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Abstract

Current approaches to gaze tracking tend to be
highly intrusive: the subject must either remain
perfectly still, or wear cumbersome headgear to
maintain a constant separation between the sensor
and the eye. This paper describes a more flexible
vision-based approach, which can estimate the di-
rection of gaze from a single, monocular view of a
face. The technique makes minimal assumptions
about the structure of the face, requires very few
1mage measurements, and produces a useful esti-
mate of the facial orientation. The computational
requirements are insignificant, so with automatic
tracking of a few facial features it is possible to
produce real-time gaze estimates. A robust, mul-
tiple hypothesis tracker is described, which utilises
no expensive correlation operations and runs at
video rate on standard hardware.

1. Introduction

Humans have little difficulty sensing where another
person is looking, often using this information to rede-
ploy their own visual attention. Even pre-renaissance
artists were aware of this, using the gaze of charac-
ters within a painting to draw the viewer’s eye to some
significant part of the canvas. Yet this ability to de-
termine a person’s gaze, even from a single, monoc-
ular, uncalibrated view (as in paintings), is quite re-
markable, especially considering the significant inter-
subject variations in the facial features that provide
the gaze cues.

Current approaches to gaze tracking use active sens-
ing to measure the orientation of the subject’s eyes.
The eye is illuminated with infrared light, and the
gaze direction inferred from the relative position of the
bright-eye (the reflection off the retina) and the glint
from the cornea [8]. The system’s calibration is sensi-
tive to movements of the subject’s head, so the subject
must either remain perfectly still, or wear cumbersome
headgear to maintain a constant separation between
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the sensor and the eye. A passive, vision-based ap-
proach would ideally tolerate large head movements,
and be able to follow a person’s gaze at some distance,
using little or no calibration, in much the same manner
as humans do naturally. There are clearly applications
for such a system in human-computer interfaces, espe-
cially in the field of virtual reality.

There are two major components to gaze direction:
the orientation of the head, and the orientation of the
eyes within their sockets. Here we concentrate on the
first component, presenting a simple, efficient method
to extract the facial normal from a single, monocu-
lar view of a face. This is very different to the ap-
proach taken in conventional gaze tracking systems,
which work by measuring only the rotation of the eyes.
Such systems produce very accurate gaze estimates
(errors are typically less than 1 degree [2]) for a sub-
ject looking within the narrow field of view allowed by
eye movements alone, but cannot cope with the much
larger gaze shifts caused by head movements (unless
the subject wears cumbersome headgear). By looking
solely at head movements, we are trading accuracy for
flexibility.

Gaze aside, the head orientation could also be used
in virtual holography applications [1], or to guide a re-
mote, synthesised “clone” face for low bandwidth video
conferencing [9, 11]. In addition, a head tracker could
provide a very useful computer interface for physically
handicapped people, some of whom can only commu-
nicate using head gestures.

Earlier work along these lines can be found in [1],
where 15 or so corner features are tracked on a mov-
ing face to estimate the facial orientation, assuming
rigidity of the face. Compared with our approach, this
technique is much slower, since expensive correlation
operations are required to track the corner features.
In addition, more a-priori modelling of the face is re-
quired (we require only one ratio of two facial dimen-
sions), or else the model must be estimated on-line.
However, the use of redundant features is effective in
rejecting noise, and the technique in [1] is certainly
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Figure 1. The facial model.

more accurate than the one presented here.

2. The facial model

There are many cues to facial orientation: up-down
rotation is easily inferred from visibility of the under-
side of the chin or the crown of the head; left-right
rotation can be estimated using ear visibility, or the
position of the eyes relative to the occluding contour of
the face. Yet all these cues, though undeniably strong,
make use of features with a high variation across dif-
ferent subjects. In addition, these cues are rather
vaguely defined, and will be difficult to detect in an
image. What is required is a set of precise, geomet-
ric cues, easily extracted from an image and providing
reliable estimates of facial pose across a wide variety
of subjects. For this reason, the method presented
here utilises measurements taken from only the eyes
and mouth. It is, of course, necessary to assume some
sort of underlying model for the 3-D geometry of faces,
though the model should be as simple and generic as
possible.

