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Abstract

For several years now there has been much research interest in the use of Hopfield networks
to solve combinatorial optimization problems. Although initial results were disappointing, it
has since been demonstrated how modified network dynamics and better problem mapping
can greatly improve the solution quality. The aim of this paper is to build on this progress
by presenting a new analytical framework in which problem mappings can be evaluated with-
out recourse to purely experimental means. A linearized analysis of the Hopfield network’s
dynamics forms the main theory of the paper, followed by a series of experiments in which
some problem mappings are investigated in the context of these dynamics. In all cases the
experimental results are compatible with the linearized theory, and observed weaknesses in
the mappings are fully explained within the framework. What emerges is a largely analytical
technique for evaluating candidate problem mappings, without having to resort to the more
usual trial and error.

1 Introduction and Outline

Ever since the Hopfield network was first proposed as a means of approximately solving NP-
complete combinatorial optimization problems [9], there has been considerable research effort to
improve the network’s performance, which at first was fairly disappointing [18, 10]. Most of
this effort has been directed towards improving the reliability with which the network finds valid
solutions, while at the same time developing various annealing schedules to help prevent entrapment
in local minima of the objective function and force eventual convergence to a hypercube corner.
Perhaps the most successful such modification has been the Mean Field Annealing algorithm with
neuron normalization [13, 16], which has proved to be very successful with the classic benchmark
Travelling Salesman and Graph Partitioning problems [13, 12, 17], as well as with some more
practical scheduling problems [6]. The considerable improvement in performance is at the expense
of analogue hardware implementability: the Mean Field Annealing dynamics employ a recursive
update rule, as well as a neuron normalization division operation, which cannot be performed
by the analogue circuit implementation of the original Hopfield network [8]. However, the Mean
Field Annealing algorithm is still highly parallel and could greatly benefit from implementation
in parallel digital hardware; even when run on conventional serial machines, it remains highly
competitive with the other contending optimization techniques [13, 17].

In addition, some researchers have persevered with the original network dynamics, demonstrat-
ing that better problem mapping can greatly improve the overall quality of solutions. One key step
towards this improvement lay in the realization that, for a broad class of problems, all the points in
the network’s output space corresponding to valid solutions lie on a particular affine subspace [3].
Using this fact, the validity constraints can be grouped together into a single penalty term which
no longer frustrates the optimization objective while the network state vector lies on this ‘valid

!Email: ahg/svb10/rwp @eng.cam.ac.uk



subspace’. The new mapping has been applied with considerable success to the Travelling Salesman
problem [3, 1], a point matching problem in pattern recognition [5] and a novel implementation of
the Viterbi algorithm for Hidden Markov Models [2].

In this paper, we use the structure of the valid subspace to shed new light on the relationship
between the network’s dynamics and the problem mapping. In Section 2 we introduce the matrix
notation relevant to the rest of the paper. In particular we make extensive use of Kronecker (or
Tensor) products [7], which simplify the mapping mathematics considerably. In Section 3 we review
the mathematical background of the subject in hand, introducing the form of the valid subspace
along the way. Section 4 contains a linearized analysis of the network’s dynamics in the context
of the valid subspace. We identify a matrix A, the eigenvectors of which are most influential in
the convergence of the network’s state vector towards a hypercube corner. We also identify a
vector b which is solely responsible for the initial direction of the state vector. In Sections 5 and 6
we test this theory against two different classes of optimization problem, namely the Euclidean
Hamilton path problem and the point matching problem. For each case we associate b with a
linear optimization problem, which we call the ‘auxiliary linear problem’: the relationship between
the auxiliary linear problem and the parent optimization problem has considerable bearing on the
eventual quality of solutions obtained. In both cases the network’s behaviour is found to be as
predicted by the theory, and observed shortcomings of the problem mappings are fully explained
within this theoretical framework. Section 6 also describes an illustrative experiment in invariant
pattern recognition which demonstrates the success of the Hopfield network in solving the point
matching problem. Finally, Section 7 presents a brief discussion of the results of the paper, as
well as some general conclusions. The Appendices contain ancillary information of relevance to the
central material of the paper.

2 Notation and Definitions

2.1 Kronecker Product Notation and Matrix Identities

Let AT denote the transpose of A.

