) G(-1 (72)
into equation 59 and ignoring all the terms independent of « yields
QU (M, M) = Blog(|aer + €a]) — %cﬂq (73)
where
a =p:GO-1p] (74)
and
e = p;GHTIKOT (75)

and using the two maximum values of «,

e+ /(G +4e1p) D _a (—62 + \/(e%+4elﬁ))2 (76)
2 2

261

0 (M, M) = Blog (

As it is not possible to ensure that €5 > 0, the value of «a is selected that maximises Q(i)(./\/i, M)

The optimisation presented here is an iterative one, since it performs a row by row optimisation
and each row is dependent on the other rows via its cofactors. The total number of iterations
required will depend on the start point.

C.2 Indirect Method over Rows

Using the optimisation in the previous section requires the inverse of G() to be calculated for all
dimensions. If an initial solution which is felt to be “close” to the actual solution is known then
an alternative solution is possible, which does not require this inversion.

Consider only element w;.

0Q(M, M) _ g Pi _w,-gj(.i)TJrkJ(i) (77)

Owij piwiT

Equating this expression to one and re-arranging into the form

elil)gj — eawjj —e3 =10 (78)

where

6 = (0

1 - pzyg_”

€& = pij kj(-l) - sz'lgl(;-) - |A|(j)gg(-zj)

I£]
€3 = fpij+ |A|(j) kj(-l) - Zwugl(;)
I£]

and

|A|D) = Z Wit Pit (79)
1]
Solving this i1s a standard problem, thus

€9 T \/e% + 4eqe3 (80)

26]

There are two solutions, so there is the question of which root is to be chosen. Similar arguments
to the direct method are used to select the root.

wij =
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