The facial model comprises a single ratio R, of two
world lengths: R, = L./L;. The image quantities cor-
responding to L, and L; (denoted using lower case
letters) are shown in Figure 1. The far corners of the
eyes and mouth define a plane, which we term the fa-
cial plane. Ly is measured on the symmetry axis of

Figure 2. Estimating the facial normal.

this plane, while L. is measured along the direction of
symmetry correspondence. L, and L; span relatively
stable features: we would not expect R, to change very
much for different facial expressions. In addition, R, is
fairly constant over a range of “normal” faces. Model
calibration should only be necessary when dealing with
an unusual face, or when high precision is important:
in such cases R, can be measured in a fronto-parallel
view of the face, as in Figure 1.

3. Estimating the facial orientation

Throughout this work a weak perspective [14] imag-
ing process is assumed, valid when depth changes on
the face are small compared with the distance between
the face and the camera. This is generally a good ap-
proximation, except when viewing the face from close
range with a short focal length lens, which results in
significant perspective distortion in the image. The
renaissance artists were well aware of this, and con-
sciously avoided short viewing distances, since the re-
sulting images were displeasing to the eye [4]. Indeed,
Leonardo’s own rule of thumb was to depict figures
as viewed from at least ten times the depth change
across the figure [4]: the same ratio is often used in
more recent vision research to justify a weak perspec-
tive imaging assumption [15].

Consider a single image of a face in general pose,
as in Figure 2. Assume a camera-centered coordinate



system, with x and y axes aligned along the horizontal
and vertical directions in the image, and z-axis along
the normal to the image plane. Assume also that the
far corners of the eyes and mouth have been located
in the image: these points are marked with crosses.
Weak perspective preserves length ratios along par-
allel lines, and particularly midpoints [10]. So it is
possible to locate (in the image) the symmetry axis of
the facial plane, by finding the midpoints of the eye
and mouth points, and joining them up. This pro-
vides the image vectors a and b, along the symmetry
axis and eye-line. Assuming an affine imaging process
(a generalisation of weak perspective with an uncal-
ibrated camera [13]), a and b can be mapped onto
world coordinates using a 2 x 2 affine transformation
matrix U [12]:

Ula b] = [_01 %é%e]
sU = [_01 éé%e][ab]_l

Given U, we show in the appendix how to recover
the slant o and tilt 7 of the facial plane, up to a
plus/minus 180° ambiguity in the tilt. The slant is the
angle between the optical axis and the facial normal
in 3-D space. The tilt is the orientation in the tmage of
the facial normal, quantified using the angle 7 between
the imaged normal and the x-axis. In camera-centered
coordinates, the facial normal n is given by

n = [sin o cos 7, sin o sin 7, — cos 7] (1)

The tilt ambiguity cannot be resolved using the po-
sitions of the eyes and mouth alone — see Figure 3.
When the face is being tracked in a continuous image
sequence, the ambiguity can usually be resolved by
imposing frame-to-frame continuity of the facial nor-
mal n. This strategy breaks down when the slant of
the face is small (ie. when the view is nearly fronto-
parallel), since then the two estimates of n, corre-
sponding to the two possible tilts, are very similar.
In such cases we predict the two possible positions of
the eyebrows in the image (which is straightforward
once 1 is known) , and look for photometric evidence
to support each hypothesis — the eyebrows are easily
distinguished as a dark-light-dark pattern going from
the left eyebrow to the bridge of the nose and on to
the right eyebrow. The tilt hypothesis which agrees
with the detected eyebrow position is selected.