Let [A];; refer to the element in the i*" row and j*' column of the matrix A.

Similarly, let [a]; refer to the i*! element of the vector a.

Sometimes, where the above notation would appear clumsy, and there is no danger of ambiguity,
the same elements will be alternatively denoted A;; and a;.

Let the modulus of an n x m matrix A be defined as follows:

mﬂ:iim%:wﬂﬂ@ (1)

Let A ® B denote the Kronecker product of two matrices. If A is an n x n matrix, and B is an
m X m matrix, then A ® B is an nm X nm matrix given by:

AllB AlgB AlnB
AQB = Ang AQQB Aan (2)
A,1B A2B ... A,,B

Let vec(A) be the function which maps the n x m matrix A onto the nm-element vector a. This
function is defined by:

a= VeC(A) = [A11,A21, ey Apt, Arg, Aga, o Ay Al Ao, aAnm]T (3)
Throughout this paper we make use of the following identities (see [7] for proofs):

trace(AB) = trace(BA) (for AB and BA both square) (4)
AoB) = ATeoB” (5)



(A@B)X®Y) = (AX®BY) (6)
trace(AB) = [Vec(AT)]T vec(B) (for A and B both n x n) (7)

vec(AYB) (BT @ A)vec(Y) (8)

If w and x are n-element column vectors, and h and g are m-element column vectors, then
(woh)!(x@g) = (w'x)(h'g) (9)

If the n x n matrix A has eigenvectors {w; ...w, } with corresponding eigenvalues {~; ...v,}, and
the m x m matrix B has eigenvectors {h; ...h,,} with corresponding eigenvalues {u; ... gy, }, then
the nm X nm matrix A ® B has eigenvectors {w; @ h;} with corresponding eigenvalues {v;y;}

(fe{l...n},je{l...m}).

2.2 Other Notation and Definitions

Let I” be the n x n identity matrix.
Let o” be the n-element column vector of ones:

[0'li=1 (Gefl,... n} (10)

Let O™ be the n x n matrix of ones:

[0"];;=1 (i,j€{l,...,n}) (11)
Let 6;; be the Kronecker impulse function:
1 i i=3
bii —{ 0 if i (12)

Let R™ be the n x n matrix given by
R"=1I"- 10" (13)

Multiplication by R™ has the effect of setting the column sums of a matrix to zero:

Z[R”a]i = Z[a — Loma); = o0""[a— 1O"a]
i=1 i=1
= o"a- L(o"o"0")a=o0"Ta-0""a=10 (14)

Another way of considering R” is as a projection matrix which removes the o” component from
any vector it pre-multiplies, since

R"0" =(I" = 10")o" = 0" — Lno" =0 (15)

Also note that since R” is a projection matrix, R?R” = R”.

3 Background and Introduction to the Valid Subspace

A schematic diagram of the continuous Hopfield network [8] is shown in Figure 1. Neuron ¢
has input [u];, output [v];, and is connected to neuron j with a weight [T];;. Associated with each
neuron is also an input bias term [i?];. The dynamics of the network are governed by the following
equations:

= —%u+Tv+ib (16)
[vl; = g([ul) (17)
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(a) Non-linear threshold functions constrain-
ing v to the unit hypercube.

(b) The change in u is specified by the differ-
ential equation (186).

Figure 1: Schematic diagram of the continuous Hopfield network.

[v]; is a continuous variable in the interval 0 to 1, and g([u];) is a continuous function which
constrains [v]; to this interval, usually a hyperbolic tangent of the form

1
= 1+ exp(—[uli/T)

9([uls) (18)

The network has a Liapunov function [8]

[vl:
E=-vITv - (i*Tv+ ;Z/O g~ (V) dV (19)

The network was subsequently proposed as a means of solving combinatorial optimization
problems which can somehow be expressed as the constrained minimization of

F°P = —%VTTOPV — (iOp)TV ([V]Z € {Oa 1}) (20)

The idea 1s that the network’s Liapunov function, invariably with 7 — oo, is associated with the
cost function to be minimized in the combinatorial optimization problem. The network is then run
and allowed to converge to a hypercube corner, which is subsequently interpreted as the solution of
the problem. Hopfield and Tank showed in [9] how the network output can be used to represent a
solution to the Travelling Salesman problem, and how the interconnection weights and input biases
can be programmed appropriately for that problem: this process has subsequently been termed
‘mapping’ the problem onto the network. The same authors later showed how a variety of other
problems can be mapped onto the same network, and reported on the results of using analogue
hardware implementations to solve the problems [15].

