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Summary

Combinatorial optimization problems, which are characterized by a discrete set as opposed
to a continuum of possible solutions, occur in many areas of engineering, science and
management. Such problems have so far resisted efficient, exact solution, despite the
attention of many capable researchers over the last few decades. It is not surprising,
therefore, that most practical solution algorithms abandon the goal of finding the optimal
solution, and instead attempt to find an approximate, useful solution in a reasonable
amount of time. A recent approach makes use of highly interconnected networks of simple
processing elements, which can be programmed to compute approximate solutions to a
variety of difficult problems. When properly implemented in suitable parallel hardware,
these optimization networks are capable of extremely rapid solutions rates, thereby lending
themselves to real-time applications.

This thesis takes a detailed look at problem solving with optimization networks. Three
important questions are identified concerning the applicability of optimization networks
to general problems, the convergence properties of the networks, and the likely quality of
the networks’ solutions. These questions are subsequently answered using a combination
of rigorous analysis and simple, illustrative examples. The investigation leads to a clearer
understanding of the networks’ capabilities and shortcomings, confirmed by extensive ex-
periments. It is concluded that optimization networks are not as attractive as they might
have previously seemed, since they can be successfully applied to only a limited number
of problems exhibiting special, amenable properties.
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Chapter 1

Introduction

1.1 Motivation

Combinatorial optimization problems rank among the most difficult known to the mathe-
matical community, since many of them have proved practically impossible to solve exactly.
A typical example is the travelling salesman problem, where we desire to find the shortest
tour visiting a set of cities, starting and finishing at the same city. This is a combinatorial
optimization problem since there are only a finite number of valid tours to consider, as
opposed to a continuum of possible solutions. Hence the techniques developed over the
years to solve continuous optimization problems are largely inapplicable. To this day, no
way of finding the optimal tour has been discovered, short of calculating the length of
every possible tour and choosing the shortest. Unfortunately, the number of tours to be
considered rises exponentially with the number of cities. Even if the problem is limited to
twenty cities, there are roughly 60 million billion possible tours to check. It would take a
typical, modern computer workstation about 25 thousand years to evaluate this number of
possibilities. It is not surprising, therefore, that much research has been directed towards
discovering techniques which find good (though not necessarily optimal) solutions in rea-
sonable amounts of time. There is considerable incentive to do so, since combinatorial
optimization problems crop up in many areas of science, engineering and management:
for example resource scheduling, communications routing, visual stereo correspondence
and invariant pattern recognition can all be formulated as combinatorial optimization
problems.

1.2 Optimization networks

While there already exist many effective algorithms for approximately solving combinato-
rial optimization problems (see Appendix A), this thesis is concerned with just one family
of techniques, which we term optimization networks. The origins of optimization networks
can be traced back to Hopfield and Tank’s pioneering work in 1985 [71], though it would
perhaps be more appropriate to start with a review of general Artificial Neural Networks.

It has long been noted that while conventional computers are very good at performing
numerically intensive tasks such as complex arithmetic, they are less well adapted to the
tasks which humans find straightforward, like speech and vision recognition. For this rea-
son a new type of computer, modelled loosely on the architecture of the human brain, was
proposed. These Artificial Neural Networks (ANNs) comprise a large number of simple
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processing elements (corresponding to single neurons in the human brain) connected to-
gether in massive, parallel arrays. An ANN can be trained to perform tasks such as speech
and vision recognition and, like the human brain, has the ability to learn from experience.
Moreover, with the highly parallel structure of the ANN properly exploited in electronic
hardware, extremely high information processing speeds are possible, giving ANNs a huge
advantage over conventional computers.

One type of ANN is the Hopfield network [69], originally proposed as a form of content
addressable memory (a device which allows stored patterns to be recalled by presentation
of noisy, corrupted versions of the same patterns). The Hopfield network is an exam-
ple of a feedback neural network, where the outputs of the individual processing units
are fed back to the inputs via a dense array of interconnections, producing a nonlinear,
continuous dynamic system. In 1985, Hopfield and Tank demonstrated how the Hopfield
network could be applied to the solution of the travelling salesman problem [71]. Their
work was not conclusive, in that the network frequently failed to find valid solutions, let
alone high quality ones, though a new methodology had clearly been defined. There then
followed a considerable research effort, both to improve the performance of the Hopfield
network on the travelling salesman problem, and to find ways of applying the network to
more useful optimization problems. With the potential for very high speed implementa-
tions, researchers soon realized that it might be possible to find good solutions to difficult
problems in a matter of milliseconds. This was a goal well worth aiming for.

At about the same time as the emergence of the Hopfield network, physicists were
proposing a revolutionary new optimization technique called simulated annealing. Inspired
by phenomena in statistical physics, simulated annealing provides a method for finding
very good solutions to the most general combinatorial optimization problems, though
the algorithm typically takes a long time to run. To overcome this time problem, mean
field annealing (MFA)! was proposed as an approximation to simulated annealing, trading
solution quality for improved speed of execution. It soon became clear that the MFA
algorithm resembles a discrete-time simulation of the Hopfield network, thus establishing
a firm link between the two optimization techniques. In this thesis we will study MFA,
Hopfield networks and other related methods under the umbrella term of optimization
networks, using a common, unified analysis for them all.

1.3 Justification

It is always important to justify any proposed research before embarking upon it. There
already exist many good algorithms for solving a wide variety of combinatorial optimiza-
tion problems: these are surveyed in Appendix A. Can optimization networks find a niche
in this marketplace?

According to the literature, optimization networks have several features to recommend
them?:

e Apparent applicability to a wide variety of problems.

e Easily reprogrammed for new problems.

MFA is also sometimes referred to as deterministic annealing.

21t transpires that some of these points will be challenged in this thesis, though this of course does not
affect any justification for the research itself.
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e Fast, parallel implementation in analogue or digital hardware.
..and a serious disadvantage:

e When using optimization networks, it is often necessary to adopt inefficient problem
representations: for example, a network of n? processing elements is required to
solve an n-city travelling salesman problem. This leads to poor time complexity
when simulating the network on a standard computer, or poor space complexity in
parallel hardware implementations.

Other optimization techniques also exhibit general applicability and ease of adaptation
to new problems: for example cutting plane techniques, branch-and-bound, simulated an-
nealing and genetic algorithms can all be readily applied to a wide variety of problems.
Where optimization networks have the apparent edge is in their very fast, parallel imple-
mentations: the potential ability to obtain good solutions to large problems in a matter of
milliseconds is unique to optimization networks. Furthermore, we can envisage real-time
applications which would greatly benefit from this, such as solving stereo correspondence
problems in computer vision, graph labelling problems for invariant pattern recognition
and routing problems in communications systems. This is surely enough to justify further
investigation of optimization networks.

But how does the single disadvantage affect this claim? The poor time complexity in
simulation is certainly a serious shortcoming: for example, using a conventional digital
computer, it is laborious to simulate an optimization network solving a travelling sales-
man problem in more than about 100 cities. In contrast, an alternative, state of the art
algorithm can solve a 2392-city problem to within 10% of optimality in 16 minutes on a
modern computer workstation [46]. Thus, optimization networks are hardly competitive
in simulation, relying on hardware implementations for their appeal. In hardware there
is a corresponding problem with space complexity, though given the ever improving com-
pactness of VLSI technology, this should not be debilitating for problems of moderate size.
Nevertheless, it is clearly far-fetched to envisage an electrical circuit solving a 2000-city
travelling salesman problem, since this would require a network of 4 million processing
elements. Optimization networks are therefore restricted in their appeal to problems of
moderate size requiring extremely rapid solution. Since at least several useful problems
fall into this category (as listed above), a further investigation of optimization networks
would appear to be justified.

1.4 Themes and contributions

Before attempting any original work, we have to identify the remaining questions concern-
ing the use of optimization networks. Since most of the published work (which is surveyed
in Appendix A) has focussed on the networks’ application to a few specific problems, with
varying degrees of success, it would seem sensible to take a more general look at the field.
Specifically, there are three obvious questions:

e Is there a simple way to program an optimization network for an arbitrary problem,
so that the network will never find a solution violating any of the problem’s hard
constraints?

e Given this method, is it always possible to force the network to converge to an
interpretable, valid solution?



Introduction

e If so, will the quality of this valid solution be high enough to compete with the other
optimization techniques?

These are the key questions addressed in this thesis. We shall attempt to answer them
using a rigorous, analytical approach, though without recourse to too much heavy math-
ematics: where possible, we will use simple, 2-dimensional examples to illustrate our
arguments. Furthermore, we shall avoid experimenting with large scale problems where
possible: shortcomings of optimization networks can be easily confirmed with small prob-
lems, while there is appropriate evidence in the literature for the networks’ success on
certain large problems, which it would be wasteful to reproduce. The broad outline of this
thesis is as follows:

Chapter 2 presents a review of optimization networks, including their implementation
in analogue hardware and their simulation on digital machines.

Chapter 3 answers the first of the three key questions. We present a mapping, by which
an optimization network can be easily programmed to solve any 0-1 quadratic pro-
gramming problem (it is standard practice to express combinatorial optimization
problems in this form).

Chapter 4 addresses the second of these questions. We show that convergence to a valid
solution can only be guaranteed for a small class of problems whose constraints define
an integral polytope. Fortunately, many useful problems belong to this class, though
many equally useful problems do not.

Chapters 5 and 6 tackle the final question for those problems over integral polytopes.
We show that the quality of the networks’ solutions is highly variable, depending
largely on certain properties of the problem itself.

Chapter 7 presents some new ideas on how optimization networks can be sensibly applied
to the solution of problems over non-integral polytopes. This requires modifying the
networks so that they search for valid solutions, instead of attempting to find a valid
solution in a single attempt, which we show to be impossible.

Chapter 8 closes the thesis by presenting our main conclusions.

Appendix A presents a literature survey covering the solution of combinatorial opti-
mization problems, and the theory and application of optimization networks.

Appendix B contains derivations, proofs and experimental details referred to in the text.

Appendix C presents a brief review of Kronecker products, which are used at several
points in the thesis.

Figures and tables can be found at the end of each chapter.



Chapter 2

Optimization Networks

The starting point for this chapter is the premise that many combinatorial optimization
problems can be posed as the minimization of a single quadratic objective function over
a set of 0-1 variables. This suggests a new family of heuristic, approximate solution
techniques. Referred to collectively as optimization networks, these techniques all perform
some sort of continuous descent on the objective function within the bounds of the unit
hypercube. Ideally, the descent converges to a hypercube corner, which, being a 0-1 point,
can be interpreted as a solution to the combinatorial problem. Optimization networks
appear to offer a good compromise between solution quality and speed of operation: their
inherent parallelism leads to hardware implementations which could solve large problems
in a matter of milliseconds.

In this chapter we introduce three optimization networks. In Section 2.2 we review
the well known Hopfield network, first proposed as a means of approximately solving the
travelling salesman problem in 1985 [71]. The steepest descent network, described in
Section 2.3, is a stripped down version of the Hopfield network with dynamics which are
particularly easy to visualize. In Section 2.4 we review the mean field annealing algorithm,
which has its roots in statistical physics but is shown to be very closely related to the other
optimization networks. Finally, in Section 2.5 we demonstrate how all the networks can
be implemented in high-speed analogue or digital hardware.

2.1 Quadratic objective functions for combinatorial opti-
mization

Many combinatorial optimization problems can be posed as the minimization of a single
quadratic objective function over a set of 0-1 variables. The manner in which problems are
expressed in this form is not trivial and will be the subject of Chapter 3. In the meantime,
however, let us assume that we have succeeded in expressing the problem in the following

form:
minimize E(v) = —ivITv - vTiP

where v; € {0,1} (2.1)

The problem of finding the 0-1 point which minimizes F is typically NP-complete. This
means that if we really want to find the best solution, we have little choice but to ex-
haustively search through every 0-1 point. Unfortunately, the number of 0-1 points grows
exponentially with the size of the problem, and so exhaustive search is infeasible for all
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but the smallest of problems. A far more sensible approach to AP-complete problems is
to attempt to find a reasonably good solution in an acceptably short amount of time.

In the rest of this chapter we consider a family of solution techniques referred to
collectively as optimization networks. All optimization networks can be viewed as feedback
systems with v as a state vector. The networks’ dynamics guide v through some sort of
bounded descent on the objective function F (by bounded we mean that the descent is
limited to the interior of the unit hypercube). Throughout the descent, the elements of v
are allowed to take any value in the range 0-1, thus extending the search space from the
vertices to the whole interior of the unit hypercube. Typically E will have many local
minima in which v could easily become trapped, and so it is common to employ some sort
of annealing mechanism to free v from such local minima and guide v towards a hypercube
corner: we shall discuss annealing procedures in Chapters 4, 5 and 6. When v is at a
hypercube corner all its elements are either 0 or 1, and so we have an interpretable solution
to the combinatorial problem. Since the solution point was arrived at through some sort
of descent, we might expect this point to represent a relatively good solution, though
this will depend very much on the nature of the objective function F and its relationship
to underlying features of the optimization problem: such issues will be comprehensibly
addressed in Chapters 5 and 6. In the meantime, however, let us consider optimization
networks without worrying about their likely eflicacy, since they would appear to offer a
reasonable compromise between solution quality and speed of execution, especially given
the potential for fast hardware implementations.

2.2 The Hopfield network

A schematic diagram of the continuous Hopfield network! [70] is shown in Figure 2.1. The
network comprises a set of simple processing elements, or neurons, connected together

to form a dense, parallel array. Neuron ¢ has input u;, output v;, and is connected to
b

neuron j with a weight 77;;. Associated with each neuron is also an input bias term z;.

The dynamics of the network are governed by the following equations:

u = —77u—|—Tv—l—i'D (2.2)
vi = g(w)

In equation (2.3), v; is a continuous variable in the interval 0 to 1, and g¢() is a monotoni-
cally increasing function which constrains v; to this interval, usually a shifted hyperbolic

tangent of the form
(ui) = : (2.4)
g =7 + exp(—u;/T?) '

If T is symmetric, then the network has a Liapunov function [70]

Flap(v) = —%VTTV —vTib 4 UZ/ l gH(V)av (2.5)
—~Jo

If transfer functions of the form (2.4) are employed, then

g (V) =17 (In(V) —In(1 = V)) (2.6)

!The Hopfield network is in fact a special case of the additive model developed by Grossberg in the 1960’s
(see [63] for a historical survey).
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and the last term in the Liapunov function gives a measure of the system entropy, which
can sometimes be exploited in specialist optimization applications [75, 76, 102]. However,
for the vast majority of applications this term is a nuisance and is usually suppressed,
either by setting = 02, or by ensuring that the transfer functions (2.4) have sufficiently
high gain (ie. low T?), in which case the entropy term becomes negligible for v within the
unit hypercube [70]. The Liapunov function then becomes

E(v) = —%VTTV —vTib (2.7)
Throughout the rest of this thesis we shall refer predominantly to the shortened Lia-
punov function (2.7), since this is more readily applicable to the solution of combinatorial
optimization problems than the full Liapunov function (2.5).

Since the network’s dynamics guide v in a manner which never allows F to increase, v
will converge to some minimal point of F within the unit hypercube. This process is
illustrated in Figures 2.3 and 2.4, which show full u and v trajectories for a Hopfield
network operating with a Liapunov function

1 -1 -1
. _1.T A
E(v) = 2v[_1 1]v v[ 2]
= —%(v%—l—v%) 4+ vjvg + vy — 209 (2.8)

A contour plot of F is given in Figure 2.2. For the simulation in Figure 2.3 the Liapunov
function was achieved with low gain transfer functions (2.4) by setting » = 0, though, as the
traces indicate, this means that the u variables are unbounded and will continue to grow in
magnitude indefinitely: this is clearly not practical for anything but computer simulation.
For the simulation in Figure 2.4 the Liapunov function was achieved using a nonzero n and
high gain transfer functions (2.4) with 77 = 0.01. In this case the u variables converge to
finite values, while the v variables follow an almost identical trajectory to that achieved
with = 0, though in considerably less time. This is how any hardware implementation
of the Hopfield network would operate.

The Hopfield network was originally proposed as a form of content addressable mem-
ory (CAM). The connection weights and input biases were programmed so that the minima
of the network’s Liapunov function corresponded to the items to be stored [69, 70]. If the
network was initialized with v lying somewhere within the unit hypercube, then it was ex-
pected that v would converge to the nearest local minimum, thus recalling the stored item
most resembling the starting point. Even though Hopfield networks offered the potential
for very fast, real-time CAMs [66], it is now generally accepted that they have low storage
capacity [145] which cannot be improved without creating spurious local minima [9, 136].
In particular, it has been demonstrated that a parallel architecture implementing a simple
Hamming classification scheme easily outperforms the Hopfield network as a CAM [136].

In [71, 72], the Hopfield network was subsequently proposed as a means of approxi-
mately solving combinatorial optimization problems which can somehow be expressed as
the minimization of a quadratic objective function over a set of 0-1 variables, as in equa-
tion (2.1). The idea is that the network’s Liapunov function (2.7) is associated with the
problem’s objective function (2.1) by setting the connection weights and input biases ap-
propriately. The network is then allowed to converge to a stable state, usually with some

2This can be achieved in simulation (although the u; variables then become un‘bounded)7 but not in
analogue circuit implementations of the network — see Section 2.5.
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sort of annealing mechanism which frees v from local minima of F and drives v towards a
hypercube corner. The corner thus reached, being a 0-1 point, is interpreted as a solution
to the problem. The original work [71, 72] focussed on the travelling salesman problem,
showing how the network’s output can be used to represent a solution to that problem, and
how the interconnection weights and input biases can be programmed appropriately. The
particular attraction of the network lies in the existence of an analogue electrical circuit
with dynamics corresponding to (2.2) and (2.3), which we shall describe in Section 2.5.
Using such circuits, it should be possible to find good solutions to large problems in a
matter of milliseconds.

The Liapunov function (2.7) is valid only if T is symmetric. However, it is also possible
to use the network for problems where T is not symmetric, by noting that
(B+ET) = =" [H(T+T7)| v - v7ib (2.9)
So we simply replace T with %(T + TT), which is symmetric: in so doing we do not
change F.

2.3 The steepest descent network

Also of interest are steepest descent dynamics, previously studied in [5, 112]:

0 if {Tv—l—ib]<0andvi:0
5 =20 if {Tv + ib} . >0and v; =1 (2.10)

[Tv + ibL_ otherwise

Since vIVE < 0, the dynamics (2.10) share the same Liapunov function (2.7) as the
Hopfield network, and the v variables are also limited to the range 0 < v; < 1. Thus (2.10)
provides an alternative method for performing a descent on F within the unit hypercube.
The steepest descent dynamics are particularly easy to visualize: v follows the path of
steepest descent on E until it reaches one of the hypercube faces. Here, it continues
along the path of steepest available descent, without leaving the interior of the hypercube.
Equilibrium is attained when v reaches a point where it can go no further without leaving
the hypercube or climbing uphill on F. Figure 2.5 shows the steepest descent dynamics
operating on the Liapunov function (2.8). As expected, the system converges to the same
point as the Hopfield network did. The steepest descent dynamics can also be implemented
in analogue hardware (see Section 2.5) and have the additional attraction of an efficient
simulation on digital computers, as we shall see in Section 3.4.

2.4 Mean field annealing

Since its conception in 1983, simulated annealing [86] has enjoyed considerable popularity
as a general purpose optimization tool. The technique, which is described in more detail
in Appendix A, embodies a stochastic search process, and often takes an unacceptably
long amount of time to find a good solution. In contrast, the mean field annealing (MFA)
algorithm operates on average statistics of the annealing process to provide a deterministic
approximation to simulated annealing: the result is improved execution speed at the
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expense of solution quality. Though not strictly a continuous descent technique, MFA is
closely related to the Hopfield network and therefore warrants discussion here.

For a full derivation of the mean field annealing algorithm from its roots in statistical
physics see [5, 118]; here we shall take as our starting point the saddle point equations:

1
P = 2.11
! 1+ exp(—u;/TP) (2.11)

u;, = (Z Tij’l)j + Z?) (2.12)
J

The MFA algorithm involves solving (2.11) and (2.12) at a series of progressively lower
temperatures TP: this process is known as temperature annealing. The solutions to (2.11)
and (2.12) correspond to stable states of the Hopfield network with transfer functions of the
form (2.4) and 1 = 1, so both techniques appear to be seeking the same solution points.
Hence, in the limit of low temperature TP, when the Hopfield network has a Liapunov
function F (2.7), it is apparent that the MFA algorithm also seeks points which minimize F/
within the unit hypercube. The reason for tracing the saddle point solutions through a
series of progressively lower temperatures, instead of simply solving the equations once at
a low temperature, will be explained in Chapter 5 when we come to consider annealing
procedures in more detail.

Equations (2.11) and (2.12) can be solved at each temperature using Hopfield dy-
namics (2.2)-(2.3), in which case the overall system is best described as a temperature
annealed Hopfield network. However, more common is to solve the equations using an
iterative replacement procedure, which we shall henceforth refer to as the MFA algorithm:

ul,, = Tv|+i (2.13)
1
= T (= ul /T7)

(2.14)

The update rules (2.13) and (2.14) define a discrete algorithm which has no convergence
guarantee and can in fact increase F at any iteration: this should be contrasted with
the continuous descent networks which are guaranteed to converge to some minimal point
of F/ within the unit hypercube. We shall investigate convergence of the MFA algorithm
more fully in Chapter 5: at this point we simply note that while there is no convergence
guarantee, in practice MFA can be made to work for many optimization problems and
exhibits very rapid convergence to solutions of (2.11) and (2.12).

The relationship between MFA and the Hopfield network can be clarified by noting
that if we choose to simulate the Hopfield network using an Euler approximation with a
time-step At, we obtain from (2.2)

ul,pay = ul, + At(= nul, + Tv|, +iP) (2.15)

Furthermore, if we choose At = 1 and n = 1, then the Euler approximation becomes
the MFA algorithm update rule (2.13) [5, 117]. Throughout this thesis we shall strive to
consider MFA and the continuous descent networks from a common standpoint, and not
pay too much attention to the links between MFA and simulated annealing. Viewing MFA
in this way also allows us to assess the detrimental effect of the approximations which lie
between MFA and simulated annealing, since the latter is guaranteed to find the optimal
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solution to any combinatorial problem in the (impractical) limit of an infinitely slow cooling
schedule.

The action of the MFA algorithm on the Liapunov function (2.8) is illustrated in
Figure 2.6. Here we see the results of solving the saddle point equations (2.11) and (2.12)
at a series of progressively lower temperatures until v; € {0,1} when T? x~ 0.1. Rapid
convergence of the update rules (2.13) and (2.14) was always observed with this particular
objective F, and only a few iterations were required at each temperature to find a stable
solution point. As expected, both u and v converge to the same points found by a Hopfield
network running with 7 = 1.0 (see Figure 2.4).

2.5 Implementation of optimization networks

The main appeal of optimization networks lies in their potential implementation in ana-
logue hardware, making possible the extremely rapid solution of large problems. In this
section we consider both hardware and software implementations of the networks intro-
duced in this chapter.

2.5.1 Analogue circuit implementations

An analogue circuit implementation of the Hopfield network would relax to a stable state
within a few time constants of the circuit components, thus raising the possibility of
obtaining good solutions to very large problems within a matter of milliseconds. Figure 2.7
shows a representative part of an analogue circuit with dynamics [70]

U

Citi; = % Tijv; +if — TT: (2.16)
where
1 1 1 1 1 1
T:: = _ - d = = i — 2.17
IT Ry TR M ZJ: (R?? ' Ri-?) "R =

The provision of inverted amplifier outputs allows the interconnections 7;; to take ei-
ther positive (excitatory) or negative (inhibitory) sign. The amplifiers all have identical,
monotonically increasing input/output transfer functions, which limit their outputs v; to
a certain range. If we assume that C; = C and r; = r for all 7, then we can write the
dynamics in vector form as follows:

1
= — <—u—|—Tv+ib> (2.18)
r

Thus, by comparison with equation (2.2), it is apparent that the circuit has dynamics
equivalent to those of a Hopfield network with n = 1/r, and a speed of operation governed
by the values of the circuit’s capacitors and resistors. If the amplifiers have sufficiently
high gain, then the circuit will have a Liapunov function of the form (2.7) and can therefore
be used for combinatorial optimization. Since it is not possible to design the circuit to
give n = 0, the only way to achieve the Liapunov function (2.7) is to use high gain
amplifiers. Small circuits of this design have been used to solve optimization problems in
analogue-to-digital conversion and linear programming [135].

Steepest descent networks can also be implemented in analogue hardware — see Fig-
ure 2.8. The circuit is very similar to that of the Hopfield network, except that the am-
plifiers now have a constant gain of one (and are effectively just current sourcing buffers)
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and a pair of diodes limits each of the v; voltages to the range Vi, < v; < Vp. If we define
the current input to each capacitor as

I, = ZTijUj + Lf —

J

% (2.19)

(3
then the dynamics of the circuit can be expressed as

0 ifI; <0and v; = Vg,
Civ; = 0 ifl; >0and v; = Vg (2.20)
I; otherwise

where T;; and r; are defined in equation (2.17). Making the earlier assumption that C; = C
and r; = r for all 7, the dynamics reduce to

0 if I < 0and v; =Vp,
v; = 0 if I; >0 and v; = Vg (2.21)
%IZ- otherwise

Setting Vi, = 0 and Vi = 1, and adjusting T}; to cancel the v;/r; term in (2.19), equa-
tions (2.21) and (2.19) are equivalent to the steepest descent dynamics (2.10).

While circuits like the ones in Figures 2.7 and 2.8 are interesting from a theoretical and
illustrative standpoint, their applicability to practical implementations of large networks
is doubtful. The analysis of the circuits assumed that all the components were ideal, and
in particular that the amplifiers had no propagation delay. When real components are
considered, finding effective circuits is nowhere near so simple, though still possible [128].
Real components aside, there remain several serious problems to overcome: for instance,
programmable resistors are not easy to implement in VLSI. Thus the move has been away
from operational amplifier based circuits and towards circuits built around MOSFET
analogue multipliers, which require the weights to be stored as voltages. Weight storage
can then be achieved using capacitors, which typically hold their charge long enough to give
a network time to converge [41]. Alternatively, optimization networks can be implemented
in pulse-stream VLSI [65, 110], using pulse-width modulation to carry out the required
multiplications.

2.5.2 Network simulation using digital computers

While the MFA algorithm is naturally implemented on a digital computer, the Hopfield
and steepest descent networks are described as continuous systems which map most con-
veniently onto analogue electrical circuits. However, until suitable hardware becomes
generally available, optimization networks are bound to be studied in simulation on con-
ventional, digital computers. The simulation of continuous systems on digital computers
is a tricky process, the precise details of which can have significant bearings on any sub-
sequent experimental results.