Once the facial normal is known, it is possible to
calculate the directions of the eye-line and symmetry
axis relative to the camera-centered coordinate sys-
tem: the necessary geometry is presented in [7]. In [7]
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Figure 3. Eye and mouth points cannot resolve a
tilt ambiguity.

we also investigate the accuracy of the technique, and
its sensitivity to noise in the image and errors in the
facial model. Under typical noisy imaging conditions,
we find that the facial normal n is reliably estimated to
within a few degrees of its true value, except for near
frontal views of the face, when the error can be as large
as 15°. This is to be expected, since the image mea-
surement I, :[;, implicitly used to obtain n, is fairly
insensitive to changes in pose for near-frontal views of
the face. In [7] we present an alternative method for
estimating n, which utilises measurements taken from
the nose, as well as from the eyes and mouth. This
technique produces accurate gaze estimates for near-
frontal views of the face. However, since the nose is
difficult to track in an image sequence without expen-
sive correlation operations, we shall concentrate here
on the simple eye-mouth technique.

For near-profile views of the face it i1s likely that
some of the eye and mouth features are occluded in
the image. However, these features are visible for a
wide range of poses, including cases where the face is
heavily slanted (see Figure 7). When the points are
obscured, their positions could be estimated using the
locations of other facial features.

4. Simple feature tracking

To deliver continuous gaze estimates we need to track
the eye and mouth corners in an image sequence. In
developing a tracker, we have sought to keep the com-
putational requirements to a minimum, so the tracker
can run as fast as possible. Eyes are tracked by simply
looking for the darkest pixel near the previous eye po-
sition: this locks on to the pupil, which is not as stable
a feature as the eye corner (since the eyeball is free to
rotate relative to the rest of the face), but suffices to
produce an approximate gaze estimate. The division
between the lips appears as a dark line in the image,
whose end points locate the mouth corners. The line
and its end points are easily tracked from frame to
frame. The details of the tracker are as follows.

Initialization

In this simple implementation, the eye and mouth fea-
tures are located by hand in the first frame. However,
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Figure 4. Tracing the mouth line.

techniques do exist for the automatic location of facial
features, using either parameterized models (eg. [6]) or
grey-level templates (eg. [3]).

Eye tracker

Prediction: Predict the image location of the eye
using linear extrapolation over the previous two
frames.

Detection: Search a w x w pixel window around the
expected eye position for the darkest pixel.

Filter: Smooth the eye track using a first order low-
pass filter (ie. update the eye position to half way
between the darkest pixel and the eye position in
the previous frame).

The tracker is not sensitive to the parameter w, so
long as w is large enough to cope with typical acceler-
ations of the eyes in the image. We use w = 10 pixels.

Mouth tracker

Prediction: Predict the image location of the mouth
corners using linear extrapolation over the previ-
ous two frames. Obtain an estimate cg of the
centre of the mouth, midway between the two
corners. Estimate the local orientation dg of the
mouth from the relative position of the corners.

Trace the mouth line (Figure 4): Read a line Sy
of n pixels around cg, at right angles to dy. Locate
the darkest pixel, Py, along this line. Move to ¢,
a fixed distance r along dy. Read a new line S,
of n pixels around cy, at right angles to dg. Locate
the darkest pixel P, and move to cs, a distance r
along a new estimate of the local mouth orienta-
tion d;. From now on we can use P; — P;_; to
obtain d;. Continue reading lines S; orthogonal
to d;_1 until m lines of pixels have been read.
Repeat travelling the other way along the mouth.

Locate the corners: Calculate the contrast (the dif-
ference between the lightest and darkest pix-
els) along each line S;. While S; straddles the
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Figure 5. Locating the mouth corners.

mouth the contrast will be fairly large, but falls
off abruptly when the scan hits areas of smooth
skin by the side of the mouth. Look within a
small u x u pixel window around each predicted
mouth corner, and locate the corner at the dark
pixel P; where the contrast drops most sharply.

Filter: Smooth the mouth corner tracks using a first
order low-pass filter.

The technique is not sensitive to the parame-
ters n, m, v and r, so long as they remain within
suitable, broad bounds. n must be large enough to
span the lips, m must ensure that the scan shoots off
the ends of the mouth, and » must be small enough
to locate the mouth corners with sufficient accuracy.
The u x u validation window simply rejects spurious
measurements from beyond the corners of the mouth.
We use n = 20 pixels, u = 15 pixels, » = 5 pixels,
and m = 15.