The difficulties with mapping problems onto the Hopfield network lie with the satisfaction of
hard constraints. The network acts to minimize a single Liapunov function, and yet the typical
combinatorial optimization problem requires the minimization of a function subject to a number
of constraints: if any of these constraints are violated then the solution is termed ‘invalid’. The
early mapping techniques coded the validity constraints as terms in the Liapunov function which
were minimized when the constraints were satisfied:

E = E% 4 ¢, ES, 4 ¢ By + ... (21)

The ¢; parameters in equation (21) are constant weightings given to the various energy terms. The
multiplicity of terms in the Liapunov function tend to frustrate one another, and the success of the
network is highly sensitive to the relative values of the ¢; parameters; it is not surprising, therefore,
that the network frequently found invalid solutions, let alone high quality ones [10, 18].

In [3] an eigenvector and subspace analysis of the network’s behaviour revealed how the E°P and
E™ terms in equation (21) can be effectively decoupled into different subspaces so that they no
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v - (1) Projection of v onto valid subspace

——

@
v=s+Tvdy

(2) Nonlinear ‘symmetric ramp’ threshold
functions constraining v to the unit hy-

i

percube.
* ® (3) Change in v given by the gradient of
) L op o
i V=T oPy+jo the OptlIn.lzathIl energy term E°P | with
Av = Atv

Figure 2: Schematic diagram of the modified network implementation.

longer frustrate one another. For a wide variety of problems, it was realized that all the hypercube
corners corresponding to valid solutions lie on a particular affine subspace with equation

v=Tvy g (22)

where TV2! is a projection matrix (ie. T'3T 3 = TVa!) and T'2!s = 0. This subspace was termed
the valid subspace. The constrained optimization can now be re-expressed using only a single
constraint term as follows [1]:

E=E%+Leg|v— (T +5)|° (23)
Expanding equation (23) we obtain, to within a constant

E=E°% —co (3vI(T™ —T)v +s"v) (24)
from which we see that the Hopfield network parameters must be set as follows:

T = T4 co(T% — 1) (25)
iP = %P4 ¢gs (26)

In the limit of large ¢y, v will be pinned to the valid subspace throughout convergence, and
the network dynamics will minimize F = E°P as required. The resulting system can be simulated
with increased efficiency on a serial machine using a modified network [1] which directly enforces
the validity constraints — see Figure 2.

The top loop contains a projection operator (1) which directly confines v to the valid sub-
space. The nonlinear operator (2) ensures that v stays within the unit hypercube, by applying a
‘symmetric ramp’ threshold function to each of the elements of v:

Vi = eVl (27)

1 if [v]; > 1
where g([v];) = [vli f0<[v]i<1 (28)
0 if[v]; <0

Operation (3) in the bottom loop updates v using the dynamic equation
Av = VAt = (T°Pv +1°P)At (29)

The dynamics expressed in (29) minimize E°P by steepest descent. Precise implementation details
relating to the modified network can be found in [1]. Broadly speaking, however, the mode of
operation is that a single traversal of the bottom loop, (3), is followed by several traversals of the
top loop, (1) & (2); the whole cycle is repeated continually until v has converged to a hypercube
corner.



4 Linearized Analysis of the Network Dynamics

In this section we carefully analyze the operation of the network in the early stages of convergence.
In particular, we consider the operating region in which v is contained within the bounds of the
unit hypercube, and has not yet come to any of the hypercube’s faces. We start by deriving
an expression for v'3 the component of v (as defined in equation (29)) which lies in the valid
subspace. Since v is constantly confined to the valid subspace (ie. v = T"3v +s), any component
of v orthogonal to v® is continually suppressed: hence it is v'® not v, which best characterizes
the network’s overall dynamics.

vl = Tvaly = TV(TPy 4 i°P)
= TV (TP(T"lv +5) + i)
TVATPTvly 4 TVl (TPs + i°F) (30)