The range of simulation techniques available is well documented: see, for exam-
ple, [44, 64, 90]. The most straightforward way to simulate a Hopfield or steepest descent
network would be to use a standard Euler approximation with a finite time-step At. How-
ever, greater accuracy is possible using higher order techniques: for example, the fourth
order Runge-Kutta approximation has been popular with researchers.

It remains only to point out that, whatever the simulation technique employed, most of
the computational effort is expended on large scale matrix multiplications. These require
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a number of multiply and accumulate operations, which can be performed very rapidly
using specialized digital signal processing hardware. In addition, the separate multiply and
accumulate operations associated with a single matrix multiplication can be performed
in parallel, offering further significant speed-ups. This applies also to the mean field
annealing algorithm, for which there was no analogue circuit implementation. A parallel,
digital CMOS circuit operating along these lines was used to simulate a 64-neuron Hopfield-
type network in [79].
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Figure 2.1: Schematic diagram of the continuous Hopfield network.

The Hopfield network comprises a set of ‘neurons’. Neuron @ has input u; and output v;,
related by a monotonically increasing transfer function v; = g(u;). The network’s dynamics
are governed by the first order differential equation w = —nu + Tv +i°. The T matriz
defines a set of interconnections between the neurons, while the i® vector corresponds to a
set of individual input biases to each neuron. The 1 term introduces an element of decay
into the network’s dynamics, which can be used to ensure that the u variables remain

bounded in magnitude.
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Figure 2.2: Contours of a simple Liapunov function.

The contours are for the function E(v) = — (v} +v3) + vivy 4+ vi — 2vy. This function is
used to compare and contrast the dynamics of the various optimization networks.
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Figure 2.3: Trajectories from Hopfield network dynamics.

The traces are for a Hopfield network running with a Liapunov function E (2.8) and
parameters 1 = 0 and T? = 1.0. Since there is no decay term, the u variables are
unbounded. The v wvariables converge to the point (0,1), which is the minimum of the
Liapunov function within the unit square.
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Figure 2.4: Trajectories from alternative Hopfield network dynamics.

The traces are for a Hopfield network running with parameters n = 1 and T? = 0.01. The
high gain transfer functions ensure that the network still has a Liapunov function E (2.8),
despite the presence of a nonzero decay term. In this case the u variables are bounded,
while the v variables converge, as before, to the minimum of the Liapunov function within
the unit square. Any hardware implementation of a Hopfield network would operate in this
mode. Note the time scale on the v time trace.
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Figure 2.5: Trajectories from steepest descent dynamics.

For steepest descent dynamics there are no u variables. v simply follows a path of steepest
descent on E, until a hypercube face (in this simple example an edge of the unilt square)
is reached. At this point a path of steepest available descent is followed within the unit
hypercube. As before, v converges to the minimum of the Liapunov function within the
unit square.
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Figure 2.6: Trajectories from the MFA algorithm.

The MFA algorithm requires the solution of the saddle point equations at a series of pro-
gressively lower temperatures. The traces show how the u and v solutions evolve as the
temperature is lowered from 10 to 0.1 in 99 equal intervals of 0.1. The solutions at each
temperature were obtained using the iterative update rule, which is equivalent to an Fuler
approzimation of the Hopfield network dynamics with n = 1 and time-step At = 1. The
solutions could equally have been obtained using continuous Hopfield dynamics, in which
case the system is best described as a temperature annealed Hopfield network.
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Figure 2.7: Analogue circuit implementation of the continuous Hopfield network.

With appropriate settings of the component values, this circuit exhibils the continuous
Hopfield dynamics with nonzero decay parameter 1. However, existing practical hardware
mmplementations of Hopfield networks tend to differ significantly from this simple circuit,
since programmable resistors are difficult to incorporate directly in VLSI. More convenient
1s to build the circuils around MOSFFET analogue multipliers, in which case the intercon-
nection weights can be held as charges on capacitors.
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Figure 2.8: Analogue circuit implementation of the steepest descent network.

This modification of the Hopfield network circuit is designed to implement the steepest
descent dynamics. The amplifiers, which now have unit gain, act as current sourcing
buffers. Simple diode circuits are attached to each amplifier input, limiting the voltages
there to the range Vi —Vy.



Chapter 3

The Mapping Process

In this chapter we justify the premise that many combinatorial problems can be mapped
onto optimization networks for solution. To do this, we must express the problem as the
minimization of a single quadratic function over a set of 0-1 variables. Unfortunately, most
combinatorial problems are more naturally posed in terms of quadratic 0-1 programming,
requiring the satisfaction of a set of linear constraints in addition to the minimization of an
objective function. While it is clear how the objective can be associated with a network’s
Liapunov function, it is less obvious how to guarantee satisfaction of the constraints.
The mapping becomes easier if the constraints are recast in terms of quadratic penalty
functions: functions which attain their minimal values when the constraints are satisfied.
In previous attempts at problem mapping, the penalty functions were often constructed in
a rather ad hoc manner, resulting in poor network performance. In contrast, the mapping
presented here is completely rigorous, and can cope with inequality as well as equality
constraints. Networks running under the mapping will never find invalid solutions: this
constitutes the main original contribution of the chapter.

We begin in Section 3.1 by making explicit what we mean by a quadratic 0-1 pro-
gramming problem, and then proceed to show how the travelling salesman problem can be
expressed in this form. While this process is very much intuitive, it can in fact be repeated
for many useful combinatorial problems. A rigorous mapping for general quadratic 0-1
programming problems is presented in Section 3.2. An appealing feature of the mapping
is that it can handle arbitrary inequality constraints using conventional optimization net-
works. Alternative strategies for inequality constraints, reviewed in Section 3.3, appeal to
more complicated networks and algorithms, sacrificing the potential for simple hardware
implementations. Section 3.4 describes how steepest descent networks, running under the
new mapping, can be simulated on digital computers with increased efficiency. Finally,
in Section 3.5, we show how the mapping works for the travelling salesman, Hamilton
path, graph labelling and knapsack problems, which will be used as illustrative examples
throughout this thesis.

21
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3.1 Combinatorial optimization as quadratic 0-1 program-
ming

Before deriving a general purpose mapping, it is necessary to obtain a standard form for the
mathematical expression of combinatorial optimization problems. The most convenient
format is the quadratic 0-1 programming problem:

minimize E°P(v) = —IvIToPy — vTiop
subject to Afly = b
and Alny < pin
and 0<v; <1, ie{l...n}
and v integral

where v e RV, bea ¢ R™™, bi" ¢ R™"

w

TN TN N N S
W W W w

Ot = W N =
e N S S S

Most useful combinatorial problems are easily cast in this form. With reference to con-
dition (3.5), we define an integral vector to be one whose elements are all integers. The
system (3.1)—(3.5) describes an optimization problem where it is required to minimize
the quadratic objective (3.1) over a set of N variables, subject to a set of m®? linear
equality constraints (3.2) and m!® linear inequality constraints (3.3). The final two con-
ditions (3.4)—(3.5) ensure that v; € {0,1}. The objective function E°P is not the same as
the objective ¥ minimized by optimization networks. The aim of the mapping process is
to show how to construct F so that the network’s solution not only minimizes F°P, but
also satisfies the problem’s constraints. While both F and E°P are correctly referred to
as objectives, we will use their mathematical symbols to distinguish between them where
necessary.

There are no hard rules for expressing combinatorial optimization problems in the
form (3.1)—(3.5), but rather an individual assessment is required for each problem. For
example, consider the planar Euclidean travelling salesman problem:

Given n cities in a plane, all of which have to be visited once only on a single
closed tour, find the best order in which to visit them such that the total tour
length is minimized.

Suppose the cities are originally presented in an ordered list of Cartesian coordinates, C
say. Cis an n X 2 matrix, in which C';; is the z-coordinate of city j, and Cj; is the y-
coordinate of the same city. We could represent the solution as an n-element permutation
vector p, where p; = j if the city initially in list position j is to be placed in position ¢ of
the tour. We must also enforce

pi#Ep; nje{l...n}u#j (3.6)

if all the cities in the original list are to be present in the final journey. The reordering
can be achieved directly using an n X n permutation matrix V(p), which is constructed
as follows:

0 otherwise

Vi ={ bpi= (3.7)

With the above definition of V, the n x 2 matrix C' = VC contains the same city co-
ordinates as C, but reordered in the manner defined by p: this process is illustrated in
Figure 3.1.
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Since V is a permutation matrix, its elements are all either 1’s or 0’s, and each row
and column contains only a single 1. This can by expressed mathematically as follows:

ZVZ']‘:ZV,']' = 1 4je{l...n} (3.9)
i=1 =1

We can now use V to obtain an expression for the total path length of a tour specified by
the permutation p. Let P be the n x n matrix of negated inter-city distances given by

P;; = — (distance between cities ¢ and j) (3.10)

Let Q be the n x n matrix given by!

QZ']‘ = 5]'@171' + 53'@1,2' 1,] € {1 .. n} (3.11)

where

5is = {1 ife=7

0 otherwise
a®b = a+b except n®l=1
acb = a—b except 161=mn

Then it is easily verified that the path length corresponding to ordering p is given by
o T
P = —Ltrace [VPV'Q] (3.12)

and the optimization problem can be concisely expressed as minp E°P. Q effectively picks
out the distances travelled in a tour from the permuted distance matrix VPVT. Note

2 variables to represent the solution to an n-city problem.

that we require N = n

We have now succeeded in expressing the travelling salesman problem as a quadratic 0-1
programming problem. We have a quadratic objective (3.12), which we must minimize over
a set of N 0-1 variables V;;, subject to a set of linear constraints (3.9). For the travelling
salesman problem all the constraints happened to be equality constraints, though this is
not always the case: for example, inequality constraints are required for problems of the
knapsack [53, 68, 113] and scheduling [58] variety.

In order to cast the problem in the standard form (3.1)—(3.5), we must rewrite it in
terms of a vector of 0-1 variables, instead of the matrix we have at the moment. This is
easily carried out using Kronecker product notation, which is reviewed in Appendix C. If
we define

v = vec(V) (3.13)

then the objective function becomes?

EP=-WWI(PaQ)v (3.14)

010
101
!For example, if n = 5 then Q is 8(1)(1)
100

*This expression is derived using equations (C.6) and (C.7), giving the result E°P = —1v"(P” @ Q)v.
Since P is symmetric, this is equivalent to (3.14). Throughout this thesis, symmetric matrices are rou-
tinely replaced by their transposes, reducing the amount of mathematical exposition required for many
derivations.
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and the constraints become

n

Y vag-nyrs = 1 je{l...n} (3.15)
=1
D vnony4s = 1 die{l...n} (3.16)
7=1

In terms of the standard form (3.1)—(3.5), we have

TP = PRQ (3.17)
P = 0 (3.18)

To complete the standard form description, we can easily construct A*® and b®? from (3.15)
and (3.16).

The process of expressing the travelling salesman problem as a quadratic 0-1 pro-
gramming problem proved to be relatively straightforward. It is possible to express
many other problems in this form, including the Hamilton path [51, 74], graph partition-
ing [5, 117, 118, 143], graph labelling [51, 50, 52, 96], N-Queens [10], knapsack [53, 68, 113],
assignment [41, 131, 132] and scheduling [58] problems (see also Appendix A.5). Once we
have expressed the combinatorial problem as quadratic 0-1 programming, the mapping
onto optimization networks, described in Section 3.2, is straightforward and mechanical.

3.2 Mapping quadratic 0-1 programming problems

It is clear that if we set up an optimization network with ¥ = F°P, then the network
will find solutions which locally minimize the problem’s objective E°P. However, it is
less obvious how to ensure that these solutions also satisfy the problem’s constraints. One
approach is to code the constraints as terms in £ which are minimized when the constraints
are satisfied: such terms are commonly known as penalty functions. By seeking out low
energy states, the network will tend to find solutions which do not violate the constraints.

In the early work on optimization networks, the penalty functions were constructed
in a rather ad hoc manner, usually employing one term for each constraint. A typical
Liapunov function would take the form

E=FP 4+ F{"™ 4+ 5™+ ... (3.19)

where E°P is the objective function to be minimized (eg. the length of a travelling salesman
tour) and the F" terms are the penalty functions. The ¢; parameters in equation (3.19)
are constant weightings given to the various terms, usually set by trial and error. Un-
fortunately, the multiplicity of terms tend to frustrate one another, and the success of
the network is highly sensitive to the relative values of the ¢; parameters. Networks
running under such naive mappings rarely found valid solutions, let alone high quality
ones [81, 149].

In this section we shall develop a mapping using a far more rigorous approach to
penalty functions. Our goal is that the mapping should guarantee satisfaction of the
problem’s constraints. This can be made more explicit in geometric terms. We note that
the conditions (3.2)—(3.4), if feasible, define a bounded polyhedron, or polytope, within
which v must remain if it is to represent a valid solution: let us denote this polytope
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by the symbol P. Furthermore, all 0-1 points within P are vertices of P, though it does
not necessarily follow that all vertices of P are 0-1 points. We can achieve our goal by
ensuring that, under the problem mapping, v remains strictly within P at all times. We
would also like to arrange that, while remaining within P, v performs some sort of descent
on the problem’s objective function E°P (3.1). We would probably employ an annealing
procedure to free v from local minima of F°P and drive v towards the boundary of P,
hopefully forcing convergence to a 0-1 vertex of P: convergence issues will be investigated
in Chapter 4.

We begin the derivation of the mapping by considering the simple case where there
are no inequality constraints (as for the travelling salesman problem), leaving only equal-
ity constraints of the form (3.2). The equality constraints constitute a system of linear
equations which can be solved to obtain an affine subspace of solutions. If the rows of A4
are linearly independent (as is invariably the case for a set of feasible, irredundant con-
straints), then we can describe this subspace in the form (see any linear algebra text, for
example [45] or [88, p. 49])

v = Ty +s (3.20)
where T — T AcaT(Acapeal)—1cq (3.21)
and s = AcaT(AcapeaT)~Ipea (3.22)

Equation (3.20) defines an affine subspace, on which v must lie if it is to satisfy the con-
straints (3.2); so all valid solution points must necessarily be 0-1 points on this subspace.
The subspace, which was originally termed the valid subspace [5], is completely specified
by the projection matrix TV and the offset vector s®>. While we have described just one
way of finding T'® and s, it should be realized that they are simply obtained by solv-
ing the set of linear equations (3.2): this can be carried out using a variety of standard
techniques [119], including Gaussian elimination and singular value decomposition.

From a polyhedral perspective, the subspace (3.20), together with the hypercube
faces (3.4), define the polytope P for this problem. We know that the network’s transfer
functions will ensure that v always remains within the unit hypercube, so if we can ensure
that v is also pinned to the valid subspace, then confinement of v within P is guaranteed.
We can achieve this by using a carefully constructed penalty function

B = 1v - (Tl +5) H2 (3.25)

Note that when v lies on the valid subspace, E"® is zero, while F* grows rapidly as v
moves away from the valid subspace. The overall objective function is then

E = E°P 4 cFens (3.26)

In the limit of large ¢, the penalty term E°" will dominate over F°P, and any descent
procedure on E will ensure that v remains pinned to the valid subspace (and therefore

*Note that TV is a projection matrix, so
Tvalpval _ gval (3.23)

Also, s lies in the nullspace of Tval, S0
TVls = 0 (3.24)
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within P) throughout convergence. Furthermore, for v within P we see that E = E°P,
so the penalty term does not interfere with the objective term so long as the constraints
are satisfied. The objective function F, as constructed in equation (3.26), effectively
mimics F°P within P, while building high walls around P to ensure that v cannot escape
into invalid regions — this principle is illustrated in Figure 3.2.

Substituting for £°P and E™ in equation (3.26), we obtain

E = —%VTTOPV —vTioP 4 re|lv = (Tv +5)|)?

— _%VT {TOP + C(Tval — I)} v — vT(iOP +es) + %csTs (3.27)

Discarding the constant term, we see that (3.27) can be associated with the Liapunov
function (2.7) of an optimization network, by setting the network’s parameters as follows:

T = TP+ (T 1) (3.28)
i* = i®4cs (3.29)

The mapping can be extended to cope with inequality constraints of the form (3.3).
This is possible using the slack wvariable technique, by which inequality constraints are
converted into equality constraints. Slack variables were first proposed for the assignment
problem in [132] and subsequently generalized in [131]. Here we improve the technique
so that each inequality constraint requires the introduction of only one slack variable*. A
typical constraint

Allyy + Ay, .. 4 Ay, < pin (3.30)

becomes

Ay 4 Alwy 4 AR Bw; = 0, Ry > 0 (3.31)

In (3.31) w; is the slack variable, and k; is a positive constant which is set to ensure that w;
is bounded between 0 and 1, and can therefore be treated in the same manner as the v
variables. This is achieved by setting k; as follows®:

ki=b"— > Al (3.32)
{jlAln <0}

Thus we can transform the system of inequality constraints into a system of equality
constraints acting on an extended set of variables vt = [vI w?], where w is the vector
of slack variables [wy wa ... w,,i]': the size of v* is therefore nt = n 4 m'®. The
optimization problem can now be expressed as

minimize EP(v) = —iytTportyt — y+Tiort (3.33)
subject to Atvt =bt (3.34)
and 0<vi <1, die{l...n*} (3.35)
and v integral (3.36)

A technique requiring only one slack variable per inequality constraint is also proposed in [3]. However,
the slack variables are not bounded between 0 and 1, and therefore require modified transfer functions to
confine them to the correct range. This constitutes an unnecessary complication, especially as regards any
hardware implementation of the network.

®If equation (3.32) gives a negative value for k; , then the inequality constraint (3.30) cannot be satisfied
by any 0-1 vector v.
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0 0 0

that F°P has no dependency on the slack variables w, and the equality constraints (3.34)
embody both the original equality and inequality constraints (3.2) and (3.3). The for-
mulation (3.33)-(3.36) contains only equality constraints, and so the mapping technique
described earlier is applicable. We can therefore find an nt x n* matrix TV, and an n*-
element vector s, such that if the network’s parameters are set as in (3.28)—(3.29) (substi-
tuting T°PT for T°P and i°Pt for i°P), the state vector v* will perform a descent on E°P
while remaining strictly within the polytope P* defined by (3.34) and (3.35). If we observe
only the v variables within the extended set vt, we shall see that they perform a descent
on F°P while remaining strictly within the polytope P, as required.

The operation of the slack variable mapping is illustrated in Figure 3.3. We take as an
example a simple 2-dimensional problem with a single inequality constraint vy + vy < 1.7.
There is a one-to-one correspondence between the vertices of P and P*, with P being a
projection of Pt onto the vy—vy plane. The slack variable mapping effectively transforms
the inequality constraint into the constraint w > 0, which is directly enforced by the
network’s transfer functions.

Note that the integrality conditions v; € {0,1} apply only to the original variables and
not to the slack variables, which may take any value between 0 and 1 at a valid solution
point. For example, in Figure 3.3 w takes non-integral values at the two valid solution
points B and D. Thus it is not necessary (and indeed incorrect) to force the slack variables

op 1°P e in
where TPt = l T 0 ]7 iort = [ ! ]7 vt € R"™" and bt e R™47%)  Note

towards 0 or 1 using an annealing technique.
The entire mapping process is summarized for quick reference in Table 3.1.

3.3 Alternative strategies for inequality constraints

In [113] an alternative technique for mapping inequality constraints is described. For a

typical linear constraint
alv <b; (3.37)

the authors propose a penalty function of the form

B = { OT ifa; v <b; (3.38)

a; v—b; otherwise

This approach has the advantage of not requiring any additional slack variables, leading
to more efficient problem representations. However, F°" is not quadratic and therefore
cannot be mapped onto standard optimization networks. Instead, a modified MFA-type
algorithm is proposed for optimizing under E"®, though no simple analogue circuit imple-
mentation is possible. The slack variable mapping, although introducing what could be
a large number of extra variables (though for many useful problems this is not the case),
preserves the quadratic Liapunov function associated with simple analogue electrical cir-
cuits. The cost of the extra amplifiers for the slack variables would not be particularly
high, and the advantage of an analogue implementation considerable.

Modified networks allowing non-quadratic penalty functions of the form (3.38) have
also been proposed in [16, 99, 135, 144], though they are usually far more complicated
than the standard optimization networks. In the remainder of this thesis, we shall deal
exclusively with the quadratic objective function offered by the slack variable mapping,
since this appears to offer a good compromise between implementation size and complexity.
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3.4 Efficient simulation of steepest descent networks

The details of a problem mapping might affect the way we choose to simulate the con-
tinuous descent networks on digital computers. A standard Euler approximation of the
dynamic equations, though feasible, would require a very small time-step at each iteration,
and would therefore be slow to converge. This is because ¢ in equations (3.28) and (3.29)
must be large to guarantee confinement to the polytope P*, resulting in correspondingly
large values of v when v* strays marginally outside P*. Hence a large time-step is bound
to lead to unstable oscillations of v* around the valid subspace.

Figure 3.4 shows a schematic illustration of a far more efficient simulation algorithm
(previously presented in [5]) for the steepest descent dynamics (2.10). Each iteration has
two distinct stages. First, as depicted in box (1), v* is updated over a finite time-step At
using the gradient of the objective term E°P alone. The time-step used here can be fairly
large, since the problematic £ term is not involved. However, updating v* in this man-
ner will typically take vt outside the polytope P*. Hence, after every update, vt is directly
projected back onto P*. This is an iterative process, requiring several passes around the
loop (2), in which v* is first orthogonally projected onto the valid subspace (3.20), and
then thresholded so that its elements lie in the range 0 to 1. For more details of projec-
tion onto polytopes the reader is referred to [4, 37, 77, 109]. The resulting algorithm is
highly efficient and has general applicability to any quadratic 0-1 programming problem.
Throughout this thesis we shall make extensive use of the algorithm in simulating the
steepest descent network applied to a variety of problems. The availability of such an
algorithm is the key advantage of the steepest descent network over the Hopfield network,
as far as simulation on digital computers is concerned.

3.5 Mapping some common problems

In this section we show how the mapping process works for some common problems used
as examples throughout this thesis. The problems we shall discuss are the travelling
salesman, Hamilton path, graph labelling and knapsack problems. Where possible, we
shall derive expressions for the matrices T°P and TV, and the vectors i°® and s. We can
then use equations (3.28) and (3.29) to set the network parameters T and iP.

The travelling salesman problem

We have seen how the travelling salesman problem can be expressed as quadratic 0-1
programming. We derived expressions for T°P (3.17) and i°P (3.18), and formulated a set
of linear equality constraints (3.15)—(3.16). The constraint equations can be solved to give
a valid subspace with parameters [5]

™ = R®R (3.39)
s = lo®o) (3.40)
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where
R = I-10 (3.41)
o, = 1, 1e{l...n} (3.42)
Oi; = 1, i,je{l...n} (3.43)

The constraint polytope associated with this mapping has the permutation matrices at
its vertices, and is often referred to as Q7. We shall examine Q2" in greater detail in
Section 4.6.

The Hamilton path problem

The planar, Euclidean Hamilton path problem can be expressed as follows:

Given n cities in a plane, all of which have to be visited once only on a single
journey, find the best order in which to visit them such that the total journey
length is minimized.®

Thus the Hamilton path problem is identical to the travelling salesman problem in all
respects, except that we require an open tour and not a closed one. We can therefore
use a permutation matrix to represent the solution, leading to an optimization over Q7,
with T2 and s as given in equations (3.39) and (3.40) respectively. We need only modify
the objective function E°P to give the correct length for an open tour. We define a
matrix P to be the n X n matrix of negated inter-city distances, as with the travelling
salesman problem, but a slightly different matrix Q°

Qij = 53'_1’2' + 5j—|—1,i t,j€{1l...n} (3.44)

It is easily verified that the Hamilton path length corresponding to a permutation of
cities V is given by [51]
EP = —L trace [ VPV Q] (3.45)

This is an identical expression to that obtained for the objective of the travelling salesman
problem, so we can set T°P and i°P as in equations (3.17) and (3.18) respectively.

The graph labelling problem

The graph labelling problem has application in certain invariant pattern recognition sys-
tems [21, 51, 52, 96]. Patterns are often described by means of a graph, where the graph
nodes represent features of the pattern, and the edge connections encode relational de-
scriptors between the features. We can arrange for the descriptors to be invariant to a
wide variety of transformations of the patterns. The simplest example concerns planar dot
patterns, where each of the graph nodes represents a dot, and the edge weight between
each of the nodes is the Euclidean distance between the two dots in the plane — see

6Strictly speaking, we should refer to this as the shortest Hamilton path problem, though we will adopt

the more compact nomenclature throughout this thesis.
01000

1010
"For example, if n =5 then Qis | 0101
0010
0001
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Figure 3.5. Such a representation is invariant to translation and rotation of the patterns,
and can also be made invariant to enlargement by a simple normalization operation.

Invariant pattern recognition can then be performed by template comparison. We
compare two graphs Gp and G, representing patterns P and Q, and compute some
measure of similarity between them. However, before the similarity can be computed,
each of the nodes in one graph has to be matched with a particular node in the other.
Suppose the graphs contain the same number of nodes n, and let the edge weight matrix
of Gp be P, and that of Gg be Q. Then we can match nodes in G'p with nodes in Gg
using a permutation p of the nodes in Gp. A quantity which measures the dissimilarity
between the two graphs is then

EoP = HVPVT - QH2 (3.46)

where V(p) is the permutation matrix corresponding to the permutation p. The graph
labelling problem is to find the permutation which minimizes F°P: this is illustrated in
Figure 3.5.

Since we are yet again optimizing over Q", we can use the same T and s as we did
for the travelling salesman problem (3.39)—(3.40). Expanding E°P, we obtain

B = |[P|* + |Q|]* - 2 trace [VPV'Q] (3.47)

Discarding the two constant terms, we see that E°P is once again of the same form as the
objective for the travelling salesman problem, so we set T°P and i°® as in (3.17) and (3.18)
respectively.

The knapsack problem

The knapsack problem can be expressed as follows:

We are presented with a knapsack of capacity C', and a set of n items. Item ¢ has
size z; and usefulness y;. We have to decide which items to pack in the knapsack
to obtain the maximum usefulness from the collection, without overfilling the
knapsack.