A typical mouth scan is shown in Figure 5, with the
located corners shown as filled blobs. The corners are
reliably tracked even when the mouth is opened, so
long as a dark region remains between the lips.

5. Multiple hypothesis tracking

The simple tracker described in the previous section
works well but eventually, and inevitably, a spurious
measurement causes the tracker to lose lock on the fa-
cial features. The tracker can be made more robust
by exploiting constraints inherent in the facial geome-
try and imaging process. For instance, we know from
our weak perspective assumption that the lines join-
ing the eye and mouth corners should be parallel. We
also know that the angular acceleration of the face
should not be too large. Finally, so long as the sub-
ject does not overly contort his or her mouth, we know
that any fractional change in the imaged inter-eye dis-
tance should be mirrored as an identical change in the
imaged mouth length. All these constraints can be
exploited to improve the reliability of the tracker.



Figure 6. Ranked feature hypotheses.

The key is to allow the individual feature track-
ers to return ranked hypotheses for each feature posi-
tion. So the eye trackers return not the single darkest
pixel, but the p darkest pixels. Likewise, the mouth
trackers return the p sharpest drops in contrast within
the u x u validation windows. This produces p* com-
bined hypotheses, which are sorted into order of de-
creasing photometric evidence. The list is descended,
and the first combined hypothesis which satisfies the
constraints to within some tolerance is accepted. If no
combined hypothesis satisfies all the constraints, then
we revert to the hypothesis with the greatest photo-
metric evidence at the top of the list. We have found
significantly improved performance for p as small as 2
or 3. The process is illustrated in Figure 6, where an
erroneous measurement from the left mouth tracker
can be rejected (in favour of the second choice hypoth-
esis) on the grounds that it causes the mouth length
to contract more than the inter-eye distance.

The multiple hypothesis tracker is fast and robust.
The combined tracking and gaze estimation process
runs at 100 Hz (four times frame rate) on a Sun Sparc-
Station 10 (the head tracker in [1] runs at 10 Hz). Sev-
eral frames taken from a typical image sequence, along
with a drawing pin representation of the estimated fa-
cial orientation, are shown in Figure 7.

Even better performance should be possible by
maintaining multiple tracks over time. By deferring
hypothesis selection for several frames, it soon be-
comes clear which hypothesis to accept. This entails
maintaining a tree of active hypotheses, and separate
feature trackers for each, which greatly increases the
computational burden. Such trackers have been devel-
oped by the radar community over the years, and are
reviewed for computer vision purposes in [5].

Figure 7. Real-time gaze tracking.



6. Conclusions

The facial normal can be extracted from a single,
monocular view of a face, making minimal assump-
tions about the underlying facial structure. A gaze
estimate based on the facial orientation alone is use-
ful, and, compared with conventional eye-tracking sys-
tems, very large shifts of gaze can be accommodated.
By tracking the eyes and mouth in the image, it is
possible to produce gaze estimates at video rate on
standard hardware, with many applications in the field
of human-computer interaction. The reliability of the
tracker is improved by adopting a multiple hypothe-
sis approach: in this way constraints inherent in the
facial geometry and imaging process can be fruitfully
exploited.

Acknowledgements

The authors would like to thank Jonathan Lawn and
Mark Wright for many helpful discussions relating to
this work, and Nick Hollinghurst for his invaluable as-
sistance with the coding of the real-time demonstra-
tion. Andrew Gee gratefully acknowledges the finan-
cial support of Queens’ College, Cambridge, where he
is a Research Fellow.

A Calculating the slant and tilt

In this appendix we show how to obtain the slant o
and the tilt 7 of the facial plane from the affine trans-
formation matrix U. See [12] for a full derivation of
these results.

+7)°

Let UTU = | & ﬁ] and p= @+
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1 28

——— and tan2r = ———
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To find the slant 7, the inverse tangent should be cho-
sen so that sign(f5) = sign(sin 27). This fixes 7 up to
a plus/minus 180° ambiguity.

Then coso =
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