We see that v'2 is made up of two parts, a constant term, T'3(T°Ps + i°P), and a term which
depends on v, T TPT"2ly, Let us simplify these expressions be writing

TvalTopTval - A (31)
T3 (Ts +i°®?) = b (32)

which gives
vial = Av+b=Av'3 +b where v'® = TVy (33)

In Section 5.4 we will note that with v confined to the valid subspace, E°P may be expressed (to
within a constant) as

EP=_1vIAv —b'v (34)
It is apparent, therefore, that the dynamics v = v'® = Av+b simply perform steepest descent on

E°P within the valid subspace, which is consistent with our goal of finding a valid solution which
minimizes E°P. The general solution of (33) can be expressed by means of the matrix exponential

(see [14]):
t
vval(t) = eAtvgal +/ AU=T)] 47 (35)
0

where v'® is the value of v'3! at time t = 0, usually set to be a small, random vector. Rewriting
the matrix exponentials as power series gives

1 kv (N
vel(t) = Z—A vial 4 ZiA bdr

Suppose A has eigenvalues A1, Ao, ..., Ay, with associated normalized eigenvectors uy, us, ..., un.
We will need to distinguish between the zero and non-zero eigenvalues of A, so define the set Z
such that A; = 0 for i € Z and A; # 0 for i ¢ Z. Let v* v'@ and b be decomposed along A’s
eigenvectors as follows:

N N
vval — Z vy vval Z oju; , b= Z bzuz (36)
i=1 i=1
Then we have
N N
1kkvgal = Z:OZ/\fu2 , Afb = sz)‘fuz
i=1 i=1



giving

00 tk N 00 tk-l-l N
k=0 " i=1 k=0 ( + ) i=1
N © kyk 4y, SO gk41yk+1 k+10k
_ SN UA biwg 17T N tF+10
= Dom) D 5D k+ 1) +Zb“22 k+1)
i=1 k=0 i¢Z k=0
N o 0 LEvE
= Ze’\'tomz + Z o ( t/:il - 1) + Zblult
i=1 igz 7t \k=o0 i€2
N u;
= Z OZ'I_IZ + Z Z : ( Ai t_ ) —+- Z biuit (37)
i=1 i¢Z i€2

Equation (37) is completely general in that it holds for arbitrary A, b and v'®. However,

we can simplify the expression if we define A and b as in equations (31) and (32). In this case
the eigenvectors of A with corresponding zero eigenvalues are confined to spanning the invalid
subspace (unless T°Pv'a! = 0 for some v'2 in the valid subspace, which does not happen for any
of the TP considered in this paper), whilst b lies wholly within the valid subspace, so b; = 0 for
i € Z. Equation (37) subsequently becomes

val

Yoy bi (Mt 1) (38)

g2 Ai

||Mz

It will be revealing to examine the expression for v'2!(¢) given by equation (37) in the limits of
small and large ¢. For small ¢, we make the approximation

which gives
N

Vval(t) ~ Z [Oz(]- + )\zt) + bzt] u;

i=1

Further noting that for a small, random v the o; are often small in comparison with the b;, we
get

N

vel(t) m 1Y biui =tb (39)

i=1
So it is apparent that v¥® initially takes off in the direction of the vector b. In the limit of large ¢,
equation (37) indicates that v'3 will tend towards the eigenvector of A corresponding to the
largest positive eigenvalue (let us call this eigenvector umay, the corresponding eigenvalue Apax,
and the various weighting terms in this direction vmax, 0max and bmax). It should be noted at this
point that the dominance of uy,,x is enhanced by the action of Matrix Graduated Non-Convexity,
a scheme proposed in [1] to prevent entrapment in local minima and force eventual convergence to
a hypercube corner (see Appendix B). Of course, before the large ¢ limit is approached v would
have impeded on one of the hypercube faces, and the linear analysis above would no longer be
valid. However, it is reasonable to assume that the vectors b and uy.x are the main influences
on the initial evolution of v' an assumption which will be justified experimentally in later
sections. We would also expect that when v has successfully converged to a valid hypercube
corner, the associated v'® will invariably contain a significant component in the direction of upyay;
this expectation will also be experimentally verified in later sections of this paper.