This problem can be posed as quadratic 0-1 programming as follows. Let v; = 1 if item ¢
is to be packed, and v; = 0 otherwise. Then the problem is

T

minimize EP(v)=—-ivly

subject to vix<C
and v; €{0,1} 1€ {1...n}

where C' and all the elements of x and y are nonnegative. We require one slack variable w
to transform the single inequality constraint into an equality constraint, after which we
can use equations (3.21) and (3.22) to find T and s. Note that E°P is linear for the
knapsack problem, so T°P = 0. Unlike all the other problems we have met so far, the
knapsack problem is not over Q7.
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Problem

minimize E°P(v) = —%VTTOPV — vTiop
subject to Aflv = b
and Ainy < pin
and v; € {1,0}, 2e€{l...n}

Convert inequality

Aoy + Aoy + ...+ Ao, < bR
U

Ao + Ay + . AR+ kw; = b, kwy > 0

constraints
kizb;n— Z A;l; = 0<w; <1
{jlAln <0}
minimize EoP(v) = —LytTportyt — y+Tiort
Equality- subject to Atvt = bt
conls)tlrained and 0<vf <1, ie{l...n*}
problem and v integral
where vl = T wl]
Atvt = bt
. 4
Solve equality
. vt = Tvely+ 1 g
constraints
where TY = T— A+T(A+A+T)71A+
and s = AtT(ATA+T)"1p+

Problem as a single
quadratic objective

minimize F = E°P + Lc|vt — (TValv* + )|

where ¢ is a large weighting given to the penalty function

Set network
interconnections
and biases

Top+ + C(Tval _ I)

i = Pt 4 s

o

Table 3.1: Mapping quadratic 0-1 programming problems.

The table shows how any quadratic 0-1 programming problem can be mapped onto a stan-

dard optimization network for solution. Most useful combinatorial problems can be ex-

pressed as quadratic 0-1 programming.
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3 p=[1324] 2
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1 1
1000
v = |0010
0100
C 4 0001 c 4

Figure 3.1: The action of permutation vectors and matrices.

A permutation is compactly expressed by means of a permutation vector p. The correspond-
g permutation matric 'V can operate on a list of coordinates C to produce a reordered
list C'.

Penalty
function

> >
invalid Vv v

valid

invalid

Figure 3.2: A rigorous penalty function in one dimension.

The left hand figure shows a simple optimization problem where it is required to mini-
mize F°P within a limited range of validity. To express the problem as the minimization
of a single function FE, it is necessary to absorb the validity constraints into a penalty
function. A proper penalty function, when added to FE°P, builds high energy walls around
the region of validity, leaving E°P unchanged within that region.
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Figure 3.3: The slack variable mapping process.

On the left we see the polytope P for a simple 2-variable problem with one inequality
constraint v + v2 < 1.7. On the right we see the polytope P* obtained using the slack
variable mapping. The mapping effectively transforms the inequalily constraint into the
condition w > 0, which is directly enforced by an optimization network’s transfer functions.

{ Vi =T +s J

- (2) Project v* Repeat
_ p p
V= VHAL(T v+ )J :> onto polytope from (1)
(1) Update V" using
gradient of objective L

0 1

Figure 3.4: Schematic diagram of the efficient descent algorithm.

FEach iteration of the algorithm has two distinct stages. First, as depicted in box (1), v*
1s updated over a finite time-step At using the gradient of the objective term E°P alone.
Updating vt in this manner will typically take vt outside the polytope Pt. Hence, after
every update, vt is directly projected back onto Pt. This is an iterative process, requiring
several passes around the loop (2), in which v* is first orthogonally projected onto the
subspace vt = TV3lv+ +s, and then thresholded so that its elements lie in the range 0 to 1.
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Pattern P Pattern Q
y Y+ 4 3
1 2
4 3 4 2
X X

Permute labels Graph labelling problem:
p=[4213]" Find optimal permutation of labels

Figure 3.5: Invariant pattern recognition by graph matching.

The two patterns P and Q are identical up to a rotation of 90°. A pattern recognition
system invariant to rotation must recognize the congruence of the two patterns. The graph-
wcal representations Gp and G g are insensitive to rotation and translation of the patterns.
For each graph, the edge weight between nodes © and j represents the Fuclidean distance
between points v and j in the corresponding pattern. However, before the two graphs can be
compared, each of the nodes in Gp must be associated with the correct node in Ggo. This
s achieved by solving the Graph Labelling Problem: find the permutation p which mini-
mizes E°P = |[VPVT — Q||?, where P and Q are the edge weight matrices of Gp and Gg
respectively, and V is the permutation matriz corresponding to p. The function E°P com-
pultes a measure of dissimilarily belween G and the relabelled graph Gp. Only when the
correct labelling is found is the similarity between P and Q revealed.



Chapter 4

Polytopes and Convergence

So far we have deliberately skirted round the issue of how we might force an optimiza-
tion network to converge to a 0-1 point, merely stating that this is one of the goals of
an annealing procedure. In this chapter we present a thorough examination of the con-
vergence properties of optimization networks running under rigorous problem mappings.
In particular, we ask under what conditions we can expect an annealing process to force
convergence to a 0-1 point. It becomes apparent that a 0-1 point cannot be found except in
special cases where the optimization is over an integral polytope, which has all its vertices
at integral points. Moreover, this failure is not a consequence of any minor, correctable
detail, but a direct result of a very basic design misconception: that optimization networks
should be able to converge to a valid solution point in one attempt. Drawing on powerful
results from mathematical programming theory, we show that finding valid solution points
is generally an NP-complete problem. It would therefore be unreasonable to expect an
optimization network to find such points with a one-shot descent procedure. This forces
us to reasses the application of optimization networks, and consider how they might be
modified to work with a broader class of problems.

The argument will be illustrated using small example problems, so that we can easily
visualize the solution space. In Section 4.2 we present a simple knapsack problem in two
variables, for which an optimization network will fail to converge to a 0-1 point. Further-
more, in Section 4.3 we show that none of the common annealing techniques can help.
These findings are related to issues in A/P theory in Sections 4.4 and 4.5, where we in-
troduce the concept of integral polytopes and discuss their significance. In Section 4.6 we
direct our attention to the polytope Q™, and present a proof of its integrality: hence con-
vergence to a 0-1 point can be guaranteed for the travelling salesman and other problems
over Q. Finally, in Section 4.7 we reasses the application of optimization networks in
the light of the polyhedral issues, and propose alternative strategies for optimization over
non-integral polytopes. Since polyhedral issues have been largely ignored in the relevant
literature so far, most of this chapter represents an original contribution to optimization
network theory.

4.1 NP theory and complexity

We briefly introduced the concept of an NP-complete problem in Chapter 2, mentioning
that to find the optimal solution to such a problem we have little choice but to search every
possible solution and pick the best. The number of candidate solutions scales exponentially

35
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with the size of the problem, and so exhaustive search is infeasible for all but the smallest
of problems. In this section we shall briefly review the ideas behind AP theory, and
discuss the bearing it has on the field of optimization networks.

NP-complete problems have the property that they can all be transformed into one
another in polynomial time. It follows that if one of them can be solved in polynomial
time then so can the rest. It has become a popular field of mathematics to demonstrate
that particular problems are A/P-complete, with more problems being added to the list
all the time. Typical examples of A/P-complete problems are the travelling salesman,
graph partitioning, knapsack and scheduling problems. In [47], the authors compiled a
useful list of all the problems proved A P-complete up to 1979. While some of these
problems may not seem particularly important in everyday life, many have real practical
significance. The search for an exact, polynomial-time solution algorithm has therefore
been very intensive. However, despite the best efforts of many researchers over many years,
no such algorithm has been found for any of the N"P-complete problems. It has therefore
been widely accepted that the classes of polynomially solvable problems and AP -complete
problems are mutually exclusive, that is P # AP, though no proof has yet been found [47].

It has become common practice to make use of the assertion that P # N'P. We shall
do this in two distinct ways. Primarily, as proposed in Chapter 2, we shall not waste
our time trying to derive polynomial-time algorithms to exactly solve A"P-complete prob-
lems, but shall instead hope that optimization networks find good, though not necessarily
optimal, solutions in reasonable amounts of time. At this point we should note that the
operating speed of an optimization network is at best independent of problem size (when
implemented in analogue hardware), and at worst scales with the square of the number of
neurons (when simulated on a digital computer)!. We shall also make use of AP theory
to place bounds on the capabilities of such networks. For instance, if we can demon-
strate that by performing a particular task an optimization network is effectively solving
an A'P-complete problem, we could conclude that it is unreasonable to expect the network
to perform such a task.

4.2 A simple knapsack problem

We begin our study of convergence issues with a simple example. Consider the following
knapsack problem in two variables

minimize E°P(v) = —(v1 + 2v9)
subject to v + v < 1.7

and 0<v; <1, ie{l,2}

and v integral

N AN N S
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In knapsack terminology we have two items, vy and vy, of equal size 1, which we wish
to pack into a knapsack of capacity 1.7. Associated with each item is a profit, 1 for vy
and 2 for vq, indicating how useful that item is. We have to decide which items to pack
to maximize the profit, while at the same time not overfilling the knapsack. For knapsack

'The complexity of finding stable states of optimization networks is discussed in [105]. It is shown that
for a network of arbitrary connectivity (ie. not necessarily symmetrical connectivity, so there is no Liapunov
function and convergence guarantee) stable states can be computed using a simplex-like algorithm. This
algorithm is strongly polynomial in practice, though not necessarily so in theory.
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problems the objective function E°P is linear and therefore has no local minima. It is
clear that the optimal solution to our simple problem is v = [0 1]7, though the general
knapsack problem is N'P-complete [47, 123].

The problem is easily mapped onto an optimization network for solution, by introduc-
ing one slack variable w to cope with the single inequality constraint (4.2). The slack
variable expression of the problem is

minimize E°P(v) = —(v1 + 2vg) (4.5)
subject to vy +v9 + 1L.7Tw = 1.7 (4.6)
and 0<vf <1, i€{1,2,3} (4.7)

and v integral (4.8)

Figure 4.1 shows the polytopes P and P* for this problem. Also marked within P are
contours of F°P and a typical descent trajectory within the polytope. We see that the
descent converges to the point A = [0.7 1.0]7, which is a vertex of P. The corresponding
descent path within P* is also illustrated. The vertex A is in fact the optimal solution
to the problem (4.1)-(4.3), without the integrality condition (4.4). This less restricted
problem is known as the LP-relazation (linear programming relaxation) of the knapsack
problem. So the correct mapping of the knapsack problem leads the network to solve
the LP-relaxation accurately?, though a valid 0-1 solution is not found.

4.3 Annealing techniques

It is often the case that some sort of annealing technique is used to free v from local minima
of F°P and force v towards a hypercube corner. For our simple knapsack example, if v
is to represent a valid solution, we require convergence to one of B, C or D, the 0-1
points in P. We shall start by considering the effect of hysteretic annealing [41] (variants
have been dubbed convex relaxation [112] and matrix graduated non-convexity [5]), which
can be used in conjunction with any of the optimization networks. In its most generally
applicable form?®, hysteretic annealing involves adding a term

N
Ean = — 1y (v, — 0.5)? (4.9)
=1

to the objective function E°P. The function E2™ is either convex or concave, depending
on the sign of 4, and has full spherical symmetry around the point v’ =[0.50.5 ... 0.5].
A consequence is that E2" has the same value at all 0-1 points, and therefore does not
invalidate the objective for 0-1 programming problems?. The annealing process is usually

2Indeed, an optimization network correctly set up using the mapping in Table 3.1 will reliably solve
linear programming problems, without needing any of the modifications proposed in [33, 99, 135, 144].

®In Section 5.3 we shall examine the original form of hysteretic annealing, as presented in [41], and
point out its shortcomings. The expression for E2™ considered here is for a modified hysteretic annealing
scheme with more general applicability.

4Note that E2™ depends only on the v variables and not on any slack variables. Since slack variables
may take any value at a valid solution point, summing over the slack variables as well would invalidate the
objective. For two-dimensional problems like the one in Figure 4.1, contours of E*™ would appear in P as
concentric circles around the point (0.5, 0.5). For a slack variable mapping these would become concentric
cylinders in the unit cube, aligned along the w-axis: their intersection with P* would be a set of ellipses.
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initialized with a large negative value of 7, in which case E°P is convex and v converges
to a point within the interior of P. Subsequently the value of v is gradually increased,
eventually F°P becomes concave, and v is driven towards the boundary of P. For quadratic
objectives this process allows v to escape from local minima of F°P and can help guide v
towards good solutions.

Applied to the knapsack problem in Figure 4.1, however, hysteretic annealing has
no useful effect. Vertex A is also a local minimum of E?"™ within P, so no amount
of increasing v will drive v away from A, at least until the magnitude of v becomes
comparable with that of ¢ in (3.28) and (3.29), at which point v will escape from P and
converge to the point [1.0 1.0]7, though this is clearly undesirable. Negative values of v
will succeed in freeing v from the vertex A, though only to guide v back towards the
interior of P, where it will stabilize: this, too, is clearly not very useful.

We might well ask whether any other form of annealing would be more successful.
For example, it seems feasible that using temperature annealing with a Hopfield network
(increasing the gain of the neuron transfer functions (2.4) by reducing 7?) would eventually
force the outputs v; to either 0 or 1. However, even with very high gain transfer functions,
we are still operating on the Liapunov function £ (2.7). Taking the knapsack problem in
Figure 4.1 as an example, any direction away from the vertex A is ‘uphill’ in the sense
of F. Since v evolves in such a way that F is non-increasing, it is clear that v will not
move from this vertex, however steep the transfer functions become. As a means of forcing
convergence to a 0-1 point, varying the neuron gains is therefore ineffective. The same
argument can also be applied to MFA, which, in the low temperature limit, seeks the same
solution points as a Hopfield network running with high gain transfer functions and n = 1.
Thus we would expect that if the MFA algorithm converges at all, it will also converge to
the vertex A.

The only other form of annealing to consider is MFA with neuron normalization, as
proposed for the travelling salesman and graph partitioning problems in [118, 143]. In this
technique constraints of the form

Y wi=1, je{l...Ns} (4.10)
1ES;

are implicitly enforced using update rules

oE
exp(= 5y, |, /T7)
Vileyr = “ - for all i € S; (4.11)
>okes, XP(= gy, |, /T7)
where —% = [Tv 4 i’]z. The sets S; must be non-intersecting and their union must

cover all the elements of v. As the annealing progresses, the temperature T? is gradually
lowered until, when fully converged, v represents a set of 0-1 solutions to the constraint
equations (4.10). The annealing prevents v from getting trapped in local minima of E°P
and forces convergence to a 0-1 point which satisfies (4.10). However, the general problem
of finding a 0-1 solution to the equation

alv =/ (a being a rational vector and 3 a rational scalar) (4.12)

is N'P-complete [123], and so we would not expect to be able to find update rules like (4.11)
to enforce more general linear constraints of the form (4.12)%. We therefore conclude that

5Specifically, update rules which guarantee convergence to a 0-1 point satisfying the problem’s con-
straints can only be found if the constraints define an ¢ntegral polytope — see Section 4.4.
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this version of MFA is not relevant to our discussion of problems with general linear
constraints.

4.4 Polytopes and NP theory

There is a strong connection between polytopes, the convergence of optimization networks
and AP theory. In this section we shall see that the ability of an optimization network
to perform certain tasks is well reflected in the complexity of the tasks.

Returning to the knapsack problem, it is not surprising that the network failed to
find the optimal 0-1 solution, since doing so is an AP-complete problem. The network
did however succeed in finding the optimal solution to the LP-relaxation of the knapsack
problem. This is a standard linear programming problem, involving the minimization of a
linear objective subject to linear constraints but with no integrality condition. Linear pro-
gramming can be performed in polynomial time using Khachiyan’s method [123], although
in practice the (non-polynomial) simplex method is usually more efficient [32, 123]. It is
the integrality condition (4.4) which makes the knapsack problem AP-complete. Indeed,
while all linear programming problems can be solved in polynomial time, the general in-
teger linear programming problem is NP-complete [123]. So the failure of the network to
solve the knapsack problem is fully in line with what we would expect from AP theory.

More surprising than the network’s failure to find the optimal solution, was its failure
to find any 0-1 point within P, converging as it did to the non-integral vertex A. We also
concluded that no annealing procedure was likely to alleviate this problem. However, this
too is in full agreement with AP-theory. It is proved in [123] that the following problem
is N'P-complete:

Given rational matrix A and rational vector b, does Av < b have an integral
solution v?

Furthermore, in [47, 120] it is stated that the variant in which all the components of v are
required to belong to {0,1} is also A'P-complete, even if all the components of A and b
are in {0,1} as well. Now, the system Av < b describes a set of linear constraints like the
ones found in quadratic 0-1 programming problems®. So if an optimization network could
reliably find a 0-1 point satisfying the problem’s constraints, then it would effectively be
solving the above AN"P-complete problem in polynomial time. The observed failure of the
network to do this is therefore not surprising.

Since finding any 0-1 point within P is typically NP-complete, we should not look too
hard for an annealing procedure which does this. The best we can expect from annealing
is to force convergence to some vertex of P. This is in fact what hysteretic annealing does,
since increasing v in (4.9) will eventually make E°P concave. It is easy to prove (and is
intuitively obvious) that if £°P is linear or concave, then convergence to some vertex of P
is guaranteed, except in highly pathological cases where the path of descent is exactly
orthogonal to a face of P. However, for 0-1 programming problems we hope that v will
converge to a 0-1 point, which will be an integral vertex of P. This can only be guaranteed
if all the vertices of P are 0-1 points, that is if all the vertices of P are integral: a polytope
exhibiting this property is called an integral polytope [123].

In our earlier formulation, the problem’s constraints (3.2)-(3.4) also featured a set of equality con-
straints A®dv = b®l. However, these can be rewritten as two sets of inequality constraints A®dv < b®d
and —A®lv < —b®9 leading to an overall constraint set of the form Av < b.
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4.5 The significance of integral polytopes

Figure 4.2 illustrates the difference between integral and non-integral polytopes. Integral
polytopes are very important in the field of mathematical programming. For example,
it follows that integer linear programming over integral polytopes is not A/P-complete,
since the optimal solution to the LP-relaxation, which can be found in polynomial time
using Khachiyan’s method [123], will necessarily be a vertex of P and therefore an integral
point. Likewise, we now see that integral polytopes are highly relevant to optimization
networks, which will reliably converge to a valid solution point only if the optimization is
over an integral polytope. Optimization networks, in their conventional form, are quite
unsuited to the solution of 0-1 programming problems over non-integral polytopes, since
there is no guarantee that a valid solution point can be found, let alone the optimal one.

Given that integral polytopes are the exception and not the rule, it would be dan-
gerous to assume the integrality of a polytope associated with any particular problem
mapping. Unfortunately, the identification of integral polytopes is itself an NP-complete
problem [115]. However, it is possible to recognize some special classes of integrality, cov-
ering some of the polytopes implicitly studied by the optimization network community. In
particular, the polytope Q7, associated with the mapping of the travelling salesman prob-
lem [71, etc], is indeed integral. This result can be proved using standard linear algebra
techniques [23, 101, 147], though the proof is rather complicated. More recently a large
set of results has been developed for recognizing special cases of integrality, and it is now
envisaged that any investigation of integrality would work from these results and not start
from first principles. As an example, we present here some of these results and use them
to prove the integrality of Q7.

4.6 The polytope Q"

The polytope Q™, which arises from the constraints of the travelling salesman problem, is
defined by the following equations:

an Vi, = 1 (4.14)

v
o

(4.13)

-
Il
—

zn:vij = 1 (4.15)

ol
Il
—

where ¢, 7 € {1...n}. Note that the combination of (4.13)—(4.15) makes the usual limiting
constraints V;; < 1 redundant. If we add the condition that V is integral, we obtain the
same constraints that we considered in Chapter 3 for the travelling salesman problem.
It is clear that Q" contains all the doubly stochastic matrices” and has the permutation
matrices at (at least) some of its vertices. Various features of Q™ have been well studied
in [26, 27, 28]; here we shall restrict ourselves to proving its integrality, that is proving
that all its vertices are 0-1 points.

We start with the following results from mathematical programming theory, all of
which can be found in [123]:

7A doubly stochastic matrix is a matrix of positive real numbers with row and column sums equal to
one.
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Result 1 Let A be a totally unimodular matrix and let b be an integral vector. Then
the polyhedron P = {v | Av < b} is integral.

Result 2 Total unimodularity is preserved under the following operations: (i) repeating a
row or column; (ii) multiplying a row or column by —1; (iii) adding a row or column
with one nonzero element, that element being +1.

Result 3 (Hoffman and Kruskal’s theorem) Let G = (V, ) be an undirected graph, and
let M be the V' x F incidence matrix of G' (ie. M is the {0,1}-matrix with rows and
columns indexed by the vertices and edges of G, respectively, where M, . =1 if and
only if v € €). Then M is totally unimodular if and only if G is bipartite. So M is
totally unimodular if and only if the rows of M can be split into two classes so that
each column contains a 1 in each of these classes.

We are going to prove the integrality of Q" by first proving that Q" can be described
in the form Q" = {v | Av < b} where A is totally unimodular. In [123] it is proved
that any given matrix can be tested for total unimodularity in polynomial time, so total
unimodular matrices give rise to one of the special classes of integral polytopes which can
be easily recognized.

To apply the above results we must first rewrite the constraint system (4.13)—(4.15)
in terms of the vector equivalent of V. Following the approach we took in Chapter 3, we
obtain

v = vec(V) (4.16)
v, > 0 ie{l...n?} (4.17)
Y vngonti = 1 je{l...n} (4.18)
=1
D vugenyg = 1 i€{l...n} (4.19)
j=1

In matrix form we can write (4.18)—(4.19) as A®% = b®9, where b;? = 1 for all i. Taking

the case n = 3 as an example, A®? would be given as follows:

1 1100 00 00
0001 11 0O0O0
000 0O0O0T1T1TT1
eq _
AT = 1 0 01 001 00 (4.20)
0O 1 001 0O0T1TPO0
L0 01 0 01 00 1]

We see that the rows of A®? can be split into two classes, rows 1-3 and rows 4-6, cor-
responding to the constraints (4.18) and (4.19) respectively. Furthermore, the columns
of A®Y contain a 1 in each of these classes. Thus, by Result 3 above, A®? is totally
unimodular. It is clear that this holds for any problem size n.

The constraints (4.17) can be written in matrix form as A"v < bi", where A" = —T
and bil-n = 0 for all 2. Rewriting the equality constraints A®dv = b®? as two sets of inequality
constraints A®v < b® and —A®v < —b®, the entire constraint system (4.17)—(4.19)
becomes Av < b, where

Ain
A=| Ae (4.21)
_Ae€d
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and

b=| b« (4.22)
_pea

We can now use Result 2 to prove the total unimodularity of A. Starting with A®9, which
we have already proved to be totally unimodular, we use Results 2(i) and 2(ii) to first
repeat the rows of A°? and then negate the new set of rows, creating the lower two-thirds
of the matrix A (4.21) and preserving total unimodularity. Finally, we complete A by
adding the matrix A'™, which has rows with only a single nonzero in them, that being —1;
by Result 2(iii) A is totally unimodular. Since b is integral, we can now use Result 1 to
conclude that the polytope Q" = {v | Av < b}, equivalent to (4.17)—(4.19), is integral.

So, for the travelling salesman problem and other problems over 27, we can be sure
that an optimization network, running with a suitable annealing procedure, will converge
to a valid solution point. If the objective function of the travelling salesman problem
had been linear, then this point would also represent the optimal solution. However,
the objective function is quadratic, so convergence to the optimal solution point cannot
be guaranteed: this is consistent with the AP-completeness of the travelling salesman
problem.

This approach to the travelling salesman problem, traditionally pursued by the op-
timization network community, should be contrasted with the mappings studied by the
mathematical programming community, where a linear objective over a non-integral poly-
tope is considered [91, 123, etc]. Unfortunately, to map the travelling salesman problem
in this manner requires either a number of constraints which scales exponentially with
the size of the problem, or a large number of supplementary variables with a complicated
constraint set. So while such mappings provide a very convenient basis for theoretical
studies, they are not well suited for use with optimization networks. Throughout the rest
of this thesis we shall consider only the mapping of the travelling salesman problem where
we optimize a quadratic objective over 2",

4.7 Polytopes and optimization strategy

It is now necessary to reasses our use of optimization networks in the light of the polyhedral
issues. To do this, we must ask ourselves exactly what we aim to achieve with such
networks, and at what cost. Looking at the summary in Table 4.1, it is clear that the
complexity of the problem and the suggested network solution technique are determined
more by the nature of the polytope than by the order of the objective function.

Starting with integral polytopes, we have seen that an optimization network operating
under a good mapping is guaranteed to find a valid solution point every time. Further
aspects of network performance will depend on the nature of the problem’s objective
function. If E°P is linear, then the network will reliably find the optimal solution to the
problem, which is not AN'P-complete: an example of such a problem is one-to-one linear
assignment, as studied in [41]. If E°P is quadratic, then the problem is A'P-complete and
there is no guarantee that the network will find the optimal solution. Problems falling
into this category include the travelling salesman, graph partitioning and graph labelling
problems. However, a valid solution will be found, and given the nature of the descent
process leading to this solution, there is a reasonable chance that the solution will be quite
good. An annealing procedure might further enhance the network’s performance, resulting
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in the sensible compromise we are seeking between solution quality and search time. We
shall closely examine the network’s performance on such problems in Chapters 5 and 6.

Turning now to optimization over non-integral polytopes, we see a very different pic-
ture. Convergence to a 0-1 point cannot be guaranteed, and we must ask how useful opti-
mization networks are in these situations. We shall restrict the discussion to cases where
the objective is linear or altogether absent (the latter being the case for pure constraint
satisfaction problems, where we desire to find any 0-1 point within P), since, thankfully,
no useful problems appear to require the minimization of a quadratic objective over a
non-integral polytope. For linear objectives, an optimization network will converge to the
optimal LP-relaxation solution. In other words optimization networks, running under a
good mapping, can perform linear programming: this is of considerable value on its own.
At the very least, the LP-relaxation solution can be used to place a lower bound on the
optimal 0-1 solution. Moreover, it might be the case that a simple heuristic can be applied
to the LP-relaxation solution to obtain a good 0-1 solution: in Chapter 7 we examine one
such heuristic for the knapsack problem. Failing this, if we require a valid 0-1 solution
at all costs, we must resign ourselves to exponential-time techniques, since finding such a
point generally constitutes an A"P-complete problem. In Chapter 7 we present modified
network dynamics which perform a search of the constraint polytope’s vertices, as opposed
to a one-shot descent within the polytope. While this system has its drawbacks, it at least
embodies a coherent approach to optimization over non-integral polytopes, paying all due
attention to the polyhedral nature of the problem.
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Polytope Integral
Objective Quadratic Linear None
Complexity NP-complete P-solvable P-solvable
Network Annealing Simple descent Simple descent
Examples TSP [71, etc] One-to-one Crossbar
GPP [117, 118, 143] assignment [41] | switching [134]
Polytope Non-integral
Objective Quadratic Linear None
Complexity | At least N'P-complete NP-complete NP-complete
Network Vertex search Vertex search Vertex search
Examples TSP [91, 123, etc| | ‘Teachers and
Knapsack [68] classes’ [58]

Table 4.1: Classification of quadratic 0-1 programming problems.