5 The Euclidean Hamilton Path Problem

5.1 Problem Formulation
The Euclidean Hamilton Path problem can be expressed as follows:

Given n cities, all of which have to be visited once only on a single journey, find the
best order in which to visit them such that the total journey length is minimized.

As such it is very similar to the Euclidean Travelling Salesman problem, except that in the latter
a closed tour is specified. It is therefore not surprising that the mathematical problem formulation
and the mapping onto the Hopfield network are also very similar [1].

The solution to the Hamilton Path problem may be expressed by means of an n-element vector
p: suppose the cities are originally presented in an ordered list of Cartesian coordinates, C say.
C is an n x 2 matrix, in which [C];; is the z-coordinate of city j, and [C];» is the y-coordinate of
the same city. Let [p]; = j if the city initially in list position j is to be placed in position ¢ of the
journey. We must also enforce

[P]z#[P]J (z,]E{l,,n},z;é]) (40)

if all the cities in the original list are to be present in the final journey. The reordering may be
achieved directly by means of an n x n matrix operator V(p), which is constructed as follows:

Vol ={ 5 ()

With the above definition of V(p), the n x 2 matrix C’ = V(p)C contains the same city coordi-
nates as C, but reordered in the manner defined by p. Note that V(p) is a permutation matrix:
its elements are all either 1’s or 0’s, and each row and column contains only a single 1. Expressed
mathematically, this means:

[Vp):;; € {1,0} (42)

Y V)= Z[V(P)L’j = 1 @Gie{l....n}) (43)

i=1

By making use of the property of the matrix R" given in equation (14), these conditions may be
more neatly expressed as [1]:

[V(p)li; € {10} (44)
V(p) = R"V(p)R"+S (45)
where § = 10" = %OHOHT (46)

We must now find an expression (involving V(p)) for the total path length of a journey specified
by ordering p. Let P be the n x n matrix of negated inter-city distances given by

[P]i; = — (distance between cities ¢ and j) (47)
Let Q be the n x n matrix given by
[Qlij = 6j-1i+ 841 (H7€{l...n}) (48)

Following this specification, for n = 5, Q would be

OO OO
OO = O =
O = O = O
_ O = OO
O = O O O



Then the path length corresponding to ordering p is given by

d(p) = —} trace [V(p)PV(p)" Q] (49)
and the optimization problem may be concisely expressed as
ngn d(p) where d(p)= —1 trace [V(p)PV(p)TQ] (50)

5.2 Mapping the Problem onto the Hopfield Network

Having established the mathematical problem formulation, it is now necessary to show how the
problem may be mapped onto the Hopfield network for solution. The converged state vector of
this network, call it v(p), is used to represent the desired permutation matrix, V(p), by way of
the vec function:

v(p) = vec(V(p)) (51)
Hence, if there are n cities in the problem, a network with N = n? units is required to find the
reordering p. We must also define a matrix, V, which is the matrix equivalent of the unconverged
state vector v:
v = vec(V) (52)
Consider what happens if we confine V so that

V=R"VR" +§ (53)

If we subsequently force v into a hypercube corner, ie. if we enforce [V];; € {1, 0}, then it is clear
that 'V will satisfy the conditions for V(p) in equations (44) and (45), and will therefore represent
a valid solution to the combinatorial optimization problem.

Equation (53) corresponds to a valid subspace of the form given in equation (22). The param-
eters TV and s are derived as follows:

\% = R*VR"+S
< vee(V) = vec(R*VR™) + vee(S)
< vee(V) = (R*"@R")vec(V)+ vec(S) (using (8))
S v = (R"@R")v + vec(S) (using (52))

Hence, by comparison with (22), we have

Tval — R» ® R” (54)
s = vec(S)=L(o"®o") (55)
Note that T¥ is a projection matrix, since
TvalTval — (Rn ® Rn)(Rn ® Rn) — (Ran ® Ran)
(Rn ® Rn) — Tval (56)

In this problem we are attempting to minimize d(p), the path length, with respect to the point
ordering p. The Hopfield network minimizes E°P, so if we set E°P = d(p), then the Hopfield
network will carry out the desired optimization. We are now in a position to derive the form of
the matrix T°P:

E°P = d(p
= —ftrace [V p)PV(p Q]
= 2trac V(p) QVpP] 4))

( (4)
— 1 [vee(V(p))]” vec(QV(p)P) (using (7))
(V( ( (8)
( (

—_ o~

using

—1 [vec(V(p)]" (P © Q)vee(V(p)) 8))
Lv(p)" (P © Q)v(p) 51))

using

using
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By comparison with (20), we see that

ToP (P®Q) (57)
ir = 0 (58)

5.3 Applying the Linearized Analysis of the Network Dynamics

If we are now to analyse the initial evolution of the vector v, then we need to derive expressions
for the vectors b and unax, which we have identified as the main influences on the initial direction
of v. Now,

b = Tvalpopg 4 valjop

= LR"@R")(P®Q)o" ®o")

= L(R"Po"@R"Qo") (using (6)) (59)
A — Tpvalpoppval

= (R"@R")(P2Q)(R"@R")

= (R"PR"®@R"QR") (using (6)) (60)

As we saw in the earlier section on Kronecker products, we can relate the eigenvectors of A to
those of R"PR"™ and R"QR". We shall find it useful to start by looking at the eigenvectors of
Q, which are given by

kmi

[hy]; = sin <n+1> (i,k€{l...n}) (61)

with corresponding eigenvalues

j = 2cos (n"fJ (ke {l...n}) (62)

The proof is as follows:

[Qhy], = (L:f)% (L;m

km . k1
= 2cos sin
n+1 n+1
km
= 2cos (n—l— 1) [hk]i

The first line of the proof holds even for i = 1 and ¢ = n, since sin(0) = sin(kw) = 0. Now, those
hj with even k (ie. with k& = 2j) exhibit the property > -, [hy]; = 0, and so

hio" = 0 (63)
and Rnhzj hgj (64)

It can readily be shown that hy; is also an eigenvector of R?QR”, with the same eigenvalue p;,
since

R"QR"hy; = R"Qhy; (using (64))
= p2;R"hy;
= pajhy; (using (64))

This accounts for about half of the eigenvectors of R?QR"™. The others seem to be more difficult
to derive analytically, while experiments indicate that they are almost, but not exactly, sampled
sinusoids in form. The experiments also reveal that the eigenvector of R?QR"™ corresponding to
the largest positive eigenvalue is invariably one of those which is also an eigenvector of Q: let us

10



call this eigenvector hp,x and its corresponding eigenvalue pimax. Another interesting fact brought
to light by the experiments is that all the eigenvalues of R?PR” are nonnegative; this seems to
hold for all negated distance matrices P under a Euclidean distance metric. We can now use the
properties of Kronecker products to state that

Umax — a(wmax ® hmax) (65)

where Wiy 1s the eigenvector of R”PR” corresponding to the largest positive eigenvalue, and 6 is
a normalizing constant. It transpires that, for this problem, b and up,y are mutually orthogonal,

e Unax' b = L(Wiax @ hyax)T (R*Po” @ R"Qo™)
= L(WmaxTR"P0")(hmax' R Qo™) (using (9))
= L(Wmax” R"P0")(hpayx Qo") (using (64))
= Hmax(yw TR"P0™)(hymax' 0")
= 0 (using (63))

Referring back to equation (37), this means that by, = 0, and so the evolution of v'@ in the
direction of up .y is governed solely by opyax, which has random sign. We have already established
that v'2! evolves with a very significant component in the direction of Wy, and now we see that
the sign of this component depends wholly on the random opay, and so we conclude that v can
follow one of two very different paths, depending on the random starting vector v’ It is hoped
that the two paths will lead to the two optimal solutions, corresponding to traversing the shortest
path in opposite directions. To verify this we examine computer simulations of the network being
used to solve a specific 10-city problem.