The complexity of the problem and the suggested network solution technique are deter-
mined more by the nature of the polytope than by the order of the objective function. For
pure constraint satisfaction problems over integral polytopes, where there is no objective
function, simple descent on any linear or concave function will find a valid solution point.
Abbrevations used in this table: “TSP” stands for the travelling salesman problem, “GPP”

for the graph partitioning problem.

Trajectory of vt in P*

Trajectory of v in P

Figure 4.1: Network convergence for a simple knapsack problem.

The left hand figure shows the polytope P for a simple 2-dimensional knapsack problem,
along with contours of E°P (shown in dotted lines). For this linear objective function, any
continuous descent procedure converges to the vertexr A. The corresponding process for a
slack variable mapping is illustrated in the right hand figure.
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Figure 4.2: Integral and non-integral polytopes within the unit square.

An integral polytope has all its vertices at integral points (points whose coordinates are all
integers). It follows that an integral polytope within the unit hypercube has all its vertices
at 0-1 points.



Chapter 5

Optimization over Integral
Polytopes

In this chapter we restrict attention to optimization over integral polytopes. This covers
all problems over 2", such as the travelling salesman, Hamilton path, graph labelling and
assignment problems, as well as the graph partitioning problem which is not over Q™. For
such problems we can be sure that an optimization network, running under a rigorous
mapping, will succeed in converging to a valid 0-1 solution point. We can subsequently
begin to assess the quality of network solutions, in terms of the value of the objective at the
solution point. Our methodology is as follows: we attempt to glean as much information
as possible about the network’s dynamics, and then ask whether such dynamics are likely
to lead to good solutions which minimize the objective function. The inherent nonlinearity
of the dynamics makes their analysis very difficult, but we shall see that it is possible to
predict the state vector’s initial trajectory away from its starting position. Knowledge of
this initial direction alone allows us to identify certain difficulties with the operation of
optimization networks: in some cases the initial direction systematically leads the state
vector away from the optimal solution point, in others the initial direction is overly sen-
sitive to the random starting position, resulting in highly variable network performance.
For problems of the latter variety, we describe how annealing procedures are of some help,
since they make the network’s behaviour less dependent on the precise location of the
starting position.

The state vector’s initial direction is identified by means of a linearized analysis of the
network’s dynamics, presented in Sections 5.1 and 5.2. Great care is taken to make explicit
the assumptions behind the analysis, and the consequences thereof. A new result is that,
for many problems, the initial direction is heavily influenced by a linear bias term, which we
denote 1°P". The linearized dynamics can also be used to cast light on the various annealing
procedures. In Section 5.3 we show how annealing makes the network’s behaviour less
dependent on the random starting position. The similarities between temperature and
hysteretic annealing are also investigated. The main original contribution of the chapter
begins in Section 5.5, where movement along i°P" is associated with the solution of a certain
auziliary linear problem. The relationship between the auxiliary linear problem and the
parent problem is shown to have considerable bearing on the network’s performance. In
particular, by presenting cases where the auxiliary linear problem and the parent problem
are bound to have very different solutions, we show that 1°P* can systematically lead the
state vector away from the parent problem’s optimal solution.

46
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5.1 Linearized analysis of network dynamics

In this section we present a linearized analysis of the network’s dynamics, valid for small
excursions of v from its starting point v,. We shall consider only problems which have no
inequality constraints, so we can drop the v* notation, which indicated that the network
was operating on an extended variable set including slack variables. This is not a severe
restriction; as we stated earlier, we are dealing exclusively with problems over integral
polytopes; the most common of these, such as the problems over 2™ and the graph parti-
tioning problem, feature only equality constraints. Before we can start the analysis, it is
necessary to make two assumptions about the starting point v,, since it is not possible to
proceed very far otherwise. The assumptions are:

Assumption 1 v, lies within a small, random displacement of a uniform vector, so
[Vo)i & [V,); for all 4, j. We assume that such a point exists within the polytope P.

Assumption 2 The uniform vector near v, is given by the vector s in equation (3.20).

Let us briefly consider the implications of these assumptions. Assumption 1 states that we
initialize the network near a point which does not bias any subsequent network behaviour,
since all the elements of v have approximately the same value. This would be a clear first
choice for a starting position, though we have to assume that such a point exists within P,
which is by no means guaranteed. Assumption 2 says that the vector s in equation (3.20),
used to define the valid subspace for the rigorous problem mapping, provides us with a
suitable uniform vector within P. Looking at equation (3.40), we see that this is indeed
the case when operating over Q"; furthermore, this also holds for the graph partitioning
problem [5]. In fact Assumptions 1 and 2 are hardly restrictive, since they are valid for all
the common problems over integral polytopes listed in the introduction to this chapter.
Using Assumption 1 we can linearize the networks’ dynamics by writing (see Figure 5.1)

v; = (qb/Tp)’U,Z +6 and o; = (gb/Tp)uZ

Without Assumption 1 the ¢’s and €’s would have been different for each v;, leading to
a complicated and unrevealing analysis. Linearization of the Hopfield network’s dynam-
ics (2.2)—(2.3) gives

™y _ & [TP(v —bo)
;= Tv+i n[¢ ] (5.1)

where o is a vector of ones, that is o; = 1 for all <. Equation (5.1) is valid for small
excursions of v from the starting position. We can also use equation (5.1) with n = 0
and ¢/T? = 1 to model the steepest descent dynamics (2.10), valid until v approaches a
hypercube face. In addition, an Euler simulation of (5.1) with 7 = 1 and a time-step At = 1
approximates the MFA algorithm, again valid for small excursions of v from the starting
position.

Under the influence of a penalty function of the form (3.25), v will converge rapidly to
the valid subspace, and then stay there indefinitely. The transient behaviour as v moves
towards the valid subspace is of little interest; furthermore, v is usually initialized on the
valid subspace. Far more significant are the dynamics of v in the valid subspace. If we
write v = T"?v + s = v*al 4+ s, then we can extract v¥2, the component of ¥ in the valid
subspace, by multiplying both sides of equation (5.1) by TV2! . Doing this, and substituting
the expressions for T (3.28) and iP (3.29) for a rigorous problem mapping, we obtain

* va ¢ va Lo va va ¢ va [o) 30
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where we have made use of Assumption 2 to state that T'®o o T'?'s = 0. We can
simplify (5.2) by defining the following quantities

Topr  — TvalTopTval (53)
joprr  — Tval(TopS + iop)
which gives
vval = (%TOpr - 771> vval %iom (5.5)
Suppose T°P" has eigenvalues A1, A, ..., Ay with unit eigenvectors x!,x2,...,xV.1 We
also assume that the eigenvalues are ordered so that Ay < Ay < ... < An. Let v¥a, vgal
and 1°P" be decomposed along T°P"’s eigenvectors as follows:
N .
vl = Y ax (5.8)
=1
N .
vl = Y axt (5.9)
=1
N .
P = )X’ (5.10)
i=1

It is possible to solve the dynamic equation (5.5), expressing v¥2!(¢) in the eigenvector basis
of T°P". The detailed derivation can be found in Appendix B.1, in which we conclude that

ol + %ﬁit for 5\2 =0
Oéi(t) = . &5 B b06; B (5'11)
(a4 20 Jexp(ity = 25 for A0

where \; = (¢X;/T? — 7).

5.2 The initial direction of v

We now proceed to use the linearized analysis to investigate the direction in which v
initially moves. It will become apparent in Section 5.4 that the initial behaviour of the
network is a critical factor in its overall performance. To simplify the analysis, we consider
the cases 1°P" = 0 and i°P" # 0 separately.

'For later use, we shall distinguish between two types of eigenvector of TP, namely those lying in
the range of T2 and those in its nullspace. Defining the set Z such that : € Z if x' is in the nullspace
of Tval7 we see that

TOP'x' = TV2lToPTValy! — ¢ foric 2 (5.6)
So, for i € Z, x* is an eigenvector of T°P* with a corresponding eigenvalue A; = 0. Since the x*’s form a
mutually orthogonal set, it follows that all the other eigenvectors lie in the range of TVval, Furthermore,

since TV is a projection matrix, we can state that
TV =x' fori¢ Z (5.7)

It is the eigenvectors and eigenvalues with ¢ ¢ Z which are of relevance to the network dynamics, since vval

lies wholly in the range of Tval | The components of v in the nullspace of TVl are fixed by confinement
to the polytope P.
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i = 0

°Pr — 0 for many common problems, including the travelling salesman

It transpires that i
problem (see Appendix B.2). This means that E°P has a stationary point very near to

where v is initialized?. In this case the linearized dynamics (5.11) become
o;(t) = a2 exp(Ait) for all \; (5.12)

Looking at equation (5.12), it is apparent that only those o; with corresponding positive A
are going to increase in magnitude. This is equivalent to saying that v moves only along
those eigenvectors of T°P* for which (¢A;) /1P > 5, with the a;’s corresponding to the most
positive A;’s dominating the dynamics. Indeed, if it were not for the network’s nonlinear
transfer functions, which make the result (5.12) invalid once v has moved significantly far
from its starting position, it is clear that v¥® will eventually align itself with x™2*  the
eigenvector of T°P" with the largest positive eigenvalue.

Assumptions 1 and 2 tell us that v, lies a small, random displacement away from s.

val

In other words v = 0 or, in terms of the eigenvector decomposition (5.9), a9 ~ 0 for

o
all 7. Equation (5.12) indicates that the direction in which v moves along any eigenvector
is governed solely by the sign of the corresponding «f, which is random. Viewed geo-
metrically, this reflects the fact that v can fall off the stationary point in one of many
directions, depending on the random starting vector v¥l. It seems likely that v would
subsequently converge to one of many 0-1 points, spread widely around the boundary of P.
The success of a network in solving such problems therefore depends on somehow being
able to exert more control on the initial direction of v. In Section 5.3 we show that the

various annealing techniques offer us exactly this sort of control.

iopr # 0

We turn now to the case i°P*

of v. Since Assumption 2 implies that v, ~ s, it follows that v’ ~ 0 and so all the af’s
are small. If we therefore neglect the af’s in equation (5.11), and substitute (1 4+ A;¢)

# 0, so there is no stationary point near the starting position

for exp(A;t) (valid for small t), we obtain

%

= Sl & v = 9 jopry (5.13)

o () T
It follows that i°P" is largely responsible for the initial direction of v. After a short while,

however, the dynamics become heavily influenced by the dominant eigenvector x™ax,

Since v¥? initially moves in the direction of i°P", it seems more likely that the network
might converge to a unique point, irrespective of the starting position. However, this is
°PT is orthogonal to some of the more important? eigenvectors of T°PT. For

example, consider what happens if 1°P*

not the case if i
is orthogonal to the dominant eigenvector x™aX,

2To see this, we substitute (Tvalv +s) for v in the expression for E°P (3.1), to obtain

E°P = _— %VTTOprV — vTi%T 4 terms independent of v
T T
= - %vval opryval _ yval® opr + terms independent of yval
Hence VE°P = _ToPryval o jopr _ 0, and so there is a stationary point at val — o (ie. at v = s),

which, by Assumption 2, is near the starting position.

%In the sense that they have corresponding large, positive eigenvalues.
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Under these conditions, the direction in which v moves along x™2< is still dependent on

the random starting position, and we might expect v to converge to one of two solution
points, depending on which way v'® moves along x™*. Viewed geometrically, the starting
position lies on a sloping ridge which runs along i°°" and drops off on either side in the
directions +x™?2%, i°P' leads v downhill along the ridge, but v is free to fall off either side
of the ridge, depending on which side the random starting position lies.

Such a situation arises with the Hamilton path problem, where we desire to find the
shortest path passing through n cities. The Hamilton path problem is very similar to the
travelling salesman problem, except that no closed tour is specified. There are therefore
two optimal solutions, corresponding to traversing the shortest path in opposite directions.
In Appendix B.3 we prove that i°P" is orthogonal to x™2* for the Hamilton path problem.
Figure 5.2 shows the decomposition of v¥® in the early stages of convergence, as a steepest
descent network attempts to solve a randomly generated 10-city Hamilton path problem,
using the mapping described in Section 3.5. Two runs are illustrated, starting once at

val shows an initial

val
o

tendency towards i

run v*a moves along +x

the two runs converge to different solution points, corresponding to traversing the shortest

path in opposite directions?.

and then again at —v'*. As expected, in both cases v
opr

the point v

, before realigning along the dominant eigenvector x™#*.

maX while in the other it moves along —x™2X_ It transpires that

In one

5.3 Annealing revisited

By investigating the effects of the various annealing techniques on the linearized dynamics,
we can gain a better understanding of the benefits offered by annealing. We shall see that
hysteretic and temperature annealing (as used in the MFA algorithm) have very similar
effects on the initial direction of v, though hysteretic annealing is more powerful in forcing
eventual convergence to a vertex of P.

5.3.1 Hysteretic annealing

As originally proposed in [41], hysteretic annealing involves adding a variable amount of
self-feedback to each element of the network. This is equivalent to adding a term of the
form

N
ann __ 1 2 _ 1 T
E? _—5721)2- =—3v Iv
=1

to the objective function F°P. However, this will invalidate the objective function unless
all feasible solution points lie the same Euclidean distance from the origin. While this
is the case for all problems over 2™ and the graph partitioning problem, we propose a
modified version of hysteretic annealing with wider applicability. If instead we use a term

4Any of the problems studied in this chapter can be expressed in many different ways: for example,
an n-city Hamilton path problem can be expressed in n! ways, each one corresponding to a different
ordering of the cities in the matrix P. For the results to have any significance, it is necessary to prove that
the decomposition of a particular solution’s v’ along i°P* and the eigenvectors of T°PT is independent. of
this ordering. While this is indeed the case, the proof is rather long and tedious: interested readers should
refer to [49].
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of the form

N
pann = _ 1y Z(UZ - 0.5)% = —%’}/VTIV + %’vao + a constant

=1
then F2"" has the same value at all 0-1 points, and does not invalidate the objective for
any 0-1 programming problem. The annealing process is usually initialized with a large
negative value of v, in which case F°P is convex and v converges to a point within the
interior of P. Subsequently the value of « is gradually increased, eventually E°P becomes
concave, and v is driven towards the boundary of P. As we mentioned in Chapter 4,
convergence to a vertex of P is guaranteed if F°P is concave.

We can view hysteretic annealing as replacing the matrix T°P by (T°P + ~I), and the

vector i° by (i°? — 1v0). This has the following effects on T°P" and i°P":

Topr  _ Tval(Top + ’)/I)Tval
— TvalTopTval + ,.)/Tval
R ’]_“’al((’I‘Op +I)s +1°P — %70)
= T¥(T°Ps +i°) using Assumption 2
Hence i°P" is unchanged, while T°P" has the extra yT"® term added to it>. We must

investigate what effect this has on the eigenvectors and eigenvalues of T°P". It transpires
that the eigenvectors of T°P" are unchanged, since, using (5.6) and (5.7)

(TvalTopTval + ,}/Tval)xi — AiXi + ’YTvalXi
0 forie Z
{ (A +7)xt fori¢ 2 (5.14)

The effect of the hysteretic annealing term is to shift all the eigenvalues for which i ¢ Z
(ie. those eigenvalues with eigenvectors in the range of TV2!) by a uniform amount v. As
we noted earlier, it is these eigenvalues, along with their corresponding eigenvectors, which
affect vval,

It follows, therefore, that the action of hysteretic annealing is to modify the values
of ;\1 as follows:

% :
A — JTP(/\Z' +v)—n forig 2 (5.15)

Let us consider what this means for the case i°®" = 0. The annealing starts with a
sufficiently negative value of 4 such that all the A; are negative; v'@ therefore remains
very small, since equation (5.12) tells us that o; — 0 for all A\; < 0. The parameter ~
is then gradually increased, so that one of the A; becomes positive, at which point the
corresponding «; is free to increase in magnitude. Thus, an effect of annealing is to control
the initial direction of v, ensuring that v*2 initially moves only along the eigenvector
of T°P" with the largest positive eigenvalue.

This effect is illustrated in Figure 5.3, where we see a steepest descent network (for
which A; = \; + 7v) operating on a simple, hypothetical problem. Figure 5.3(a) shows a
two-dimensional integral polytope P within a three-dimensional unit cube; there are three
valid solution points at the cube corners labelled A, B and C. In Figure 5.3(b) the contours

5We would obtain the same results for the original hysteretic annealing term E2™", only without having

to call upon Assumption 2.
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of E°P have been marked within P. For this problem i°°* = 0, so E°P has a stationary
point near the centre of P, where v¥@ = 0. The eigenvectors of T, x! and x2, are the
axes of the conic sections which describe the contours of F°P. We have assumed that both
of the eigenvalues of T°P", A; and Ag, are positive, so that the contours are ellipses. We
have also assumed that A; > Ag, so the descent is steepest in the x! direction. Examining
the contours, it is clear that the corner C represents the unique global optimum to this
problem. Looking at Figure 5.3(b), we see that, in the absence of an annealing process,
any of the three corners A, B and C can be reached by descent dynamics starting from
positions near the centre of P.

The effect of annealing is to make the network’s behaviour less dependent on the
random starting position and increase the chances of the network finding the optimal
solution. Figure 5.3(c) shows the contours of £°P at the start of an annealing process, when
the eigenvalues have been shifted so that only A1 is positive. The stationary point near
the centre of P has been turned into a saddle point, so that moving along x! reduces E°P
while moving along x? increases £°P. The subsequent trajectory of v will therefore reduce
the x? component towards zero and increase the magnitude of the x' component: such
a trajectory, starting from a position v is shown in Figure 5.3(c). In Figure 5.3(d)
we see that v continues its descent to converge, in this case, to the optimal solution
point. Figure 5.3(e) shows the effect of starting from an initial position —v¥2l. This time
the x! component is introduced with the opposite sign, leading to a suboptimal solution
in Figure 5.3(f). Note that, for this second starting position, it was necessary to advance
the annealing so that Ay > 0 (at which point E°P becomes concave) to force convergence
to a hypercube corner.

This example illustrates the extra control offered by hysteretic annealing. With no
annealing it would have been necessary to try many random starting vectors to be sure
of finding the best possible solution. With annealing it was necessary to run the network
only twice, starting once with v'@ = v¥# and then again with v'® = —v¥2l. This may still
seem a little expensive to solve a single problem, but at least it is feasible. Furthermore,
for many common problems it is not necessary to run the network twice. Such problems
include those with 1°P" #£ 0, and those, like the travelling salesman problem, with repeated
optimal solutions located at regular intervals around P.%

5.3.2 Temperature annealing

We have briefly mentioned temperature annealing in the context of the MFA algorithm
in Chapter 2. Recall that the MFA algorithm involves solving the saddle point equa-
tions (2.11) and (2.12) at a series of progressively lower temperatures 77. In the low
temperature limit MFA seeks points which minimize F (2.7) within the unit hypercube.
In this section we shall explain why we trace the saddle point solutions through a se-
ries of progressively lower temperatures, instead of simply solving them once at a low
temperature.

Since at each temperature the solutions to the saddle point equations are exactly the
stable states of a Hopfield network running with n = 1, we could envisage an analogous
annealing process on a Hopfield network. This would involve gradually increasing the gain
of the transfer functions (2.4) as the network converges. We mentioned in Chapter 4 that

8For an n-city travelling salesman problem, there are 2n optimal solutions spaced regularly around P [5].
The 2n solutions correspond to starting the shortest tour at each of the n cities, and traversing the tour
in different senses.
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this is not going to help force convergence to a 0-1 point, but the process does allow us to
control the initial direction of v, in much the same manner as hysteretic annealing does.

Once again we make use of the linearized dynamics, viewing the MFA algorithm as
an Euler approximation of the Hopfield network with n = 1 and a time-step At = 1.
Recall that, for i°°" = 0, v moves only along those eigenvectors of TP" for which A; > 0.
Substituting for A; we obtain the condition

TP < ?/\i
n

if v is to move along x*. So temperature annealing has much the same effect as hysteretic
annealing: the annealing starts at a sufficiently high temperature so that 77 > (¢/n)A;
for all 47, and then T? is gradually lowered so that v moves first along that eigenvector
with the largest positive eigenvalue.

Recalling the full Hopfield network Liapunov function (2.5), we see that temperature
annealing involves adding a term of the form 73>; 7" ¢~ (V) dV to the objective func-
tion E°P. Unless this term has the same value at all 0-1 points within P (as is the case
for optimization over Q7), this means that the network will be operating on the wrong
objective function until the low temperature limit is reached. This should be contrasted
with the use of hysteretic annealing, which can operate at a fixed, low value of TP, giving
a valid objective function at all times. In the low temperature limit the 5 term added
to F°P simply disappears. Therefore temperature annealing cannot be used to guarantee
that E°P eventually becomes concave, as is possible with hysteretic annealing. It follows
that v does not necessarily converge to a vertex of P, but could stabilize within the inte-
rior of P. This is equivalent to saying that in the limit of low T?, not all the A\;’s become
positive, only those for which A; > 0.

We can also use the linearized analysis to identify a cause of instability in the MFA
algorithm. If a particular \; is very negative, then an Euler approximation of the linearized
dynamics (B.1)

‘4
TPt
with a large time-step At = 1 could lead to unstable oscillations of v. Instability of
the MFA algorithm can be avoided by ensuring that none of the A; become excessively
negative. This can be achieved by mixing hysteretic annealing with temperature annealing,
using a fixed value of v to make the A;’s more positive. The stabilizing effect of adding

a hysteretic annealing term has been noted in [118]. We could also use a positive v term
to ensure that v eventually converges to a vertex of P, since the term makes E°P more

&i = Aoy +

concave.

While the above analysis was developed for standard MFA, it is shown in [5] that
it also applies to MFA with neuron normalization [118, 143]. Although this modified
form of MFA does not have general applicability, we use it in the course of this thesis
to solve travelling salesman problems. The update rule (4.11) implicitly enforces half
of the problem’s constraints, leading to simpler penalty functions and generally superior
solutions [118].

"In many MFA texts, the temperature above which no motion of v occurs is referred to as the critical
temperature. Drawing on analogies in statistical physics, it is often said that the system undergoes a phase
transition at the critical temperature, when v moves along the dominant eigenvector of T°P".
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5.4 The initial direction of v and solution quality

In this chapter we have so far identified two major influences on the initial direction of v,
namely

e i°P" responsible for the very early movement of v.

o x™M2* the dominant eigenvector of T°P", which has a very significant influence on the

subsequent movement of v. x™2*

when 1°PF = 0.

is also responsible for the initial movement of v

In this section we shall examine the significance of this initial direction on the overall
network performance. It is difficult to predict the motion of v beyond its initial direction,
since the linearized analysis would no longer be valid and the nonlinear dynamics are
1°PT are largely irrelevant,

complicated to analyse. It is also easy to argue that 1 max
since their influence is totally dependent on v being initialized near s. However, assuming s

and x

to be a uniform vector, this is a sensible point at which to initialize v, since it implies
no bias towards any particular solution point. Besides, an unbiased starting position is
most widely used in the literature, and so for the sake of compatibility of results we shall
continue with this policy.

Since different initial directions are going to lead v towards different solution points, it
seems likely that the initial direction will have a very significant influence on the eventual
' can systematically
guide v towards a certain type of solution which is not necessarily compatible with the

solution quality. For example, we shall see in Section 5.5 that i°P

combinatorial objective: in such cases we might say that E°P is not well suited to the
underlying combinatorial problem. This is illustrated in Figure 5.4. We see two different
objectives defined within a polytope P: the objectives are the same as the one used
in Figure 5.3, except that nonzero i°?" terms have been introduced. The effect of this
on E°P is to shift the centre of the elliptical contours from the point v'® = 0, giving i°P"
full control over the initial direction of v. In Figure 5.4(a) i°®" is well suited to the
underlying combinatorial problem and the network finds the optimal solution by descent.
In Figure 5.4(b), however, i°®" takes v into a poor region of P from the outset, and v
does not converge to the optimal solution point. For such a small and trivial problem we
would view this failure as fairly serious. Moreover, we cannot get around this problem
by initializing v at the stationary point of F°P (and then annealing the network twice,
starting at v ;’al), since this point may not lie within P, as in
Figure 5.4(a). As argued above, we can do no better than to persevere with the standard,

val

val and then again at —v

unbiased starting position. In Chapter 6 we shall describe some alternative techniques for
suppressing the i°P*

In the rest of this chapter we study the i°P" term and its relationship to the underlying
combinatorial problem. We develop a framework for investigating this relationship from
a largely analytical standpoint. When i°P" = 0, the initial direction is governed by x™2*.
Such cases are more diflicult to analyse and will be addressed, for a restricted class of

term.

problem, through an experimental process in Chapter 6.

5.5 Auxiliary linear problems

For problems where i°P" # 0, we have shown theoretically that i°P" is largely responsible

for the initial direction of v¥a

, and have confirmed this experimentally in Figure 5.2. We
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must now investigate how 1°P' relates to the underlying combinatorial problem, and decide

whether i1°P is likely to guide v towards a good solution.

In order to gain a better understanding of the significance of i
with an auziliary linear problem. First, we rewrite the problem’s objective function (3.1)
for v lying within P, substituting (T"*v +s) for v:

opr opr

, we associate i

EoP = —L(Tvaly s)TTor(Tvly 5) — (TVelv 4 5) 5P (5.16)
Simplifying equation (5.16), we obtain
EoP = —%VTTOPFV — 1Ty 4 terms independent of v (5.17)

So we can associate the action of 1°P"

with objective function

with the minimization of an auxiliary linear problem,

e = _jorr Ty, (5.18)

We have already established that the initial dynamics of the network are heavily influenced
by 1°P*, and so we conclude that the initial behaviour of the network is concerned largely
with minimizing F*P. We must now decide whether the solution of the auxiliary linear
problem is in any way compatible with the solution of the parent optimization problem.
This requires an individual assessment for each type of problem.