The ten cities were placed randomly within the unit square, and then the shortest Hamilton
path was found by exhaustive search. The cities were then rearranged in the order of the shortest
path before being passed to the modified Hopfield network. In this way we know that the two
optimal solutions V(p) are the identity and reversed identity matrix. Figure 3 shows the ten cities
in their optimal ordering, as well as the shortest Hamilton path through them. The modified
val "and then allowed to converge
to a hypercube corner. Figure 4 shows the network output at several stages of convergence. In
the decomposition of v¥3! the leftmost 100 bars represent the v; of equation (36). The v; are
ordered such that those with associated negative eigenvalues are to the left and those with positive
eigenvalues to the right. Hence the component along the dominant eigenvector up,x appears in
position 100. The bar to the right of this, at position 110, indicates the component of v¥® along
b — ie. it measures (bTv"al)/ |b|. The plots confirm what the linear theory predicted: as early as
iteration 10 it is clear that v has taken off in the direction of b, by iteration 100 v*? contains
a dominant component in the direction of —uy,x, and when fully converged there are significant
components along both b and up,,x. We note in passing that the network has converged to the
identity matrix, and has therefore found the optimal solution. Figure 5 shows the same problem
being solved again, only this time initializing the network with —v'®. As predicted, this time the
component along uy,,x comes in with positive sign, leading to the other optimal solution.

Hopfield network was initialized with a small random vector v

5.4 The Auxiliary Linear Problem

Having seen that the linear analysis of the earlier sections does indeed reflect the initial convergence
of the network, we are now in a position to investigate the likely extent of the network’s success on
the Hamilton path problem. Clearly, the network may fail to find the optimal solution if either b
OF Upay takes vV@l
In order to gain a better understanding of what b does, we can associate b with an auxiliary

into a completely different region of space from the optimal hypercube corner.
linear problem. First we rewrite the problem’s objective function (20) for v lying on the valid

subspace (22):
E°P = —1(T"v + §)TToP(TYv +5) — (i°®)T (T"v + ) (66)
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Figure 3: The 10 city positions with their shortest Hamilton path.

Simplifying equation (66), we obtain to within a constant
o ' T
Ep:—%vTAv—b v (67)

So we can associate the action of b with the minimization of an auxiliary linear problem with
objective function

Ear = _pTy (68)
The overall network dynamics, rewritten in terms of A and b, are
v=v3=_VE®P=Av+b (69)

At the start of convergence, when v is near the centre of the valid subspace (ie. v & s), we have
Av ~ 0,and so v~ b. But b = —VE?P 5o we conclude that the initial behaviour of the network
is concerned largely with minimizing £2P. For the Hamilton path problem, substituting for b
gives
ERlr — —(STTOp + iopT)Tvalv
_%(OHT ® OnT)(P ® Q)(Rn ® Rn)v
= —L(0""PR" @ 0" QR)vec(V)

= - % vec(o” QR VR Po")

—% trace(o”T QR” VR Po")
= —trace(R"VR"PSQ)

using (6), (52))
using (8))
since the argument is a scalar)

using (4), (46))

—~ o~ o~ o~

Adding a constant term, we obtain
E3P = —trace(R"VR"PSQ + SPSQ)
—trace((R*VR” + S)PSQ)
= —trace(VPSQ) (for V satisfying (53))
n n
= > > [(V(=P)T],; [sQl; (70)

i=1j=1
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Figure 4: 10 city Hamilton path problem at various stages of convergence.
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Now, the matrix SQ is given as follows

1/n if je{l,n}

SQli; = { 2/n if 2<j<(n-1) (7)

For n = 5, SQ would be
02 04 04 04 0.2
02 04 04 04 0.2
02 04 04 04 0.2
02 04 04 04 0.2
02 04 04 04 0.2

To minimize E2P, V must reorder the rows of (—P) such that the two rows with the largest
summed elements are moved to the top and bottom of the matrix V(—P). This is equivalent to
ensuring that the two cities with the largest summed distances from all the other cities are placed
first and last in the journey. If this is done, then the contribution of these large distances to the
cost of E2IP is halved compared with what would have been the case had the cities not been placed
first and last. In this way, we can associate with the auxiliary linear problem a certain strategy,
that being to place the two most remote cities first and last in the tour; the network follows this
strategy in the early stages of convergence.