The Hamilton path problem

For the Hamilton path problem, we show in Appendix B.4 that E2P can be expressed as
follows:

Ealr =1 {(QO)TV(—PO)} + terms independent of V (5.19)

where V is the matrix equivalent of v, a permutation matrix when v has converged to a 0-1
point, and o is the vector of ones defined in equation (3.42). Recall that the matrix P
is the negated intercity distance matrix, and the matrix Q is a 0-1 matrix defined in
equation (3.44). Now, element ¢ of the vector —Po gives the summed distances of all the
other cities from city i, since [-Po]; = }""_; — F;;. Similarly

)1 ifie{l,n}
[Qol; = { 2 if2<i<(n—1) (5:20)
For example, if n = 5 then Qo =1 2 2 2 1 ]T. In order to minimize E?P (5.19), V
must reorder the elements of —Po so that the largest elements appear in the first and
last rows of V(—Po). This is equivalent to ensuring that the two cities with the largest
summed distances from all the other cities are placed first and last in the journey. If this is
done, then the contribution of these large distances to the cost of E?P is halved compared
with what would otherwise have been the case. In this way, we can associate with the
auxiliary linear problem a certain strategy, that being to place the two most remote cities
first and last in the tour; the network effectively assumes this strategy in the early stages
of convergence.

Armed with this new insight, we can now address the question of how well suited i°P"
is to the solution of the underlying Hamilton path problem. The auxiliary linear problem
suggests that the network may fail to find an optimal tour which does not start and finish
at remote cities. Such a problem is illustrated in Figure 5.5. Here we see sixteen cities
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arranged in a spiral pattern, along with the shortest Hamilton path through the cities:
the optimal path length is 54.0 units. Figure 5.6 shows the evolution of v for a steepest
descent network with hysteretic annealing attempting to solve the problem, using the
mapping described in Section 3.5. The network behaves as predicted by the linearized
analysis, putting in a large i°°* component from the start, followed by a significant x™a%
component. However, a suboptimal solution is reached (path length 56.2 units), with
the journey starting and ending at outlying cities — see Figure 5.7. Clearly this is a
result of the auxiliary linear problem being poorly related to the parent Hamilton path
problem. Indeed, Figure 5.5 shows that the optimal solution’s v"2!
component in the direction of i°’*. An optimization network is most unlikely to converge
to such a point, given that its initial dynamics move v along i°P* in a positive sense.

contains a small negative

The graph labelling problem

We turn now to the graph labelling problem, and its application to simple invariant pattern
recognition systems. We consider the comparison of planar dot patterns associated with
examples of handwritten digits. Each of the digits is represented by 20 points placed
around its outline. Subsequently, a 20-node graph is constructed for each digit, with
the graph nodes representing the points and the edge weights equal to the Euclidean
distance between the points. This representation is invariant to translation and rotation
of the digits, and can also be made invariant to enlargement by a simple normalization
operation. An unidentified pattern P (with graph G'p) can be compared with a template
pattern @ (with graph Gg), and a similarity measure computed for the potential match.
However, first it is necessary to solve the graph labelling problem: find which nodes in Gp
to match with which nodes in G g, so that the similarity between the graphs is maximized.

A mapping for this problem was presented in Section 3.5, and is identical to the
travelling salesman and Hamilton path mappings, except that the matrix P is the edge
weight matrix of G'p, and the matrix Q is the edge weight matrix of Gg. It follows that
equation (5.19) gives us E2P for the graph labelling problem as well:

Eele = 1 {(Qo)TV(Po)}

Now, the vectors Qo and Po compute the summed distances of all the other points
from each point in P or @, since [Qo]; = >°7_; Q;; and [Po]; = >°7_; F;;. In order to
minimize FP, V must reorder the elements of Po so that large elements appear in the
same rows as the large elements of Qo, while small elements appear in the same rows as
the small elements of Qo. In other words, the auxiliary linear problem matches outlying
points in pattern P with outlying points in pattern Q, and central points in pattern P
with central points in pattern Q.

The auxiliary linear problem seems far better suited to the parent problem than was the
case for Hamilton paths: it is hard to imagine two point sets for which the optimal match
does not associate outlying points in one pattern with outlying points in the other, and
central points in one pattern with central points in the other. Experimental evidence to
support this hypothesis can be found in Figure 5.8, where we study several typical 20-point
matching problems for which good solutions have been found. For each problem, Figure 5.9
shows the decomposition of the solutions’ v¥2 along i°’" and the eigenvectors of TP, It
is apparent that the solutions contain significant components along i°P", indicating a good
degree of sympathy between the auxiliary linear problem and the parent problem. Note
that it is the geometry of the situation which is helping the optimization networks here.
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If the graphs did not represent planar Euclidean patterns, then we would not be able
to use the above argument to support the suitability of the auxiliary linear problem. In
Section 6.7 we shall see that for random graph labelling problems an alternative objective
function, which effectively removes the i°P" term, often leads to improved performance.

Unfortunately, optimization networks experience a different kind of operating difficulty
with graph labelling problems. Figure 5.10 shows the decomposition of i°P" along the
eigenvectors of T°P', revealing that for some problems the vectors 1°P* and x are nearly
mutually orthogonal. As we saw for the Hamilton path problem in Section 5.2, this means
that the motion of v¥2l in the direction of x™2< is dependent on the random starting
vector. However, unlike the Hamilton path problem, where each of the two possible routes
could lead to an optimal solution, the point matching problem has no solution degeneracy,
and so one of the routes is bound to lead to a suboptimal solution. This hypothesis is
confirmed in Figure 5.11, which shows the result of comparing the patterns Py and Q4 (see
Figure 5.8) twice using a steepest descent network with hysteretic annealing, starting once

val and then again at —v'®. As expected, the component of v'* along x™** develops
different signs in the two runs, leading to two different solutions, one with E°P = 0.157
(the good solution seen in Figure 5.8), the other with £°P = 0.346. The second solution
is sufficiently poor to hide the similarity between Py and Q4, most likely resulting in a
misclassification in the context of the pattern recognition system.

max

at v

5.6 Summary

In this chapter we have identified two reasons why a network may fail to find a good
solution to a particular optimization problem. These are

1. The auxiliary linear problem is poorly related to the parent problem. i°P* takes v
into a poor region of space from the outset, leading to a poor solution. This was the
case for the spiral Hamilton path problem.

2. 1°P* i orthogonal to the dominant eigenvector of T°P*. v can therefore move along
this eigenvector in either direction, depending on the random starting vector. v will
converge to one of two possible solutions and, unless there is a suitable degeneracy of
solutions, one of these is likely to be poor. It is possible to recover from this failure

val and then again at —vY2l.

by running the network twice, starting once at v} M

We have so far studied, through largely analytical means, only the influence of i°P*

the network’s performance. In Chapter 6 we appeal to experimental means to investigate
the relationship between the combinatorial problem and further aspects of E°P.

on
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Figure 5.1: Linearizing the network’s dynamics.

The network’s dynamics are linearized by considering only small excursions of u and v
around their initial positions u, and v,. It is therefore possible to replace the nonlinear
transfer functions g() by their tangents at the starting point. Differentiating equation (2.4)

reveals that ¢ = ve(1 — v,).
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Figure 5.2: Evolution of v for a 10-city Hamilton path problem.

The figure shows the decomposition of v¥® along the eigenvectors of T°P" for a steepest
descent network solving a 10-city Hamilton path problem, starting once at the point v
and then again at the point —v¥. The «;’s, which represent the components of vV along
the 100 eigenvectors X', are plotted against i. The components along the eigenvectors
with the more positive eigenvalues appear on the right. The bar marked iopr measures
the component of v¥® along i°P": iopr = v"alTi‘)pr/HiOer. The figure confirms that v¥
initially moves along i°P*, before turning towards x™2*, the dominant eigenvector of T°PT.

The direction in which v¥ moves along x™* depends on the random starting position.
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Figure 5.3: The effects of annealing and different random starting positions.

Figure (b) illustrates that, without annealing, any of the solution points A, B and C can
be reached by descent from starting positions near the centre of the polytope. Annealing
makes the network’s dynamics less dependent on the random starting position, by turning
the local mazimum at the centre of the polytope into a saddle point. Reversing the sign of
the initial v¥'® takes v down different sides of the saddle, leading to one of two different
solution points.
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(a) E°P well suited (b) E°P ill-suited

Figure 5.4: The suitability of F°P.

The action of 1°P" leads to just one way in which E°P can be ill-suited to the solution of
the underlying combinatorial problem. Introducing an i°P* term shifts the stationary point
of E°P away from v¥® = 0, giving i°®" full control over the initial direction of v. In (a) 1°P*

1s well suited to the underlying combinatorial problem, and the network finds the optimal

solution by descent. In (b), however, i°P" takes v into a poor region of P from the outset,

and v does not converge to the optimal solution point. Initializing v at the stationary
point of E°P is not an option, since this point may not lie within P, as in (a).
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Figure 5.5: Optimal solution to the spiral Hamilton path problem.

The figure shows the optimal solution to the 16-city spiral Hamilton path problem, to-
gether with the decomposition of the corresponding v along i°P" and the 256 eigenvectors
of T°PT. See the caption to Figure 5.2 for an explanation of the decomposition plot: for
clarity only the components along those eigenvectors with the most positive eigenvalues are
displayed. Since the decomposition shows a small negative component along i°P*, while v
initially moves along 1°P" in a positive sense, it is most unlikely that an optimization
network will find this solution point. In the context of the auxiliary linear problem, the
negative component along 1°P* indicates that the optimal tour does not start and finish at
outlying cities.
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Figure 5.6: Evolution of v for the spiral Hamilton path problem.

The figure shows the decomposition of v¥® along i°°" and the 256 eigenvectors of T°P" for
a steepest descent network with hysteretic annealing solving the 16-city spiral Hamillon
path problem. See the caption to Figure 5.2 for an explanation of the decomposition plots:
for clarity only the components along those eigenvectors with the most positive eigenvalues
are displayed. As predicted by the theory, v i°P* before turning

val initially moves along i

towards the dominant eigenvector of T°P'. Since Figure 5.5 indicates that the optimal
solution has a negative component along 1°P*, it is clear that the steepest descent network

mitially moves v away from this solution.
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Figure 5.7: Network solution to the spiral Hamilton path problem.

The figure shows the solution found by the steepest descent network to the 16-city spiral
Hamilton path problem, together with the decomposition of the corresponding v¥® along i°P*
and the 256 eigenvectors of T°P"., See the caption to Figure 5.2 for an explanation of the
decomposition plot: for clarity only the components along those eigenvectors with the most
positive eigenvalues are displayed. The decomposition shows a small positive component
along 1°P*, which is consistent with the analysis of the network’s dynamics. In the context
of the auxiliary linear problem, the positive component along i1°P* indicates that the tour

starts and finishes at outlying cities, unlike the optimal tour.
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Figure 5.8: Pairs of patterns with labelling for a good match.

A cursory examination of the labellings confirms that outlying points in P are matched
with outlying points in Q, while central points in P are maltched with central points in Q.
Thus it appears that the auxiliary linear problem is in sympathy with the parent problem.
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Figure 5.9: Solution decompositions for the graph labelling problems.

The figure shows the decompositions of v'® along i°P

the parent problem.

and the eigenvectors of T°P" for
the four solutions to the graph labelling problems shown in Figure 5.8. See the caption to
Figure 5.2 for an explanation of the decomposition plots: for clarity only the components
along those eigenvectors with the most positive eigenvalues are displayed. The large com-
ponents along 1°P" confirm the apparent sympathy between the auxiliary linear problem and
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Figure 5.10: Decompositions of 1°P" for the graph labelling problems.

The figure shows the decompositions of 1°P* along the eigenvectors of TP for the four graph
labelling problems shown in Figure 5.8. See the caption to Figure 5.2 for an explanation of
the decomposition plots: for clarity only the components along those eigenvectors with the
most positive eigenvalues are displayed. For the top two problems it is apparent that i°P"
1s virtually orthogonal to the dominant eigenvector x™* and so v will evolve along this
etgenvector in a direction totally dependent on the random starting vector. One of these

two directions will most probably lead to a poor quality solution.
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Figure 5.11: Network solutions for the matching of P4 with Qj.

The two solutions were found by a steepest descent network with hysteretic annealing
attempting to match Py with Q4, starting once at v and then again at —v'™. See
the caption to Figure 5.2 for an explanation of the decomposition plots: for clarity only
the components along those eigenvectors with the most positive eigenvalues are displayed.
Since 1°P* max
different directions in the two runs, only one of which leads to a good solution. The other
solution, if used by an invariant pattern recognition system, would most probably result in
a misclassification. The labellings of Py should be compared with the labelling of Q4 in
Figure 5.8.

is virtually orthogonal to the dominant eigenvector x™* v moves along x in



Chapter 6

Kronecker Product Mappings
over ()"

In Chapter 5 we made some progress towards predicting the performance of optimiza-
tion networks on certain problems over integral polytopes. Our findings centred around
the suitability of the i°P" term in guiding the state vector away from its initial position.
However, no attempt was made to investigate other features of the networks’ dynamics
and their influence on solution quality, since further analysis of the dynamics beyond the
initial direction is difficult. This chapter concerns a broad class of problems over Q" with a
common Kronecker product formulation, including the travelling salesman, Hamilton path
and graph labelling problems. By restricting the study to such problems, a more detailed
investigation of the networks’ dynamics is possible. We describe how an optimization net-
work will tend to move its state vector towards a 0-1 point exhibiting certain prototypical
properties. The likely success of the network can then be assessed by examining good
solutions (obtained by exhaustive search) for evidence of the same properties.

We begin the investigation by reviewing in Sections 6.1 and 6.2 a framework for in-
vestigating Kronecker product mappings, first presented in [5]. For these mappings, a
valid solution has to exhibit certain constraining properties when decomposed along the
eigenvectors of T°P", as described in Section 6.3. This information can be used to make
further deductions about the networks’ dynamics, leading in Section 6.4 to a prototypical
decomposition of v at full convergence. The original contribution of this chapter begins
in Section 6.5, where we examine good solutions to large numbers of travelling salesman
problems for evidence of the same decomposition. Our findings indicate that optimization
networks are well suited to the solution of Euclidean, but not random, travelling salesman
problems. In an attempt to improve performance, we propose in Section 6.7 a means of
modifying the networks’ dynamics by making use of alternative objective functions. In
particular, it is possible to construct a valid objective for any problem such that E°P has
a stationary point at the starting position: in this way, dependence on an i°P* term can
be removed. However, we conclude that the alternative objectives perform, on average,
no better than the original objectives over a large set of problems.

69
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6.1 A framework for Kronecker product mappings

In this chapter we consider only problems with the following mapping;:

Tval  _— ROR

s = lowo)
TP — PoQ
i = 0

where R and o are defined in equations (3.41) and (3.42) respectively. The expressions
for TV and s restrict v to Q7, so we know that v will converge to a point representing a
permutation matrix. For general P and Q, the network solves the graph labelling problem
for graphs with edge weight matrices P and Q. For special P and Q, the network can
solve the travelling salesman or Hamilton path problems.

For such mappings it is possible to make further predictions concerning the network’s
dynamics, beyond the initial direction of v. We start by looking again at the eigenvectors
of T°P*. From Appendix B.3 we obtain the following expression for TP (B.6):

T°* = RPR @ RQR = P @ Q*!

where P2 = RPR and Q** = RQR. We can now use the properties of Kronecker
products to relate the eigenvalues and eigenvectors of TP' to those of P2 and Q2. We
start by identifying the nullspaces of Q"2 and PY2!, which are clearly both spanned by o,
since Ro = 0. So let us define w! and h' to be eigenvectors of P¥2 and Q2! respectively,
with associated eigenvalues py and 6, where

wl = \/iﬁo and gy =0 (6.1)
h' = \/iﬁo and 6, =0 (6.2)

Let the remaining eigenvectors of P¥? be w?...w™ with eigenvalues ps ... i,, and those
of Q" be h?...h™ with eigenvalues 65 ...6,. Let us also assume that the eigenvalues are
ordered as follows:
M2 2 13 2 .. 2 fiy (6.3)
0 >0s>...>80, (6.4)

kl

If TP has eigenvectors and eigenvalues x™ and Ag; respectively, then

xH = wFeh (6.5)
and Ay = prb (6.6)

for 1 <k <mnand 1l <[ <n. Note that

Tvlxk = (R®@R)(w* @ h') = (Rw" @ Rh')

0 fork=1lorl=1
val Kkl
=TT = {xkl fork>2and > 2 (6.7)
Hence those x® with & = 1 or [ = 1 are eigenvectors of T°P" orthogonal to the valid

subspace, while those x* with & > 2 and [ > 2 lie within the valid subspace.
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sopr

We turn now to the decompositions of v, v¥@ and i°P" along the eigenvectors of T°P".

We replace the component vectors «, o and 3 with matrices A, A® and B, such that

Vval —

Aklx (6.8)

opr __

n n

o
vl = Z Z (6.9)

T

Z Z fx (6.10)
Note that the indices on the summations could equally run from 2 to n, reflecting the fact
that v¥al, vgal and 1°P* all lie in the valid subspace, and therefore have no components
along those x*' orthogonal to the valid subspace.

6.2 Eigenvalue degeneracy

For some problems it transpires that the eigenvalues of P¥2l or Q'@ are degenerate; this
degeneracy propagates through to the eigenvalues of T°P'. For example, consider the Q
matrix for the travelling salesman problem (3.11). The (unordered) eigenvalues of the
corresponding matrix Q¥ are given by [5]

0 forl=1
b= 2 cos <27r(l - 1)) for 1> 2 (6.11)

It follows that many of the eigenvalues of Q" are degenerate, since §; = 05 for [=n—1+2.
For example, if n = 10 then the (ordered) eigenvalues of Q2! are approximately

6=[0 16 1.6 06 0.6 —-06 -06 —-16 —-1.6 —2.0 ]T

and it is clear that there are four pairs of degenerate eigenvalues. We should really be
examining the components of v¥2 in the eigenplanes of T°P*, instead of along each de-
generate eigenvector. Since we shall make extensive use of the 10-city travelling salesman
problem as an illustrative example, it would be beneficial to introduce some notation to
deal with this particular problem’s eigenvalue degeneracy. Let us define a 10 X 6 matrix Z
of complex elements such that

Re(Zy) = { Au  fori=1 (6.12)
Apai—g for2<1<6

In(Zy) = { 0 forl=1orl=6 (6.13)
Apoi—r for2<1 <5

Hence, for the degenerate eigenvalues, the magnitude of Zj; gives the magnitude of v¥2!
in the corresponding eigenplane, while the phase of Z; gives the direction in that eigen-
plane. For the simple eigenvalues, Zj; is real and gives the component of v¥2 along the
corresponding eigenvector. Let us also introduce a reduced 10 x 6 matrix ¢ of eigenvalues

of TP, such that
ALl forl=1
Cht = (6.14)
Akoi—2 for2<1<6

The eigenvalues (i relate to the eigenvectors and eigenplanes in the decomposition ma-
trix Z.
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6.3 Permutation matrices and bounds on A

For Kronecker product problems over €7, it is possible to place bounds on the final
decomposition of v¥@ (ie. on A). These bounds are not a consequence of the problem’s
constraints, which simply fix the component of v outside the valid subspace, and have
no bearing on A'. However, we can say something about A if we consider that when
converged, v must represent a permutation matrix, so

vvT =vTv =1

where v=vec(V). It is shown in [5] that this condition implies the following bounds on A:

> Ay = 1 for2<i<n (6.15)
k=2
S Ay = 1 for2<k<n (6.16)
=2

where A’ is a matrix of positive elements defined by A}, = A%l. Moreover, these conditions,
which are valid when v has converged to a 0-1 point, can be relaxed for the unconverged
state vector to [5]

> Ay <1 for2<i<n (6.17)
k=2
> Ay < 1 for2<k<m (6.18)
=2

Hence the sum of the elements in those rows and columns of A’ associated with eigenvectors
in the valid subspace cannot exceed one at any time, and must reach this value when v has
converged to a 0-1 point. The same conditions can be expressed in terms of the matrix Z
for the 10-city travelling salesman problem. Defining the matrix Z’ such that Z; = || Zx/||?,
the conditions are

6
Y Zjy <1 for2<k<10 (6.19)
=2

1 forl=6
{2 for2<I1<5 (6.20)

INA

10

> 7

k=2
with the strict equalities holding when v has converged to a 0-1 point.

6.4 Network dynamics for Kronecker product mappings

We can use the bounds on A to make further predictions about the dynamics of an
optimization network running under Kronecker product mappings. To do this, we make
use of the linearized analysis of the network’s dynamics which we derived in Chapter 5.
We shall deal exclusively with the case i1°°" = 0, which covers the mapping of the travelling

!The constraints dictate that v must lie on the valid subspace with equation v = Tvaly +s= yval +s:

they say nothing about the decomposition of vval,
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salesman problem (see Appendix B.2). In Section 6.7 we shall go on to see how any other
problem can be remapped so that i°®" = 0, extending the applicability of this section to
all Kronecker product problems over 27".

In what follows we assume that an annealing procedure is being used, so v'* moves
first along those eigenvectors of T°P" with more positive eigenvalues, then along those with
more negative eigenvalues. Of course, once v has moved some distance from its starting
position the linearized analysis breaks down. The order in which v¥2l moves along the
eigenvectors of T°P" will not be governed solely by the corresponding eigenvalues, but will
be influenced by the network’s nonlinear transfer functions as well. However, we can use
the linearized analysis as a rough guide to the network’s dynamics, especially valid at the
start of convergence.

To begin with, let us assume that the p;’s and 6;’s are all positive for & > 2 and [ > 2.
Recalling that the eigenvalues of T°P" are given by A = ur;, and that the pg’s and 6;’s
are ordered as in (6.3) and (6.4), it follows that the most positive eigenvalue of T°P*
is Agg. So we would expect the Ayy component to be introduced at an early stage. As-
suming the linearized analysis holds, this will continue until A%, = 1, at which point the
magnitude of Agy can increase no further without violating conditions (6.17) and (6.18).
Since A%, = 1, no further elements in the second row or column of A can be introduced
without violating conditions (6.17) and (6.18). Hence, when the annealing progresses, it
is the As3 component which is introduced next, since this is associated with the next most
positive eigenvalue. The linearized analysis suggests that this process continues until v
converges to a point where

, {5,6,1 for k,[ > 2 (6.21)

M=Y0 fork=lorli=1

In the above argument, we appealed solely to the linearized dynamics, which break
down after v has moved some distance from its initial position. However, it is reasonable to
propose that v will converge to a state similar to (6.21), especially around those elements
of A’ introduced early on, when the linear approximation is most applicable. We shall
verify this proposition experimentally in Figures 6.1 and 6.2.

The argument can be extended to cover cases where P2 and Q" have both posi-
tive and negative eigenvalues [5], with the same result that A’ converges to a form not
unlike (6.21), especially around those elements introduced early on. The corresponding
result for the 10-city travelling salesman problem is that the network’s solution will have
a decomposition Z’ resembling the matrix Z'°, where

70 0000 07
010000
010000
001000
gio_ [0 0 1000
000100
000100
000010
000010
L0000 O0 1,

To illustrate the annealing process, let us consider a particular 10-city Euclidean trav-
elling salesman problem, where the cities have been randomly placed within a unit square.
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The P and Q matrices are set as in (3.10) and (3.11), to give the following reduced
eigenvalue matrix:

000 0 0 0 7 - - - - T
0 358 1.37 —1.37 —3.58 —4.42 — 1 3 41 44 45
0 1.69 0.64 —0.64 —1.69 —2.08 — 2 5 37 42 43
0 0.87 0.33 —0.33 —0.87 —1.08 4 8 33 39 40
0 0.62 024 —024 —0.62 —0.76 ~ 6 10 29 36 38
C=10 030 015 —015 —039 —o4s | @ =1 _ 7 14 93 34 33
0 024 0.09 —0.09 —0.24 —0.29 ~ 9 15 22 30 32
0 0.19 0.07 —0.07 —0.19 —0.24 — 11 16 21 26 31
0 0.18 0.07 —0.07 —0.18 —0.22 — 12 17 20 25 28
L0 0.16 0.06 —0.06 —0.16 —0.20 | |~ 13 18 19 24 27 |

The right hand matrix shows the ordering of the elements of (; the dashes correspond
to eigenvalues associated with the nullspace of TV, which play no part in the dynamics
of vval,

Figure 6.1 shows the matrix Z’ at various values of 7 for a steepest descent network
running with hysteretic annealing. The v = —4.0 plot shows the decomposition of the
random starting position, which is very near the point v = s, so all the components of v*2!
are small. For v = —1.9 only 622 is positive?, and the dynamics increase the component Z,,
as predicted. By the time v = —0.1, the Z’ matrix has evolved to a form not unlike the
expected Z'°, though those Z;; with very negative (3;’s have yet to be introduced. Finally,
when v = 1.5, v has successfully converged to a valid 0-1 point, and the final form of Z’
is similar to Z'°, especially around the Zy9 corner of Z. So this illustrative experiment is
in good agreement with the theory presented above.

In order to demonstrate the similarity between hysteretic and temperature annealing,
Figure 6.2 shows how the Z’ matrix evolves for the same problem being solved using MFA
with neuron normalization [5, 118, 143]. It is apparent that the state vector follows a
similar trajectory to that of the steepest descent network, leading to an identical final

solution.

6.5 Properties of good solutions

Now that we know more about the structure of solutions found by optimization networks,
we are in a position to predict the likely success of the networks on specific problems.
To do this, we examine the decompositions of optimal and near-optimal solutions to such
problems, and compare the structure of the decompositions with the prototypical structure
of a network’s solution. If there is a good match between the two, especially around
those components introduced early in the convergence process, then we would expect an
optimization network to perform fairly well.

An analytical approach [5] suggests that the optimal solution will indeed have a de-
composition not unlike that of the network’s solution (6.21). If we constrain V so that
its row and column sums both equal 1, and so that VVT = VTV = I, then the V
which minimizes F°P has a decomposition identical to (6.21). Unfortunately, these con-
straints are not enough to specify a permutation matrix: we need to impose the extra

2Recall that Ekl = (;; + v for steepest descent dynamics. The linearized analysis predicts that the Zy;
component of v will not increase until ¢, > 0.
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constraint Vj; > 0 [5]. To understand the effect of this extra constraint on the decom-
position of the optimal solution, we must revert to experimental means. In this section
we study two databases of 10-city travelling salesman problems. The ten best solutions
to these small problems were found by exhaustive search. One database contains 1000
Euclidean problems (so P is set to be the negated Euclidean distance matrix of the cities
in the plane), the other contains 1000 random problems (in this case P is a random,
symmetric 10 X 10 matrix, with zeros along its leading diagonal).

Figure 6.3 shows the decomposition of the optimal solutions to the 1000 Euclidean
problems. The data is presented as the mean of the decomposition matrix Z’, along with
the standard deviation of the same data across the ensemble of 1000 solutions. We see that
the decomposition does, roughly, resemble the Z!° form which an optimization network
is likely to find. The resemblance is closest around the Z}, corner, where the variance
of the data is also fairly low. Figure 6.5(a) shows the mean of the eigenvalues { across
the ensemble of 1000 problems. We see that the most positive eigenvalues correspond to
eigenvectors in the Z), corner of Z’, and so an optimization network will introduce these
components first. It therefore seems likely that an optimization network will be successful
with these problems, since the initial direction of v is compatible with the location of the
optimal solution.

Turning now to the solutions to the random problems, we see a much more diffuse
decomposition in Figure 6.4, with higher standard deviations. The peaks in the decom-
position are of a lower magnitude than those for the Euclidean problems. Figure 6.5(b)
shows the eigenvalues of T°P" for these problems. Once again, the eigenvalues are most
positive for components in the Z), corner of Z’, so optimization networks will move v first
in this direction. But the peak of the optimal solutions’ mean decomposition at 7}, is not
so high, and the standard deviation here is also rather high, indicating that the optimal
solutions do not necessarily have a large Z5, component. So we might expect optimization
networks to be less successful with these problems.

Figure 6.6 shows how the decompositions vary across the ten best solutions to each
problem. The data is presented as the standard deviation of the Z’ matrix for the ten best
solutions, averaged over all 1000 problems in each database. For the Euclidean problems,
the deviations are very low, especially around the 7}, corner, indicating that good solu-
tions tend to cluster in the solution space, and that they always have a large component
along the dominant eigenvector. This is further evidence for the likely success of optimiza-
tion networks on these problems, since their dynamics will guide v towards the cluster of
good solutions. For the random problems, however, we see that the deviations are much
larger, especially around the Z), corner. This suggests that there is no predictable decom-
position for good solutions and, in particular, good solutions do not necessarily have large
components along the dominant eigenvector. We would therefore expect network perfor-
mance to be compromised on these problems. A different configuration space analysis [13]
suggests that solutions to Euclidean and random graph partitioning problems exhibit sim-
ilar clustering properties: good solutions are found in clusters for the Euclidean problems,
but not for the random ones.

6.6 Empirical evaluation of network performance

The predictions of network performance can be checked against the results of suitable
experiments. We used a steepest descent network and an MFA algorithm with neuron
normalization to solve all 1000 Euclidean and random problems. The full results are
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displayed in Figures 6.7 and 6.8, and summarized in Tables 6.1 and 6.2. For comparison,
the tables also show how a stochastic simulated annealing algorithm [119] and a 3-opt
search algorithm [97] perform on the same problems. Experimental detail for all the
optimization techniques can be found in Appendix B.5.

Both optimization networks solve the Euclidean problems fairly well, finding tours
about 1% longer than the shortest tour on average. Moreover, it appears that this good
performance is replicated with larger Euclidean problems: in [116, 118] MFA is used to
solve problems in up to 200 cities, with performance comparable to that of the far slower
simulated annealing algorithm.

As predicted, the optimization networks were not nearly so successful with the random
problems, finding tours about 11% longer than optimal on average. We can attempt to
explain this failure by looking at the decompositions of the networks’ solutions: these
are shown in Figures 6.9 and 6.10. As expected, both networks found solutions which
resemble the Z'° form much more than the optimal solutions do (Figure 6.4(a)). In
particular, the networks introduced a large Z), component with little variance across
the 1000 problems: the standard deviation of the ZJ, component was 0.11 for the steepest
descent solutions, 0.14 for the MFA solutions and 0.23 for the optimal solutions. In other
words, optimization networks rely heavily on good solutions having large components along
the dominant eigenvector, which is not always the case. Stochastic simulated annealing
is not affected by such factors, finding near-optimal solutions for the random problems as
it did for the Euclidean problems. Moreover, the networks’ performance is even inferior
to that of the simple 3-opt search technique, which, for random problems of less than
fifty cities, finds solutions close to the presumed optima [87]. The poor performance
of optimization networks running on other random problems (of the graph partitioning
variety) has also been reported in [13, 14].

Of course, solution quality is not the only factor to consider when comparing dif-
ferent optimization techniques: there is also execution time. On this count, although
optimization networks are uncompetitive in simulation, with execution time scaling as n>
for an n-city travelling salesman problem?, they would be the clear winners if implemented
in suitable hardware, in which case the execution time would be independent of the prob-
lem size. Stochastic simulated annealing scales as n? [116, 118] and basic 3-opt search
as n? [97] (although local search can be refined to scale as n? [98]). At first sight, it might
appear that optimization networks, if implemented in parallel hardware, would be the first
choice for large problems. However, the solution quality for random problems is likely to
be unacceptable, and there is an 1n? space complexity which would limit their application
to problems of moderate size. So optimization networks are not particularly appealing, es-
pecially since alternative, state-of-the-art algorithms for the Euclidean travelling salesman
problem now have linear time and space complexity [46].

3In Chapter 4, we pointed out that the time taken to simulate an optimization network of size N scales
as N2. Since a network of size N = n? is required for an n-city travelling salesman problem, this gives
a simulation complexity of n*. However, more efficient simulations are possible for Kronecker product
mappings over 2" . Calculating TValy for the particular TVal associated with Q™ is only an order N oper-
ation; most of the computational effort is expended calculating T°Pv. For Kronecker product mappings,
it is straightforward to show using (C.7) that T°Pv becomes QVPT in matrix form, where v = vec(V)
and T°P = (P ® Q): T°Pv can therefore be calculated with n® complexity.
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6.7 Alternative objective functions

We have now seen, and explained, several causes of network failure. Before we conclude
that optimization networks are simply not suited to the solution of some problems, we
can attempt to exploit one final degree of flexibility. For any particular problem, there
are an infinite number of continuous functions F°P which provide a suitable objective
at 0-1 points. We have already come across one family of such functions when we looked
at hysteretic annealing: we saw that adding any multiple of E2™® (4.9) to E°P did not
invalidate the objective at 0-1 points. This effectively gives us an infinite number of
valid objectives for the problem. In this section we shall investigate other families of
alternative objective functions, and attempt to use them to overcome some of the identified
shortcomings of optimization networks.

Alternative objectives for general mappings

Recall the form of an objective function
E°P = —%VTTOPV — vTiop

where v.€ RY. Now let d be an arbitrary N-element vector, and let D be an N x N
matrix such that D = diag (d). Consider a new objective E°P’ constructed as follows [2]:

Fop — _%VT(Top + D)V _ VT(iop _ %d) (6_22)
If v; € {0,1}, then v Dv = v'd, and so
Fop — _%VTTOPV —vTiP for v; € {0,1}

It follows that E°P’ = E°P at all 0-1 points, and so FE°P is a valid objective for the
combinatorial optimization problem. This defines a whole family of alternative objective
functions we could use, since d can be any N-element vector. The alternative objectives
give rise to T°P" having different eigenvectors and eigenvalues, and also alter i°P", so we
would expect the performance of descent procedures on these functions to be quite variable.

We can exploit this flexibility to eliminate i°P" for any problem. Assuming no slack

variables, and substituting (T°P 4+ D) for TP and (i°® — 1d) for i°, i°P" (5.4) becomes
i°P" = TV2(T°Ps +i°" + Ds — 1d) (6.23)

If we make the bracketed vector expression lie in the nullspace of TV then i°P* = 0. We
can achieve this if we set the bracketed expression to be some multiple of s, which we
know lies in the nullspace of TV?'. The appropriate values for the elements of d are

ks; — [TOPS + iOp]i

di = i (6.24)

Si—2

for any scalar k.* This alternative objective function creates a stationary point near the
initial position of v (ie. at v = s), so we no longer have an i°" term and all the problems
it can entail. However, we have to be aware that v can now follow two different paths,
depending on which direction it moves along the dominant eigenvector, so we may have
to run the network twice for problems with no solution degeneracy.

1t is straightforward to show that this technique can also be used for mappings including slack variables,
but only with & = 0.
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Alternative objectives for Kronecker product mappings

For Kronecker product mappings, F°P can be expressed as — %trace(VPVTQ) (3.12). We
propose a family of alternative objective functions

E°P' = ~Ltrace (V(P + ¢1) VT (Q + D9)) (6.25)

where D9 is an N X N diagonal matrix, and ¢ is a scalar constant. Using the fact that V
is a permutation matrix when v has converged to a 0-1 point, we obtain

EY = g1 [trace (VPVTDq> 1 6 trace (VIVTQ) 1 ¢ trace (VIVTDQ)]
= Er-1 lzn: [VTDQVLi P+ ¢2an2-2- + ¢§nj Dg] for VVT =1
i=1

i=1 =1

If we assume that the elements on the leading diagonals of P and Q are all zero, as is the
case for all the combinatorial problems we have mapped using Kronecker products so far,
we obtain

E°P' = E°P — 14 trace(DY) (6.26)

Hence E°" is a valid objective function for any D9 or ¢, since, to within a constant, the
objective at 0-1 points is the same as that obtained using the original objective F°P. The
symmetry of the formulation indicates that it is equally valid to add an arbitrary diagonal
matrix DP to P, and a multiple of the identity matrix to Q.

These alternative objective functions offer us another way to eliminate 1°?*, which, for
Kronecker product mappings, is given by (B.5)
i’ = L(RPo @ RQo)
Consider adding a diagonal matrix D9 to Q, where
n
D =0-[Qo],=0-> Qi (6.27)

i=1
and @ is an arbitrary constant. This results in all the row sums of (Q 4 DY) equaling 6,
in which case (Q + D9)o = fo. i°®" subsequently becomes

i’ = 1 (RPo @ R(Q + D%)o) = L(RPo ® fRo) = 0 (6.28)

n

°Pr term.

In this manner, any Kronecker product problem can be formulated with no i

We can test the alternative objective functions on the 16-city Hamilton path problem
of Figure 5.5, for which we decided that the i°P* term was frustrating the solution of the
underlying combinatorial problem. We used an alternative objective of the form (6.25)
to remap the problem so that there was a stationary point near the initial position of v.
val and then again
at —vY@. As usual, the two runs produced equivalent solutions, corresponding to travers-

ing the same path in different directions; this path, which is again suboptimal, is shown

A steepest descent network was then run twice, starting once at v

in Figure 6.11(a). The network’s poor performance is not surprising when we look at
the decomposition of the optimal solution along the new eigenvectors of T°P* — see Fig-
ure 6.11(b). There is no prominent peak at the A%, position, which corresponds to the
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dominant eigenvector. It is therefore unlikely that an optimization network will find such
a solution®.

So, it is by no means certain that removing i°P" will improve the network’s perfor-
mance, since there is no guarantee that F°P’ will be any more suited to the underlying
combinatorial problem than F°P. However, sometimes an improvement can be obtained.
We used alternative objectives of the form (6.25) to suppress i°®" in 1000 graph labelling
problems, using randomly generated edge weight matrices for the graphs. For both ob-
jectives, a steepest descent network was run twice, negating the starting position between
each run to be sure of obtaining the best possible solution. The results are displayed in
Figure 6.12: in about 33% of the problems the removal of i°?" was beneficial. On average,
the original and alternative objectives performed more or less equally well. We conclude,
therefore, that there is no certain advantage to be gained through the use of alternative
objectives to suppress 1°P*, though to be sure of obtaining the best possible performance
such alternatives should be fully explored.

opr

5In fact, the optimal solution has a large component A}, , which an optimization network will find very
difficult to emulate, since after the dynamics have introduced the A}, component, other components in
the second column of A’ are blocked by the constraint (6.17).
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Solution Mean | Std. dev. | Number
technique error | of error valid
Steepest descent 0.71% | 1.64% 1000
network

Mean field 1.36% | 2.39% 987
annealing

Stochastic simulated || 0.01% | 0.06% 1000
annealing

3-opt search 0.02% | 0.25% 1000
(one pass)

Table 6.1: Results of experiments on 10-city Euclidean travelling salesman problems.

The results confirm that optimization networks solve Fuclidean travelling salesman prob-
lems fairly well. Although other optimization techniques perform even better, they could
not run as fast as an optimization network implemented in parallel hardware. Since MFA
is most easily stabilized using a moderate weighting for the penalty function, valid solutions
are not always found. The error measure is specified in the caption to Figure 6.7.

Solution Mean | Std. dev. | Number
technique error | of error valid
Steepest descent 13.5% | 13.7% 1000
network

Mean field 9.73% | 10.7% 988
annealing

Stochastic simulated || 0.29% | 1.35% 1000
annealing

3-opt search 0.84% | 2.99% 1000
(one pass)

Table 6.2: Results of experiments on 10-city random travelling salesman problems.

Optimization networks are not nearly so effective with random travelling salesman prob-
lems. In contrast, other optimization techniques have little difficulty with these problems,
wdentifying a real weakness of optimization networks. Since MFA is most easily stabilized
using a moderate weighting for the penalty function, valid solutions are not always found.
The error measure is specified in the caption to Figure 6.7.
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() vy=-0.1 (d) v = 1.5 (Fully converged)

Figure 6.1: Hysteretic annealing applied to a 10-city travelling salesman problem.

The figure shows the evolution of v for a steepest descent network with hysteretic annealing
solving a 10-city travelling salesman problem. Since many of the eigenvalues of TOPT
are degenerate, the figure displays the Z' matriz, which gives the components of v'® in
the degenerate eigenplanes instead of along each degenerate eigenvector. Starting from a
random position near the point v =s (a), the component along the dominant eigenvector
is the first to be introduced when v = —1.9 (b). By the time v = —0.1 (¢), the Z' matriz
has evolved to a form not unlike the expected Z'°, though those elements associated with
the more negative eigenvalues have yet to be introduced. Finally, when v= 1.5 (d), v has

successfully converged to a 0-1 point, which is in fact optimal.
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(c) TP = 0.30 (d) T? = 0.20 (Fully converged)
Figure 6.2: Mean field annealing applied to a 10-city travelling salesman problem.

The figure shows the decomposition of v¥® at several temperatures for the MFA algorithm
solving the travelling salesman problem of Figure 6.1. The similarity between the decom-
positions in Figures 6.1 and 6.2 confirms the theory behind temperature and hysteretic
annealing. The MFA algorithm finds the same optimal solution, seen decomposed in (d),
as did the steepest descent network with hysteretic annealing.
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(a) Mean of Z’ (b) Standard deviation of Z’

Figure 6.3: Properties of optimal solutions to Euclidean travelling salesman problems.

The optimal solutions to 1000 10-city Fuclidean travelling salesman problems were found
by exhaustive search. The figure shows the mean and standard deviation of the Z' decom-
position along the eigenvectors of T°P". The mean decomposition is similar to the Z'°
form which an optimization network is likely to find, especially around the 74, corner,
where the standard deviation of the data is fairly low. Since the components in this corner
are associated with the more positive eigenvalues of TP (see Figure 6.5(a)), an opti-
mization network will introduce these components first. It therefore seems likely that an
optimization network will be successful with these problems, since the initial direction of v
s compatible with the location of the optimal solution.
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(a) Mean of Z’ (b) Standard deviation of Z’

Figure 6.4: Properties of optimal solutions to random travelling salesman problems.

The optimal solutions to 1000 10-city random travelling salesman problems were found
by exhaustive search. The figure shows the mean and standard deviation of the Z' de-
composition along the eigenvectors of T°P'. Compared with the corresponding plots for
Euclidean problems in Figure 6.3, the mean Z' matriz is much more diffuse, with higher
standard deviations. In particular, the peak at Z, is not so high, and the standard devia-
tion here is also rather high, indicating that the optimal solutions do not necessarily have a
large Z}, component. Since this component corresponds to the dominant eigenvector (see
Figure 6.5(b)) and therefore to the initial direction of v, it is expected that optimization
networks might be less successful with these problems.
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Mean
Cri

Mean
Cri

(a) Mean ¢ for Euclidean problems (b) Mean (¢ for random problems

Figure 6.5: Eigenvalues of T°P" for travelling salesman problems.

The figure shows the eigenvalue matriz { averaged across 1000 10-city Fuclidean and ran-
dom travelling salesman problems. For both classes of problem, the highest eigenvalues are
in the (2,2) corner, so an optimization network is expected to introduce the Zy3 component

first.
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(a) Euclidean problems (b) Random problems

Figure 6.6: Clustering of good travelling salesman solutions.

The plots show how the decomposition of v¥® varies across the ten best solutions to each
problem. The data is presented as the standard deviation of the Z' matriz for the ten best
solutions, averaged over all 1000 problems in each database. For the Fuclidean problems
the deviations are low, indicating that good solutions tend to cluster in the solution space.
For the random problems, however, the deviations are much larger. This suggests that
good solutions to random problems have a far less predictable decomposition, which does
not bode well for the likely performance of optimization networks.
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Figure 6.7: Performance of the steepest descent network on travelling salesman problems.

The results are for a steepest descent network running with a slow hysteretic annealing
schedule. The error measure is (Eg) g~ Eolima)/ Eoptima X 100%. The mean percent-
age error for the Fuclidean problems is 0.71%, while the mean error for the random prob-
lems is considerably larger at 13.5%. Similar performances were predicted by examining

properties of good and optimal solutions.
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Figure 6.8: Performance of the MFA algorithm on travelling salesman problems.

The results are for an MFA algorithm, with neuron normalization, running with a slow
temperature annealing schedule: since MFA is most easily stabilized using a moderate
weighting for the penally function, valid solutions were not found for all 1000 problems.
The error measure is specified in the caption to Figure 6.7. The mean percentage error
for the Euclidean problems is 1.36%, while the mean error for the random problems is

considerably larger at 9.73%.

The MFA algorithm performs comparably with the steep-

est descent network (Figure 6.7) on both FEuclidean and random problems, which is not
surprising given the similarity between temperature and hysteretic annealing.
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Figure 6.9: Steepest descent network solutions to random travelling salesman problems.

The plots show the decomposition of the solutions found by the steepest descent network
to the 1000 random travelling salesman problems. The network found solutions which
resemble the Z'° form much more than the optimal solutions do (Figure 6.4(a)). In
particular, optimization networks rely on good solutions having large components along

the dominant eigenvector, which is not always the case.

Mean gtd'
, ev.
Zh Zy

(a) Mean of Z’ (b) Standard deviation of Z’

Figure 6.10: MFA algorithm solutions to random travelling salesman problems.

The plots show the decomposition of the solutions found by the MFA algorithm to 988 of
the random travelling salesman problems. As predicted by the theory, MFA appears to fail

for the same reasons as the steepest descent network does (Figure 6.9).
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Figure 6.11: Performance of an alternative objective on the spiral Hamilton path problem.

The solution shown in (a) was found by a steepest descent network with hysteretic anneal-
ing. The spiral Hamilton path problem of Figure 5.5 was remapped using an alternative
objective function so that i°®" = 0: hence dependence on the auxiliary linear problem is
eliminated. However, the solution found is still suboptimal. The decomposition of the
optimal solution along the new eigenvectors of TP is shown in (b). It is most unlikely
that an optimization network will find this solution, since the component A, along the
dominant eigenvector is not particularly prominent.
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Figure 6.12: Performance of alternative objective functions on graph labelling problems.

The results are for 1000 graph labelling problems, using graphs with randomly generated
edge weights. A steepest descent network with hysteretic annealing solved each problem
twice, negating the starting position between runs to be sure of obtaining the best possible
solution. For each problem two objectives were tried, one standard objective and another
formulated so that i°"* = 0. FE°P was calculated at the best solution found using each
objective. The histogram shows the distribution of E°P for the standard objective minus FE°P
for the alternative objective, expressed as a percentage of F°P for the standard objective.
The results indicate that neither of the objectives gives consistently better performance,
though improvements were obtained using alternative objectives in about 33% of all cases.



Chapter 7

Optimization over Non-Integral
Polytopes

In Chapter 4 we concluded that conventional optimization networks were largely unsuited
to optimization over non-integral polytopes, since they had little chance of converging to
a 0-1 point. Moreover, this was not a consequence of any minor, correctable detail, but
a direct result of a very basic design misconception: that optimization networks should
be able to converge to a solution point in one attempt. Since finding a valid solution
point is generally an AP-complete problem, the fundamental conception of optimization
networks is flawed. Should we require a valid solution at all costs, we may have to resort to
an exponential-time technique. Alternatively, we could attempt to use the LP-relaxation
solution, as found by an optimization network, to prime a suitable heuristic which finds a
nearby 0-1 point.

In this chapter we investigate two sound, connectionist approaches to solving simple
knapsack problems. In Section 7.2 we describe a straightforward heuristic which obtains
a good 0-1 solution from the LP-relaxation solution. However, we cannot rely on similar
heuristics being available for arbitrary problems. Therefore, in Section 7.3 we present a
fundamental redesign of optimization networks which enables them to search the vertices of
polytopes for valid solution points. For knapsack problems, the performance of the search
networks is fairly good, though inferior to that of the LP-relaxation heuristic. However,
search networks have general applicability, and at least offer a coherent, connectionist
approach to optimization over non-integral polytopes.

7.1 Strategies for optimization over non-integral polytopes

We have now established that a one-shot descent is unlikely to find a valid solution point
within a non-integral polytope. We must therefore develop new strategies for optimization
over non-integral polytopes. We shall find it useful to consider two cases separately:
that the objective E°P is linear, as with the knapsack problem, and that the objective is
altogether absent, as with pure constraint satisfaction problems like timetable scheduling.

Linear objective

For linear objectives, we argued in Chapter 4 that an optimization network, effectively
performing linear programming, will reliably converge to the problem’s LP-relaxation solu-
tion. This can be used to place a lower bound on the optimal 0-1 solution. Alternatively,

92
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we could look for a simple heuristic which uses the LP-relaxation solution to obtain a
good 0-1 solution: a suitable heuristic for the knapsack problem is presented in Sec-
tion 7.2. Failing this, if we require a valid 0-1 solution at all costs, we have no choice
but to use an exponential-time technique. We could either find all the vertices of the
constraint polytope P, using a suitable vertex searching algorithm [85, 103]!, or we could
attempt to prune the search using branch-and-bound [93] or dynamic programming [38].
We could also ask ourselves whether a vertex search could be implemented on a modi-
fied optimization network. One possible scheme, based on the principle of tabu search, is
presented in Section 7.3.

No objective

We must also consider pure constraint satisfaction problems, which have no objective
to minimize: such problems include the NP-complete ‘teachers and classes’ timetabling
problem studied in [58], which is essentially an example of resource-constrained multi-
processor scheduling [47, p. 239]. The problem is defined as follows:

A certain school has NV, teachers, N, classes and N, classrooms. It is required
to schedule Nj lessons (formally defined as teacher-class pairs) within a time-
limit of N; lesson periods. The problem is to find a suitable schedule, such
that no teacher or class is expected to be in more than one place at a time,
and no classroom is expected to accommodate more than one lesson at a time.

In [58] the problem is mapped using a 0-1 N,N,N,N;-element solution vector v, which
describes how teacher-class pairs (ie. lessons) are to be associated with space-time slots.
Note that the problem has no cost function, only hard constraints: all we have to do is find
any integral vertex within the constraint polytope P. If we wish to apply an optimization
network to this problem, we will have to impose an arbitrary objective on the network’s
dynamics to move v towards the boundary of P. Any linear or concave function will suffice,
though v will of course converge to a random vertex of P, which will not necessarily be
integral.

Timetabling problems can be characterized by their sparseness. After all the required
lessons have been scheduled, there will be Ny = (N;N; — N;) spare space-time slots:
the sparseness of the problem is defined as the ratio N;/(N,;N¢). Figure 7.1 shows the
proportion of integral vertices on typical timetable scheduling polytopes. There is a clear
correlation between the sparseness of the problem and the proportion of integral vertices on
the corresponding polytope. For sparse problems, the probability of an arbitrary descent
procedure converging to an integral vertex is near one, though this falls off rapidly for
less sparse problems. For dense problems, there is an additional correlation involving the
problem size: as the problem gets larger, the proportion of integral vertices gets smaller.
So a one-shot descent procedure, operating on an arbitrary objective function, is not
likely to be very successful with difficult constraint satisfaction problems, most probably
converging to a non-integral vertex of P: we could, however, invoke the vertex search
dynamics, described in Section 7.3, to allow v to explore further vertices of P.

For problems with a linear objective, the LP-relaxation solution was potentially of
some use. However, for pure-constraint satisfaction problems, since the objective is entirely
arbitrary, the LP-relaxation is likely to be fairly useless. For example, Table 7.1 shows

! For polytopes within the unit hypercube, the number of vertices scales exponentially with the dimension
of the hypercube [121, 123].
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the unresolved timetable corresponding to a non-integral vertex of a timetable scheduling
polytope (an optimization network will probably converge to such a point). At the vertex,
many of the elements of v are in fact zero, ruling out most of the possible schedules. The
timetable shows the remaining possible schedules consistent with the nonzero elements
of v. Tt is not straightforward to extract a valid timetable from this, as suggested in [58].
But can we do better using other optimization techniques? The answer to this question
is yes. The imperfect solution to a scheduling problem found by, say, simulated annealing
is likely to be of some use. Since simulated annealing does not search over the interior
of the unit hypercube, but only over its vertices, the solution it finds will be a unique
timetable, possibly violating one or two constraints. We could at least remove some
lessons to obtain a valid timetable which fulfills most of the teaching requirements. Even
better, we might be able to swap a few lessons around and arrive at a timetable meeting
all the original requirements. No such possibilities are offered by the network’s partial
solution in Table 7.1.

7.2 Using the LP relaxation solution

Let us remind ourselves of what a knapsack problem is. We have a knapsack of capacity C',
and a set of n items. Item 7 has size x; and profit y;. We have to decide which items to pack
in the knapsack to obtain the maximum profit from the collection, without overfilling the
knapsack. This problem can be posed as quadratic 0-1 programming as follows. Let v; = 1
if item ¢ is to be packed, and v; = 0 otherwise. Then the problem is:

minimize E°P(v) = —%VTy (7.1)
subject to vix<C (7.2)
and v; €{0,1} i€ {l...n} (7.3)

where C' and all the elements of x and y are nonnegative. We saw in Chapter 4 that

an optimization network, when applied to the solution of a knapsack problem, typically
converges to the LP-relaxation solution and fails to find a valid 0-1 point. The LP-
relaxation solution v* represents the optimal solution to the problem (7.1)—(7.2), without
the integrality condition (7.3). It is easy to show that v* satisfies x!'v* = C. Here we
describe a very simple heuristic for obtaining a good 0-1 solution from v*.

Since E°P attains its minimal value within P at v*, it is expected that any 0-1 points
near v* will also have low values of E°P. In Appendix B.6 we prove that all vertices of
a knapsack problem’s constraint polytope have at most one non-integral coordinate: it
follows that v*, being a vertex of P, will also have at most one non-integral coordinate. In
fact, except in highly pathological cases, v* has exactly one non-integral coordinate. If we
reduce the value of this coordinate to zero, then we are left with a valid 0-1 solution which
is bound to have a fairly low value of F°P. This forms the basis of the linear programming
technique for solving knapsack problems.

We applied the technique to a set of randomly generated knapsack problems. Each item
was allocated a random size and profit, both between 0 and 1, and the knapsack capacity
was chosen to be some random fraction of the total size of the items (a different fraction
for each problem). Initially small problems were considered, featuring only 10 items,
so that exhaustive search could be used to find the optimal solution. For 1000 of these
problems, a steepest descent network, running with one slack variable to map the inequality
constraint (7.2), was used to find the LP-relaxation solution v*: see Appendix B.8 for
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experimental detail. The simple heuristic described above was then used to obtain a 0-1
solution.

The results in Figure 7.2 show that the technique is very effective. Mean solution
errors around the 4% mark are perfectly satisfactory when reasonable quality solutions
are required in reasonable search times, which is the best we can aim for when dealing
with A/P-complete problems. Larger knapsack problems are considered in Section 7.3.

7.3 Tabu search networks

In this section we describe how tabu search dynamics, previously presented in [19, 20]
as a viable neural search technique, can be modified to provide a means of searching the
vertices of non-integral polytopes with an optimization network.

Tabu search [59] was originally developed as a meta-heuristic, to work in conjunction
with other search techniques. The idea is that certain parts of the search space are
designated tabu for some time, directing the search towards more fruitful areas. The choice
of appropriate tabu strategies can lead to highly efficient searches, with some extremely
impressive results in the field of combinatorial optimization [59].

Applied to descent networks, tabu search suggests a dynamic objective function, where
we continuously update £ to penalize points that v* has already visited. In this way, if v*
gets trapped at any point, eventually £ will build up locally to such an extent that v*
is driven away. In tabu terminology, we mark recently visited points as tabu, and direct
the search into fresh areas of space. What emerges is a neural search technique, which no
longer converges to a single point, and therefore needs constant monitoring to spot any
valid solution points the search may pass through. This should be contrasted with the
one-shot descent offered by conventional optimization networks, which typically converge
to non-integral points. To be sure of finding an integral point the use of some sort of
search procedure is imperative. The tabu methodology makes this search efficient, while
a connectionist implementation in hardware could provide very rapid processing speeds.

The implementation of the search on feedback networks is particularly elegant. In what
follows we build on the approach in [19, 20], adapting it where necessary to achieve our
specific goal of escape from vertices of P*. We consider a time-varying objective function

EP(v+,1) = EP(v) + Fy(v*, 1) (7.4)

where
Fiwh0) = [ eC0p (v 1(v* () ds (7.5)

In (7.5), @ and 3 are positive constants, p(a,b) measures the proximity of the vectors a
and b, v*(s) denotes the location of the network’s state vector at time s, and f(a) is a
small displacement function such that f(a) ~ a. Thus F; evolves in time to increase the
objective in the vicinity of points recently visited. Let us now consider how F; affects the
descent dynamics for vt trapped at a vertex v} of P* since time £ = 0. In this case

t
EWtﬂzﬁAeW4%WﬂﬂﬁDd8

If we set f(a) = a, then even though the objective is increased at the vertex, escape is not
guaranteed since the maximum of F; will be at v}, and therefore the gradient of F; at v
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will be zero. What is required is to place the maximum of F; near v} but just outside the
polytope P*. This can be achieved if we set

f(a)=a+e¢(a—c) (7.6)
where ¢ is some vector within P*, and € is a small, positive constant. If we choose the
quadratic proximity function p(a,b) = —|la — b||?, then F; becomes

F(vtt) = —%0V+TV+ —hTvt 4 ¢(1) (7.7)
where 0(1) = 2 /0 Ceole=1) g (7.8)
and h(t) = —28 /0 Lo l=0g(v+ (5)) ds (7.9)

Equations (7.8) and (7.9) can be differentiated to obtain the following dynamic update
equations for # and h

= 28— ab (7.10)
h = —24f(v*(t)) — ah (7.11)

with initial conditions #(0) = 0 and h(0) = 0. The tabu search system is obtained by
arranging for the overall objective function to be

E(vt) = —%vaTTvJr —ytTib — EP(v* 1) —g(t) + %C”V+ — (T"alvJr + s)H2 (7.12)

where we have discarded ¢(t), the part of F; which was not dependent on v*. Remember
that the ¢ term confines vt to the polytope P*, as discussed in Section 3.2. The objective
function (7.12) is achieved by setting

T = TPt 4T —T) + ()1 (7.13)
iP = i°* 4 es+ h() (7.14)

The state vector vt can be updated using either Hopfield or steepest descent dynamics
on F, though the dynamics of v* will now depend on # and h. In turn, the dynamics of h,
given in (7.11), depend on v*. The system of coupled, first order differential equations
is surprisingly simple and quite possibly retains the attraction of being implementable in
analogue hardware. Note that only the diagonal interconnections and input bias currents
are time-varying, with the former approaching an asymptotic value of 23/ a.

The tabu search dynamics are intended for use over non-integral polytopes with linear
or concave objectives. Indeed, if E°P is linear or concave, then it is straightforward to
show that E}P is also linear or concave for all time ¢, and so there are no local minima
of EY® in which v* can get trapped. Ability to escape from any vertex of P* can be
guaranteed for appropriate settings of the parameters «, f and ¢ — see Appendix B.7.
For moderate 3, the trajectory of vt is initially dominated by the gradient of F°P, until vt
gets trapped at a vertex of Pt. At this point the tabu objective F; proceeds to dominate,
and eventually vt escapes from the vertex and moves towards another. We can therefore
expect vt to search through a number of vertices, with an initial bias towards those
minimizing F°P. The search might exhibit limit cycles: it is a matter of future research to
develop continuous dynamics which search every vertex of a polytope, given enough time.



Optimization over Non-Integral Polytopes 97

The tabu search system was implemented with steepest descent dynamics (2.10). With
tabu search, the steepest descent dynamics have the additional advantage over the Hop-
field dynamics that reaction to changes in F; is more rapid. This is because there are
no u variables, which can stray far from the midpoint of the transfer functions (2.4), and
subsequently take a long time to return and effect significant changes in v. Figure 7.3
shows the trajectory of vt under the tabu dynamics, with T and iP set to map the knap-
sack problem of Figure 4.1. We see that the search passes through all the vertices of P,
including the valid solution points B, C and D. In fact, the first vertex to be visited after
the LP-relaxation solution at A is vertex B, which is the optimal solution to the knapsack
problem. Notice that the coupled dynamic system is rather slow, taking over one minute
to search through all the vertices. Most of the time is expended when vt is trapped at
one of the vertices A or C, where it takes some time for § and h to change to such an
extent that vt is freed from the vertex. However, it is possible to analytically integrate the
tabu equations for stationary v*, leading to more efficient simulations if this possibility is
exploited. Carrying out the integration reveals that the speed of the continuous system is
approximately proportional to «, so significant speed-ups are possible with larger values
of o (see Appendix B.7)2.

The technique was applied to the database of solved knapsack problems studied in
Section 7.2. For all 1000 problems, steepest descent dynamics were used on the time-
varying objective function (7.12): see Appendix B.8 for experimental detail. The search
was run for a fixed number of iterations on all problems, and the network output was
continuously observed, so that valid solutions could be logged as the network found them.

The results in Figure 7.4 reflect the best solution found within the iteration limit. With
valid solutions found over 99% of the time, and mean solution errors around the 5% mark,
the results are comparable with those of the linear programming technique. The perfor-
mance of the system was found to be largely insensitive to changes in the parameters «,
and ¢, so long as the ability to escape from a vertex was maintained (see Appendix B.7).
Limit cycles were observed in the state vector trajectory, though these typically included
visits to many vertices.

For larger knapsack problems, even though we cannot search for the optimal solution,
we can compare the performances of various approximate solution techniques. Table 7.2
shows how the tabu search and linear programming approaches compare with a simple
greedy heuristic for problems in up to 250 items. The greedy approach is simply to pack
items in order of decreasing profit, omitting any item if it causes the knapsack to overflow.
The tabu search system works as well as the very effective linear programming approach,
and consistently outperforms the greedy heuristic.

The work on tabu dynamics presented here is intended merely as a pointer to more
coherent approaches to optimization over non-integral polytopes. The dynamics, as they
stand, have the serious drawback that the resulting search does not encompass all the
polytope’s vertices. The reason why the technique is relatively successful with knapsack
problems lies in the distribution of integral vertices on the corresponding polytopes. Fig-
ure 7.5 indicates that approximately half the vertices of knapsack polytopes are integral,
independent of the problem size. So any search taking in just a few vertices stands a
good chance of finding an integral one. Furthermore, good solution points (in terms of
solution quality) are often located close to the LP-relaxation solution, which is where the

2Small values of o are used in the experiments here, since this simplifies the simulation of the continuous
dynamics — see Appendix B.8.
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descent initially leads v*. These special properties make the knapsack problem particu-
larly amenable to solution by the tabu search technique. However, as we have already seen
for scheduling problems in Figure 7.1, we cannot expect other problems to exhibit similar
properties. It remains to stress that even if the dynamics can be modified to produce
an exhaustive vertex search, they will have to be implemented in analogue hardware to
appeal, in terms of speed, over alternative optimization techniques.
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H Room 1 ’ Room 2 ‘ Room 3 ‘ Room 4 ‘
Time 1 || Mr. A./Class 1 | Mr. B./Class 3 | Mr. B./Class 2 | Mr. A./Class 4
Ms. D./Class 1 | Ms. C./Class 4 | Ms. C./Class 2 | Ms. D./Class 3
Time 2 || Mr. A./Class 2 | Ms. C./Class 3 | Mr. B./Class 1 | Mr. A./Class 2
Mr. B./Class 1 | Ms. D./Class 4 | Ms. D./Class 3 | Ms. C./Class 4
Time 3 || Mr. B./Class 1 | Mr. A./Class 4 | Mr. B./Class 3 | Mr. A./Class 1
Ms. D./Class 3 | Ms. C./Class 2 | Ms. C./Class 2 | Ms. D./Class 4
Time 4 | Ms. C./Class 3 | Mr. B./Class 1 | Mr. A./Class 4 | Mr. B./Class 2
Ms. D./Class 3 | Ms. C./Class 2 Ms. D./Class 1

Table 7.1: Unresolved timetable for a non-integral vertex of a dense scheduling polytope.

An optimization network has converged to a non-integral vertex, as is typical for dense
scheduling problems. However, many of the elements in the solution vector are in fact
The unresolved timetable shows all the
remaining possible schedules; there are generally two lessons which could be placed in each
space-time slot. It is not straightforward, as suggested in [58], to extract a valid timetable
Sfrom this, and so the network’s partial solution is fairly useless.

zero, ruling out the vast majority of schedules.

Solution Number of items

technique 50 | 100 ‘ 150 ‘ 200 ‘ 250
Linear 0.0% 0.0% 0.0% 0.0% 0.0%
programming

Tabu search +0.37% | +0.06% | —0.01% | —0.31% | —0.34%
network

Greedy -11.7% | =7.1% | -6.0% | —6.9% | —14.1%
heuristic

Table 7.2: Average solution qualities for large knapsack problems.

The table compares the performances of several solution techniques on large knapsack
problems. The average solution qualities (—E°P ) over ten problems are given relative to the
solutions found by the linear programming technique. The results show that the tabu search
dynamics work as well as the linear programming approach, and consistently outperform
the greedy heuristic. The tabu search parameters were o« = 0.01,8 = 1.0,¢ = 0.1.
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Figure 7.1: Proportion of integral vertices for timetable scheduling polytopes.

The data relates to timetable scheduling problems [58] of various sizes. Fach problem
considers equal numbers of teachers, classes, classrooms and time periods, ranging from
two to five of each. For each size, problems of different sparseness were generated, ranging
from problems where all the space-time slots were to be filled with lessons, to problems
where no lessons were to be scheduled at all. The resulting polytopes were examined with
the aim of estimating the proportion of integral vertices. A simplex algorithm [119] was run
with 1000 random, linear objectives to find 1000 vertices of each polytope (an optimization
network could equally have been used to perform the linear programming, but the simplex
algorithm runs much faster on a digital machine). The results can be used to infer the
probability of an optimization network converging to a 0-1 vertex. It is clear that this
probability is rapidly diminished for larger and less sparse problems.
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Figure 7.2: Performance of the linear programming technique on knapsack problems.

Solutions to 1000 10-item knapsack problems were found using linear programming com-
bined with a stimple heuristic. A steepest descent network was used to find the L P-relaxation
solution v*, the one nonzero element being subsequently reduced to zero to obtain a 0-1 so-
lution. The error measure used to display the results is (E2Y —-E D/ E® x 100%.

optimal foun optimal

The errors have a mean of 3.72% and a standard deviation of 9.24%.
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(b) t =6.3s (c)t=764s

Figure 7.3: An illustration of tabu search.

The figure illustrates how tabu search can be applied to the simple knapsack problem first
presented in Figure 4.1. Conventional descent dynamics converge to the non-integral ver-
tex A, which does not represent a valid solution. With tabu search dynamics, the objective
function is continuously updated to penalize points that vt has already visited: contours
of I/ are shown in dotted lines. Hence v* is ejected from A and passes through the optimal
solution vertex B, before converging temporarily to C. After a further period of time the
evolving objective ejects vt from C, whereupon the remaining two vertices D and E are
visited. The simulation was performed using steepest descent dynamics with tabu search
parameters o = 0.01, 3 = 2.0,¢ = 0.1. Fuster search speeds are possible with larger values

of .
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Figure 7.4: Performance of tabu search dynamics on knapsack problems.

Solutions to 10-item knapsack problems were found using steepest descent dynamics with
tabu search. The error measure used to display the results is specified in the caption to
Figure 7.2. Valid solutions were found for 995 out of the 1000 problems. The errors
have a mean of 4.56% and a standard deviation of 10.3%. The tabu search parameters
were o = 0.01,8 = 1.0,¢ = 0.1.
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Figure 7.5: Proportion of integral vertices for knapsack polytopes.

The data relates to randomly generated knapsack problems: each item was allocated a
random size and profit, both between 0 and 1, and the knapsack capacity was chosen to be
some random fraction of the total size of the items. The proportion of integral vertices on
the resulting polytopes was estimated using the simplex technique described in the caption
to Figure 7.1. It is apparent that about 50% of the vertices are integral, independent of the
problem size. This partly explains why the tabu search dynamics are relatively successful
with these problems, even though the search takes in only a limited number of vertices.
In addition, since good 0-1 solution points are located close to the I P-relazation solution,
which is where the descent dynamics initially lead v*, the solutions found by the search
are often correspondingly good.



Chapter 8

Conclusions

In Chapter 1 we introduced this thesis with a clear justification for investigating optimiza-
tion networks: they appeared to offer the unique facility of being able to solve small to
medium sized problems of a general nature in a matter of milliseconds, with many useful
applications. We then identified three key questions requiring authoritative answers:

e Is there a simple way to program an optimization network for an arbitrary problem,
so that the network will never find a solution violating any of the problem’s hard
constraints?

e Given this method, is it always possible to force the network to converge to an
interpretable, valid solution?

e If so, will the quality of this valid solution be high enough to compete with the other
optimization techniques?

This thesis has been largely concerned with answering these questions.

The investigation into problem mappings came to a very positive conclusion: given
a combinatorial optimization problem expressed in terms of quadratic 0-1 programming
(which is fairly standard practice), there is a very straightforward way to program an
optimization network for its solution. The mapping guarantees that any solution found
by the network will not violate any of the problem’s constraints.

Unfortunately, the study of network convergence came to a less positive conclusion.
Drawing on results from complexity theory and mathematical programming, hitherto ig-
nored by the neural network community, we showed that it is generally not possible to
force convergence to a 0-1 point, except for special classes of problems over integral poly-
topes. One of the justifications for researching optimization networks is therefore refuted:
they cannot be applied to such a wide variety of problems. The tabu search dynamics,
which we presented for optimization over non-integral polytopes, were intended merely as
a pointer towards a more coherent approach: they remain far from being competitive with
other optimization techniques. Fortunately, many useful problems exhibit the amenable
property of an integral constraint polytope. It therefore seemed worthwhile investigating
the final question concerning the quality of network solutions.

This was perhaps the hardest question to answer, requiring a mixture of theoretical
and experimental analysis to obtain some partial, though illuminating, answers. With
the single exception of the Euclidean travelling salesman problem, we found no class of
problem for which the network solution was completely reliable. When solving Hamilton
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path problems, the network was sometimes thwarted by an inappropriate auxiliary linear
problem; to solve a graph labelling problem, it was often necessary to run the network
twice to find just one good solution; random travelling salesman problems exhibited none
of the properties that optimization networks require if they are to perform well. A novel
study of alternative energy functions showed that their use could potentially, but not
reliably, improve solution quality.

Optimization networks are therefore restricted in their application to problems with
amenable properties over integral polytopes. Furthermore, they rely on suitable hardware
implementation to compete with other optimization techniques, which, when tailored to
specific problems, can perform extremely well. The Euclidean travelling salesman problem,
the only problem considered in this thesis which optimization networks solved reliably
well, serves to illustrate the point. To compete with even a 1965 algorithm [97], a network
would have to find a good solution to a 100-city problem within a few seconds: this
would certainly require implementation in special, parallel hardware. Even then, the
space requirements of most mappings would limit the application of hardware networks to
problems of moderate size. It is clearly far-fetched to envisage a circuit with four million
processing elements solving a 2000-city travelling salesman problem, as can be done using
alternative techniques [46].

Optimization networks emerge from this thesis with a narrow, potential field of appli-
cation, conditional on the development of suitable hardware. They are therefore not as
attractive as they might have originally seemed.
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Bibliographical Notes

This appendix contains a review of the literature covering the solution of combinatorial
optimization problems, and the theory and application of optimization networks.

A.1 Traditional approaches to combinatorial optimization

A.1.1 Cutting plane techniques

Exact approaches to combinatorial optimization divide into two main classes. First, there
are the cutting plane techniques, originally due to Gomory [61]. From an integer linear
programming perspective, the idea behind this method is to successively add extra con-
straints which reduce the size of the constraint polytope, without excluding any feasible
integer points. After each new constraint (or cut) has been added, the LP-relaxation solu-
tion is found using the simplex algorithm. At each step, either the LP-relaxation solution
is an integer, at which point the problem is solved, or else the LP-relaxation solution is
used to generate a new cut. Cutting plane algorithms describe how to generate cuts so
that no feasible points are excluded at each cut, and so that the algorithm converges in a
finite (exponentially bounded) number of steps.

A.1.2 Branch-and-bound

In addition to cutting place techniques, there are the enumerative methods, based on
intelligent enumeration of all feasible solutions. The most common enumerative procedure
is branch-and-bound, well surveyed up to 1966 in [93]. At each stage of the branch-and-
bound procedure, the set of possible solutions is partitioned into ever smaller mutually
exclusive sets: this is the branch operation. An efficient algorithm is then used to compute
a lower bound on the cost of any solution in each set: this is the bound operation. As the
sets become smaller, and clearly in the limit of the sets containing only a single solution,
it becomes possible to identify the best feasible solution in a set: at this point exploration
of this set can cease. Exploration of a set can also be halted if the lower bound is inferior
to any feasible solution found so far. Eventually it is possible to stop exploring all the
remaining solution sets, for one of the above two reasons. At this point the problem is
solved, since the best feasible solution found must be the optimal solution to the problem.
The branch-and-bound algorithm provides a way of enumerating all feasible solutions
without having to consider each and every one. However, this can still take some time,
and it is often necessary to terminate the branch-and-bound algorithm before optimality is
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reached. In such a situation a lower bound on the optimal solution is available, as well as
the best solution found so far, so the maximum error from the optimum can be calculated.

A.1.3 Dynamic programming

Another enumerative technique is dynamic programming, which is comprehensively sur-
veyed in [38]. Before the technique can be applied, the problem must be posed as a mul-
tistage decision process: a process in which a sequence of decisions is made, the choices
available being dependent on the previous decisions. Dynamic programming exploits the
principle of optimality:

An optimal sequence of decisions has the property that whatever the initial
state and initial decision are, the remaining decisions must be an optimal
sequence of decisions with regard to the state resulting from the first deci-
sion [120].

Essentially, this means that solutions to subproblems can be used to prune the search for
solutions to larger subproblems, and finally to the problem itself. Dynamic programming
works well with many common problems, providing, for example, a pseudo-polynomial
time algorithm for the knapsack problem [47].

In practice, enumerative methods have found many more applications than cutting
plane methods. Full descriptions of all these approaches can be found in integer program-
ming texts [18, 48, 73, 83, 111, 122, 123, 153], or more general combinatorial optimization
texts [106, 114, 120].

A.1.4 Local search

When exact techniques still take too long, inexact heuristics, tailored to particular prob-
lems, often perform extremely well. A good example is local search. Starting with some
feasible solution, a subroutine is called to search for improved solutions within a small
neighbourhood of the initial solution. The best improvement is stored, and the subroutine
is called again to attempt to improve this new solution. When no further iterative im-
provement is possible, the algorithm halts. The skill in designing local search algorithms
lies in identifying suitable small neighbourhoods in which to search for improvements.
With a good choice of neighbourhood, local search can perform amazingly well. For ex-
ample, Lin [97] experimented with the following 3-change neighbourhood for the travelling
salesman problem:

Tour B is within the 3-change neighbourhood of tour A if it can be obtained
by removing 3 edges from tour A and replacing them with 3 other edges.

The resulting algorithm, which was further refined in [98], is a much cited benchmark
for the efficient solution of the travelling salesman problem [92]. Similar local search
techniques also perform well on graph partitioning problems [84].

A.2 Novel approaches to combinatorial optimization

A.2.1 Simulated annealing

The simulated annealing algorithm [1, 36], first presented by Kirkpatrick et al. in 1983 [86],
is inspired by phenomena in statistical physics. The physical process of annealing describes
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how a substance can be slowly cooled from a high temperature to a low one, resulting in
a low energy distribution of the atoms or molecules within the substance. The rate of
cooling is important: a rapid quench will leave the substance stranded in a high energy
state. An analogy can be drawn with the process of solving combinatorial optimization
problems, where it is required to find a low energy state of a set of variables. In [86] it is
argued that iterative improvement techniques for solving optimization problems (like the
local search procedures described in Section A.1) are similar in nature to the microscopic
rearrangement processes taking place within any physical substance above absolute zero
temperature, with the cost function mirroring the physical system’s energy. The analogy
is extended to argue that accepting only rearrangements which lower the cost function
is like a rapid quench of a physical substance, leading most probably to poor solutions.
The Metropolis algorithm [104] provides a means of allowing controlled uphill steps, with
a nonzero probability P, in the search for a better solution. P is set to be a particular
function of a temperature parameter T, with the result that the system evolves into a
Boltzmann distribution at each temperature. As the simulated annealing progresses, T is
gradually lowered until, at zero temperature, P is zero and some local minimum of the
cost function is arrived at. In the (impractical) limit of an infinitely slow cooling schedule,
simulated annealing is guaranteed to find the optimal solution to any problem.

Simulated annealing and neural network techniques can be combined to give a stochas-
tic, parallel solution algorithm for 0-1 quadratic programming problems. The standard
network dynamics are modified to allow for asynchronous operation, so that each neuron
updates itself periodically with a nonzero probability P of making an uphill move. As with
standard simulated annealing, P is related to a temperature parameter which is slowly
lowered as the network converges. Networks operating in this manner are most often re-
ferred to as Boltzmann Machines [1, 154]. An alternative interpretation of this procedure
is that an ever decreasing amount of noise is superimposed on top of the conventional
network dynamics [10].

Simulated annealing procedures have the drawback that it often takes a very slow
cooling schedule, and a correspondingly long amount of time, to obtain good solutions.
This is a direct consequence of the stochastic nature of the algorithms: the system requires
enough time at each temperature to acquire the correct statistical distribution through
purely random rearrangements.

A.2.2 Genetic algorithms

Genetic algorithms [35, 36, 60] are another important, novel optimization technique. They
are inspired by the theory of Darwinian evolution, in which the principle of survival of the
fittest is used to decide which species survive into the next generation. As time progresses,
the evolving generations of species become ever more suited to survival in their habitat.
This principle can be extended to the solution of combinatorial optimization problems.
The genetic algorithm starts with a randomly generated population of feasible solutions.
These are all tested against the cost function, and the best solutions are kept and used to
generate a new population by reproduction. The reproduction process typically involves
combining features from two or more parent solutions to produce a child solution. Mu-
tations of individual solutions are also allowed. The key to a good genetic algorithm lies
in the design of good reproduction rules. With effective rules, the next generation will
typically contain better solutions than the previous one. The best of these solutions then
reproduce to form a new generation, and so on, until a solution of acceptable quality
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is found, or successive generations no longer show significant improvements. A typical
evolutionary approach to the travelling salesman problem is described in [11].

A.2.3 Tabu search

Tabu search [59] is often referred to as a meta-heuristic. It is used in conjunction with
traditional search techniques to enhance their performance. The idea is that during the
search, parts of the search space are designated tabu for a while, and the search is prohibited
from visiting them. For example, if recently visited states are marked tabu, then the
search will be directed towards previously unvisited feasible solutions, and not waste time
revisiting the same parts of the search space. This very simple idea has led to some
impressive results in the field of combinatorial optimization [59].

A.2.4 Novel algorithms for the travelling salesman problem

The novel techniques discussed so far all have general applicability to a wide variety of
combinatorial problems. However, it is often the case (as with the traditional solution
methods) that tailoring an algorithm to a particular problem produces benchmark per-
formance. This is particularly true for the Euclidean travelling salesman problem, where
geometric properties can be exploited to obtain better solutions. Perhaps the most famous
of these algorithms is Durbin and Wilshaw’s elastic net [39, 40, 127]. The algorithm is
inspired by the following thought experiment: a small circular path is placed on a map
containing the cities to be visited, and is subsequently elongated under the influence of
two types of force. The first pulls the path towards the nearest cities, the second pulls
neighbouring points on the path together. The elastic net algorithm describes a set of
first order difference equations to implement this scheme, which are also shown to be
performing gradient descent on a particular Liapunov function. The algorithm performs
very well even on large problems, and lends itself to implementation in parallel hardware.
Simic [125] presents an interesting derivation of the elastic net algorithm from statistical
mechanics foundations, revealing similarities with the mean field annealing and Hopfield
network methods. He later elaborates on this work, presenting a generalized elastic net
for the solution of quadratic assignment problems [126].

A similar approach to the Euclidean travelling salesman problem stems from Koho-
nen’s work on self-organizing networks [88]. Here, the positions of a set of nodes in a
ring are updated until the ring represents a valid tour. At each update a single city is
considered: the node nearest the city moves towards the city, dragging its neighbouring
nodes with it [15, 42]. Fritzke and Wilke [46] discovered how several approximations could
be made to give the algorithm linear time and space complexity, something which had
never been achieved previously. The result is a highly efficient algorithm, which can solve
a 2392-city problem to within 10% of optimality in 16 minutes on a typical, modern com-
puter workstation [46]. This must surely replace Lin’s local search heuristic [97] as the
benchmark for the solution of the Euclidean travelling salesman problem.

A.3 Hopfield networks

The network described by Hopfield in his seminal 1982 paper [69] is in fact a special case of
the additive model developed by Grossberg in the 1960’s (see [63] for a historical survey).
Hopfield reviewed the network’s application as a content addressable memory with both
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binary [69] and continuous valued [70] outputs. However, after detailed investigations
into the network’s performance (see for example [145]), it is now clear that other types of
content addressable memory are far more efficient [136].

The Hopfield network was first proposed for combinatorial optimization applications
in [71, 72], where a penalty function mapping for the travelling salesman problem was
given. The mapping was of a rather ad hoc nature, with separately weighted penalty
functions for each of the hard constraints. The weights were set by trial and error, re-
sulting, not surprisingly, in poor performance [81, 149]. Nevertheless, some researchers
persevered with this approach [2, 80], sometimes proposing modified networks to correct
what is essentially a sloppy mapping [24, 68].

Real progress in the field can be identified with three main movements: rigorous inves-
tigation of network convergence, the development of more sensible mapping techniques,
and the emergence of powerful annealing procedures.

Convergence Generalized feedback neural networks can exhibit oscillatory [34] or even
chaotic [12, 95] behaviour. It is therefore important to determine under what condi-
tions a network will admit a Liapunov function for optimization applications. The
most comprehensive study of the Hopfield network’s convergence is presented by
Vidyasagar [146], whose analysis does not resort to energy based arguments which
typically require the interconnections to be symmetric. Since any analogue imple-
mentation of the network cannot possibly exhibit perfect symmetry, Vidyasagar’s
stability results are of considerable importance. For simulated networks, conver-
gence properties depend on whether the nodes are updated in serial or parallel: such
issues are discussed (for discrete-valued networks) in [29, 124].

Mapping The development of rigorous mappings was delayed by the popularity of the
original, ad hoc mapping of the travelling salesman problem. Researchers concen-
trated on finding better weights for the penalty functions, often by way of an eigen-
vector analysis of the Liapunov function [8, 9, 78]: this, though correct, is unduly
complicated. Simpler, more reliable mappings began to appear for specific problems
in [5, 6, 7]; some also dealt with inequality constraints [131]. A rigorous mapping
for the most general 0-1 quadratic programming problems onto standard Hopfield
network dynamics was first presented in [53].

Annealing In parallel with the development of rigorous mappings, modified dynamics
were proposed as a way of improving the quality of any valid solutions found by
the network. The most effective of these modifications typically represented some
sort of annealing procedure. Mean field annealing was developed as an approxima-
tion to simulated annealing, and will be discussed from that viewpoint in the next
section. More direct annealing procedures include hysteretic annealing [41], convex
relaxation [112] and matrix graduated non-convexity [5, 6].

A.4 Mean field annealing

The simulated annealing algorithm, described in Section A.2.1, has the undesirable prop-
erty that it is often very slow in operation. For applications where speed of operation
is more important than quality of solutions, mean field annealing (MFA) provides a de-
terministic approximation to simulated annealing with good speed characteristics. Fur-
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thermore, the MFA algorithm maps readily onto parallel architectures for further speed
improvements.

The derivation of the MFA algorithm, like that of simulated annealing, draws heavily
on ideas from statistical physics. The principle theme is to investigate the average statistics
of the simulated annealing process, instead of performing Monte Carlo simulations of the
process itself. However, the analysis is far too complicated unless several simplifying
assumptions are made. It is necessary to make the mean field approximation, which
concerns the average statistics of two coupled spins, and to replace a complex function with
its truncated Taylor expansion around a saddle point. It is these approximations which
differentiate mean field annealing from simulated annealing: the latter, in the (impractical)
limit of an infinitely slow cooling schedule, is guaranteed to find the globally optimum
solution to any properly mapped problem.

Rigorous derivations of the MFA algorithm [5, 117] typically result in a pair of tempera-
ture dependent, coupled, nonlinear equations which are termed the saddle point equations.
The tracking of solutions to these equations through a series of progressively lower tem-
peratures constitutes the MFA algorithm. The solutions are exactly the stable states of a
Hopfield network with hyperbolic tangent transfer functions of appropriate gain, so a Hop-
field network can be used to solve the equations at each temperature: the resulting system
is usually referred to as a temperature annealed Hopfield network. More common, however,
is to use an iterative replacement algorithm [22, 117, 118, 143] to solve the equations: this
is often faster than simulation of the continuous Hopfield dynamics, but is not necessarily
stable. The algorithm is equivalent to an Euler approximation of the Hopfield dynamics
with time-step At = 1 [5, 117]. Even though MFA has its roots in statistical physics,
the more revealing analyses of its performance have drawn on its similarity with Hopfield
networks. In particular, it has been demonstrated that MFA and hysteretic annealing
have many functional similarities [5, 52].

The performance of MFA on certain problems can be improved using neuron normal-
ization [118, 143]: this was originally inspired by an analogy with Potts glasses in statistical
physics [82]. Neuron normalization modifies the MFA algorithm so that constraints of the
form } ;csv; = 1 are explicitly enforced, without the need for a penalty term. This is
particularly useful for mapping travelling salesman and graph partitioning type problems,
though the technique does not have general applicability.

A.5 Combinatorial applications of optimization networks

In addition to the classic benchmarks like the travelling salesman problem, optimiza-
tion networks have also been proposed for the solution of many more practical problems.
Although some of the papers cited below do not describe proper mappings or effective
annealing procedures, they nonetheless provide a useful index of possible combinatorial
applications of optimization networks. These include decoding error correcting codes [30],
image segmentation [57], stereo correspondence [138], load balancing [31, 43], classroom
scheduling [58], multiprocessor scheduling [67], synthesis of digital circuits [141], invari-
ant pattern recognition [21, 96], analogue-to-digital conversion [94, 135], data rearrange-
ment [74], assignment [41, 131, 132], communications link scheduling [112] and implement-
ing the Viterbi algorithm for Hidden Markov Models [7].
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A.6 Continuous applications of optimization networks

Optimization networks can be used for continuous optimization under linear, quadratic or
entropic objectives. The most clumsy way to achieve this is to use the 0-1 network output
to represent real numbers, to a desired precision, using some coding scheme [133, 152]. Far
more straightforward is to allow the continuous network output to represent the solution,
and not use an annealing procedure to force convergence to a 0-1 point. Since optimization
networks traditionally operate within the unit hypercube, it may be necessary to rescale
the problem to be sure that the region of interest lies within this hypercube.

A.6.1 Continuous applications with no hard constraints

The particularly trivial case of a convex quadratic objective is studied in [129]. For convex
objectives there is a unique minimum that can be found by any descent procedure. A
discussion of scaling the problem to ensure that the minimum lies in the network’s range
of operation, and a proof of exponential stability of the network’s equilibrium point, are
presented in [129].

A more sophisticated application is the maximum entropy reconstruction of noisy and
blurred images [76, 102]. Here the neuron outputs are used to represent grey scale values
in the image. An objective function is then constructed with a quadratic term (which
ensures that the reconstructed image is not completely unrelated to the noisy image) and
a logarithmic term (which maximizes the entropy of the reconstructed image, promoting
smoothness). A Hopfield network, running with a nonzero decay parameter and low gain
hyperbolic tangent transfer functions, has a suitable logarithmic term in its Liapunov
function, as well as the usual quadratic term. The relative weighting of the two terms is
a critical factor in performance and has been well studied in regularization theory [137].
Smoothness can also be enforced using alternative regularizers built around differential
operators [152].

In its basic form, regularized image restoration tends to produce over-smoothed images.
This can be overcome by solving the continuous image restoration problem in parallel with
a discrete line process problem. The line process identifies edges in the image and interacts
with the restoration problem so that smoothing is not promoted across edges. The edges
can be conveniently represented by a set of 0-1 variables covering the image in the same way
as the continuous variables do. The whole problem can be elegantly packaged for solution
using a modified Hopfield network or MFA: the u variables converge to give the restored
image, while the v variables are forced to 0-1 values and represent the line process. The
technique has its roots in Geman and Geman’s seminal paper [56], and has been developed
in many directions since then — see for example [25, 54]. A good unification of the various
techniques which emerged is presented in [55].

Optimization networks have also been proposed for the deconvolution of seismic re-
flectivity sequences [148].

A.6.2 Continuous applications with hard constraints

Optimization networks can be used for linear or quadratic programming under linear
constraints, with many useful applications. As discussed in Section A.3, penalty func-
tions provide one way of ensuring constraint satisfaction. Inequality constraints are the
hardest to deal with, requiring either modified networks [33, 99, 135, 144] or slack vari-
ables [131, 132]. For linear programming problems, an optimization network will necessar-
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ily find the globally optimal solution. For quadratic programming, however, the network
will generally converge to only a locally optimal solution, unless the objective function
is convex. Lagrangian networks, described in the next section, provide an alternative
connectionist approach to continuous optimization with hard constraints.

A.7 Lagrangian networks

Related to standard optimization networks are the so-called Lagrangian networks, which
converge to saddle points of the Liapunov function instead of local minima. In [89] an
equivalence is established between the optimal solutions to a constrained problem and
saddle points of an associated Lagrangian function. The constrained problem can therefore
be solved by continuous gradient techniques which search for saddle points, providing a
viable alternative to penalty function approaches. It was pointed out that Lagrangian
gradient search could be implemented on connectionist networks as long ago as 1958 [17].
More up-to-date approaches can be found in [100, 107, 108, 139, 150, 151]. Lagrangian
techniques have been successfully applied to several problems in vision [130, 140, 150].



Appendix B

Derivations, Proofs and Detalils

B.1 Linearized analysis of network dynamics

In this section we derive the linearized network dynamics, finishing with the result stated
in equation (5.11). Similar derivations can be found in [5, 51]. We start with the dynamic
equation (5.5):

- val __ Qb opr val Qb ioPr

Y (TpT ! "I> Tt

topr

Expressing v¥2 and i°P* in terms of their decompositions ((5.8) and (5.10)) along the
eigenvectors of T°P', we obtain

N ) N
ZdixZ = ZOZZ < TOPr — 7’]1) x' + 7Zﬂz
=1 =1
N
_ §a< >x+ﬁ;@-x
S0 "y $ $
Gy = (TPZ - 17) o; + ﬁﬁi = N + ﬁﬁi (B.1)

where A; = (¢X;/T? — ). We can now integrate (B.1) to obtain the linearized dynamics
in equations (B.2) and (B.3). We have to consider the cases A\; = 0 and A; # 0 separately.

(i) X =0 =& = %ﬁi
a; (1) b ¢
@&/a? doy = ﬁ,@i/o dt
Sat) = o+ %ﬂit (B.2)
(ii) X, 75 0 =0 = ;\Z'OJ,' + %ﬂl
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S a(t) = <a +/~\Z’Tp> exp(Ait) —

oB;
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(B.3)
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B.2 ir for the travelling salesman problem

In Chapter 3 we derived a mapping for the travelling salesman problem, concluding that

TP — PoQ
i = 0

T2 = R@R
s = lo®o)

Substituting these expressions into the expression for i°°" (5.4), and drawing on the defi-
nitions of R (3.41) and Q (3.11), we obtain

jopr

R & R)(P©Q)o00)
RPo ® RQo)

(
(
(RPo ® 2Ro)
(
(

O I=I|=I|= 3= I =

RPo © 2(I - L0O)o)
RPo ® 2(o — 0))

(B.4)

Hence i°P* = 0 for the travelling salesman problem. A similar proof can be found in [5].

B.3 i and x™ for the Hamilton path problem

In Section 3.5 we derived expressions for TP, i°°, TV® and s for the Hamilton path
problem. The expressions were identical to those for the travelling salesman problem (see
Appendix B.2), with the exception of a slightly modified matrix Q (3.44). We begin our
analysis by obtaining Kronecker product expressions for i°°" and T°P":

opr  — TvalTops + Tvaliop
= (ROR)(P®Q)(0@o)
= 1(RPo® RQo) (B.5)

Topr  — TvalTopTval
= (ReR)(P2Q)(ROR)
— (RPR®RQR) (B.6)

It is possible to use the properties of Kronecker products to relate the eigenvectors of T°P"
to those of RPR and RQR. We shall find it useful to start by looking at the eigenvec-
tors hy of Q, which are easily verified to be

ke

[ht]; = sin < ) ,  d,ke{l...n} (B.7)

n+1

with corresponding eigenvalues

k
pr = 2 cos <n——|7—71>’ ke{l...n} (B.8)
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Now, those hy with even k (ie. those with & = 2j for some integer j) exhibit the prop-
erty S, [hy]; = 0, s0

and Rhgj = hgj (BlO)

It follows that hs; is also an eigenvector of RQR, with the same eigenvalue pus;, since
RQRh;; = RQhy; = 1i2;Rhy; = piz;hy;

This accounts for about half of the eigenvectors of RQR. The others seem to be more
difficult to derive analytically, though experiments reveal that the eigenvector of RQR
with the largest positive eigenvalue is invariably one of those which is also an eigenvector
of Q: let us call this eigenvector hpy,y and its corresponding eigenvalue pmax. There is
also strong experimental evidence that all the eigenvalues of RPR are nonnegative; this
seems to hold for all negated distance matrices P under a Euclidean distance metric. We
can now use the properties of Kronecker products to state that

xMa¥ = ¢(Wmax & hmax) (Bll)

where W,y is the eigenvector of RPR with the largest positive eigenvalue, and ¢ is a

* are mutually

normalizing constant. It transpires that, for this problem, i°’" and x™?
orthogonal, since

XmaxT jopr

(Wmax @ hmax)T(RPO ® RQO)

(WmaxTRPO) (hmaxTRQo)

SIS-3IS3IC

= (WmaXTRPO) (hmaxTQo)

_ OMmax( TRPO)(hysel o)
T

=0 (B.12)

B.4 E°* for the Hamilton path problem

Recall that the auxiliary linear problem objective is given by EalP = —jorrTy (5.18). For
the Hamilton path problem, we substitute for i°P" using equation (B.5):

Bl = —1(6"PR® o’ QR)v
_ % (OTP ® OTQ)Tvalv
= —%(OTP © o Q)(T"v + s) + terms independent of v

For v lying within P, we can substitute v for (T"alv + s). Doing this, and dropping the
terms independent of v, we obtain

Falp — —%(OTP & oTQ)V
= - % Vec(oTQVPo) where v = vec(V)
= 1[(Qo)"V(-Po)]
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B.5 Details for travelling salesman experiments

The experiments reported in Section 6.6 were conducted with the aim of obtaining the best
possible solution quality at the expense of execution time. To this end, slow annealing
schedules and small time-steps were used in the network simulations. The details are
summarized below.

Steepest descent network

The algorithm described in Section 3.4 was used to simulate the steepest descent dynamics
running under the mapping for the travelling salesman problem given in Section 3.5. The
time-step at each iteration was chosen to be sufficiently small so that no further reduction
of the time-step affected the perceived dynamics; in this way, the simulation is assumed
to be modelling the continuous dynamics reasonably well. In practice, this was achieved
by arranging for ||Av*®|| to be less than 0.05]|v|| at each iteration. Hysteretic annealing
was used to improve the solution quality. The annealing parameter v was initialized with
a large negative number, so that v stabilized near the point v¥® = 0. ~ was subsequently
increased by a small amount (typically 0.01) at each time-step, until motion of v was
detected. The motion criterion was that ||Av|| > ¢ for each iteration, where ¢ = 0.005
typically. With v moving, v was held constant until [|[Av|| < € again, at which point
was incremented to produce new motion in v. The simulation was stopped when all of
the elements of v were within 0.1 of 0 or 1, and the corresponding matrix V was a valid
permutation matrix.

Mean field annealing

The neuron normalization operation [118, 142] was used to enhance the performance of
the MFA algorithm. With neuron normalization, row constraints for a permutation matrix

n

dVij=1, ie{l...n} (B.13)
7=1

are implicitly enforced using an update rule

oK
exp(— vy |,

oK
> k=1 €Xp(— Vir

/17)
/T7)

The remaining column constraints must be enforced using a penalty term built into the
objective function E. For the experiments reported in Section 6.6, the objective function
used was

Viiligr = t,je{l...n} (B.14)

n n 2 n n
perrlad (S1-1) - laY 3w 1

=1 \i=1 i=1 j=1
where E°P is set for the travelling salesman problem as in Section 3.5, the ¢; term is
the penalty function to force the column sums of V towards 1, and the ¢o term is a
fixed hysteretic annealing term! which stabilizes the algorithm and makes E more con-
cave, thus promoting convergence to a hypercube corner. For the Euclidean problems,

'Because |[V]| has the same value at all valid solution points, the more general hysteretic annealing
term 57 377, (Vi; —0.5)* is not required.
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setting ¢; = 1.2 and ¢ = 0.8 was found to give good quality solutions with relatively few
invalid tours; for the random problems, the weightings used were ¢; = 1.5 and ¢ = 1.0.

The rows of V were updated using equation (B.14) asynchronously: that is, for each
iteration, a row was selected at random, and then all the elements in that row updated
using (B.14). It has been noted in [117] that MFA is much easier to stabilize using asyn-
chronous update. As with the steepest descent network, a cautious annealing schedule was
used. TP was initialized with a sufficiently large positive number so that V stabilized near
its starting position. 77 was subsequently reduced by a small amount (typically 0.001) at
each time-step, until motion of V was detected. The motion criterion was that [|[AV|| > ¢
at each iteration, where ¢ = 0.005 typically. With V in motion, 7? was held constant
until ||[AV]|| < € again, at which point 7% was reduced to produce new motion in V. The
simulation was stopped when all of the elements of V were within 0.1 of 0 or 1, with V
being a valid permutation matrix.

Simulated annealing

The simulated annealing code for the travelling salesman problem was taken directly
from [119], with a slight modification to allow problem specification in terms of a distance
matrix instead of a coordinate list: this allows random problems to be solved, as well as
Euclidean ones. The annealing schedule is described in [119, p. 346], and is sufficiently
cautious to obtain excellent results over the test problems.

3-opt search

The 3-opt search algorithm was implemented directly from the pseudo-code in [97, p. 2266],
without the tour reduction procedure, which makes little difference for small problems.
The results in Tables 6.1 and 6.2 were obtained using a single pass through the algorithm
for each problem, starting from random tours. For small problems, it is suggested in [97]
that there is little point in performing multiple passes through the algorithm, starting
from different random tours, since the 3-opt tours so obtained are likely to be identical.

B.6 The vertices of knapsack polytopes

In this section we prove that the vertices of knapsack polytopes have at most one non-
integral coordinate. A knapsack polytope P is defined by P = {v | vIx < C, 0 < wv; < 1}.
Consider a point v within P with at least two non-integral coordinates vy and v;. Defining
the vector év to have zero elements except for dvy, = € and dv; = (—exy/a;), where € is an
arbitrarily small scalar, it is clear that adding év to v does not change the value of v1x,
and does not take either v or v; out of their allowed range of 0 to 1, since both originally
lie between 0 and 1 and € is arbitrarily small. Hence (v + év) also lies within P. Since €
was not constrained to take any particular sign, it is also clear that (v — §v) lies within P.
Hence v lies on at least a one-dimensional face of P, with direction vector dv. Since a
vertex of P is necessarily a zero-dimensional face of P, it follows that v cannot be a vertex
of P. Hence any vertex of P has at most one non-integral coordinate.



Derivations, Proofs and Details 120

B.7 Tabu dynamics for stationary v*

Here we consider v* trapped at a vertex v} of Pt from time ¢y. In these circumstances, it
is possible to analytically integrate the tabu dynamic equations, allowing us to judge the
speed of the dynamics and place bounds on the variables «, 8 and € to guarantee escape
from the vertex.

Suppose at time £y the tabu variables have values 8 = 6y and h = hg. Then integrating
equations (7.10) and (7.11) gives

0(1) = %—e_a(t_to) (?—oo) (B.16)
ho) = —2evg) +e ) (Levg) + o) (B.17)

The resulting gradient of F at v} is
20¢

2
— VE = TPyt iPt 4 200 (¢ — vi) 4 ¢@(710) (ho + 6ovi + ﬁ(v;r — c)) (B.18)
a a
where we have substituted the expression for f(v(}) from equation (7.6). We see that —VFE

has a limiting value as t — oo, specifically

) 2

— VEo = TPtvi 4 i°PF 4 ﬁ(c —v}) (B.19)
o

To guarantee escape from the vertex, we require that —a’VE_, > 0 for some direction a

which does not lead out of P*. The only such direction we can reliably identify is (¢ —v),

since ¢ is defined as being within Pt and P* is convex. Assuming a linear objective F°P,

so that T°PT = 0, we require

(c —vHTiort 4 %ﬂé”c —vi[*>0 (B.20)
The worst-case scenario is when i°P* is in the direction —(c —v}), in which case the escape

condition becomes copt
A i (B.21)

a = 2fle—vi]
Hence the relevant quantity governing the ability to escape from a vertex is the ratio f¢/a.
Equation (B.21) indicates that it is desirable to locate the vector ¢ as far from any vertex
as possible. Some vector ¢ within P* can be found in polynomial time using Khachiyan’s
method [123], or more practically one of the projection techniques [4, 37, 77, 109]. Once
located, ¢ can also serve as a starting position for vt. Often, however, the most con-
venient choice of ¢ is the vector s (see equation (3.20)), which is a natural product of
the mapping process and lies within Pt for many classes of problem. For the knapsack
problem, using ¢ = s, it is possible to demonstrate that the worst-case escape condition is
approximately

ge _ [l

o 2
Finally, a note about the speed of the tabu search dynamics. For low values of «,
the illustration in Figure 7.3 indicates that most of the search time is spent with v*
trapped at a vertex and the tabu variables § and h changing to free v* from the vertex.
Equation (B.18) indicates that this process takes a characteristic time of 1/, and so we

(B.22)

conclude that the overall speed of the system is approximately proportional to a.
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B.8 Details for knapsack experiments

For the knapsack experiments described in Section 7.2, a steepest descent network was
used to find the LP-relaxation solution v*. This is a fairly easy case to simulate. Since
the objective is linear, annealing is neither required nor beneficial. The algorithm in
Section 3.4 was run under the mapping for the knapsack problem given in Section 3.5,
using a sufliciently small time-step At, such that reducing At further did not change the
convergence properties of the system. v*t was initialized at the point vt = s, which
always lies within P* for knapsack problems. When [|[Av*|| < 0.001 at any iteration, it
was assumed that vt had converged to v*.

The tabu search experiments in Section 7.3 were much more difficult to perform. Sim-
ulation of the coupled equations (2.10) and (7.10)—(7.11) is not straightforward. In partic-
ular, a simple Euler approximation is not likely to mimic the behaviour of the continuous-
time system. A proper simulation would have to be developed through a rigorous discrete-
time analysis of the system. To avoid this, our simulations deliberately employed a low
value of «, which causes the dynamics of @ and h to be orders of magnitude slower than
those of v* (see Appendix B.7). We can therefore regard 6 and h as constant when v+
is moving, and employ the standard simulation algorithm for steepest descent dynamics
described in Section 3.4. As before, vt was initialized at the point vt = s, and a small
time-step was used. When v* came to a halt, that is when |[[Av*| < 0.001 at any iter-
ation, it was assumed that v* was trapped at a vertex of P*. Equations (B.16)—(B.17)
were then used to predict future values of 6 and h, using a coarse-to-fine search for the
time ¢t when vt escapes from the vertex. § and h were then updated to their new values
at time ¢, and the steepest descent algorithm was resumed to advance vt to the next
vertex of P*. This provides an accurate and efficient simulation algorithm for tabu search
with small «, though a hardware implementation would require a larger value of o to
run at reasonable speed. The tabu search parameters used for the knapsack experiments
were o = 0.01, § = 1.0 and ¢ = 0.1. The network’s output was monitored throughout to
spot any 0-1 points visited. Owing to the discrete nature of the simulation it was necessary
to set a margin ¢, such that v; is considered integral if it lies within ¢ of 0 or 1. For the
experiments in this thesis ¢ was set to be 0.05.
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Kronecker Products

At several points in this thesis we make use of Kronecker products to conveniently map
matrix representations of problems into vector representations. In this appendix we briefly
review Kronecker product notation, and present some results which are used in the mathe-
matical analysis of problem mappings. For more on Kronecker products, along with proofs
of the results, see [62].

Let A ® B denote the Kronecker product of two matrices. If A is an » X n matrix,
and B is an m X m matrix, then A @ B is the nm X nm maltrix given by:

AllB A12B . AlnB
AoB_ | AnB AnB ... 4B ©1)
AuB A,B ... A,,B

Let vec(A) be the function which maps the n x m matrix A onto the nm-element vector a.
This function is defined by:

a=vec(A) =[Ai1, A2, .-, Ani, A12, A2, -, Angy oo AL, Ao,y - -7Anm]T (C.2)

Then the following identities hold:

trace(AB) = trace(BA) (for AB and BA both square) (C.3)
(AoB)T = ATgBT (C.4)
(A2B)(X®Y) = (AX®BY) (C.5)
trace(AB) = {VeC(AT)}Tvec(B) (for A and B both n xn)  (C.6)
vec(AYB) = (BT @ A)vec(Y) (C.7)

If w and x are n-element column vectors, and h and g are m-element column vectors,
then

(woh)(x@g) = (w'x)(h'g) (C.8)
If the n X » matrix A has eigenvectors {wy ...w,} with associated eigenvalues {71 ...7v,},
and the m x m matrix B has eigenvectors {h;y...h,,} with corresponding eigenvalues
{#1 ... ptm }, then the nmxnm matrix A@B has eigenvectors {w;®h;} with corresponding

eigenvalues {v;u;} (1 € {1...n},j € {1...m}).
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