Armed with this new insight, we can now address the question of how well the network can
tackle the general Euclidean Hamilton path problem. The auxiliary linear problem suggests that
the network may fail for problems in which the optimal tour deviates significantly from starting
and finishing at the most remote cities. Such a problem is illustrated in Figure 6. Here we see
sixteen cities arranged in a spiral pattern, and numbered so that the optimal solutions V are the
identity and reverse identity matrices. The optimal path length is 54.0 units. Figure 7 shows that
the network behaves as predicted by the linear analysis, putting in large b and uy,x components
from the start, only this time a sub-optimal solution is reached (path length 56.2 units), with
the journey starting and ending at outlying cities — see Figure 8. Clearly this is a result of the
auxiliary linear problem being poorly related to the parent Hamilton path problem in this case.
Indeed, Figure 9 shows that the optimal solution’s v' contains a small negative component in the
direction of b. While the network is sometimes capable of completely overturning an initial bias
towards the vector b, this capability is highly dependent on the random starting vector v’ and

o 1
more often than not poor solutions like the one in Figure 8 are obtained.

6 The Point Matching Problem

6.1 Problem Formulation and Mapping

The point matching problem as presented in this section forms part of an invariant pattern recog-
nition system. The aim is to compare a set of unknown points to a set of template points and
compute some measure of similarity between the two sets. However, before the similarity can be
computed, each of the unknown points has to be matched with a particular template point. Sup-
pose the template and unknown point sets contain the same number of points n: let the template
set be called @ and the unknown point set be called P. Let us also define distance matrices for
these two sets, P and Q, where [P];; is the distance between unknown points ¢ and j, and [Q]; is
the distance between template points & and [. Then we can match unknown points with template
points using a permutation p, where [p]; = j if unknown point j is to be matched with template
point 7. A distance measure which is invariant to translation and rotation of the point sets is then

ap) = [VeIPve) - a| (72)

where V(p) is the permutation matrix associated with p. The objective of the point matching
problem is to find the permutation p which minimizes the distance d(p) between the two sets —
ie.

min d(p) where d(p) = VEPvE)Y -Qf (73)
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Figure 6: The 16 city positions with their shortest Hamilton path.

This problem is similar to the optimization problems found in the graph matching approaches to
invariant pattern recognition [4, 11], with the added constraint that the two sets contain the same
number of points. Note that invariance to scaling can be added by normalizing the moduli of the
two distance matrices being compared, such that |P| = |Q]|.

We now show how this problem may be mapped onto the Hopfield network. The valid subspace
is exactly the same as in the Hamilton path problem, because in each case we are trying to find a
permutation matrix V(p), so TV and s are as given in equations (54), (55) respectively. It is now
necessary to derive expressions for T°P and i°?. We start by expanding the expression for d(p):

Verrve)! - of
= ftrace [(V(p)PV(p)T - Q)T (V(p)PV(p)T - Q)]
= trace [V(D)PV(p)' V(D)PV(p)’ ~ 2V(D)PV(p)' Q+QQ

IP” +]QI - 2 trace [ V()P V() Q] (74)

d(p)

Eliminating the constants from the above expression, we can set F°Pas
T
E°P — —% trace [V(p)PV(p) Q] (75)

This is of exactly the same form as the expression for £°P in the Hamilton path problem, and so
we conclude that

ToP (PoQ) (76)
ir = 0 (77)

6.2 The Auxiliary Linear Problem

Since both P and Q are problem dependent, it is impossible to say anything definite about their
eigenvectors, and hence we cannot derive any interesting relationship between up,x and b as we
did for the Hamilton path problem. However, we are in a position to examine the auxiliary linear
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Figure 7: 16 city Hamilton path problem at various stages of convergence.
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Figure 8: The 16 city positions with the solution found by the modified Hopfield network.
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problem. Making use of the congruence between this mapping and that of the Hamilton path
problem, we can jump straight to equation (70):

E3P =  —trace[VPSQ] (for V satisfying (53))
— 71—1 trace [VPO"O"TQ]
= —Ltrace [(Qo™)TV(Po")| (using (4))

Now, the vectors Qo™ and Po” simply represent the summed distances of all the other points from
each point in the template or unknown, since

n

[Qo");=3[Ql;  [Po"); =3 [Pl

ji=1

In order to minimize £2P, V must reorder the elements of Po™ so that large elements appear in
the same rows as the large elements of Qo”, whilst small elements appear in the same rows as the
small elements of Qo™. In other words, the auxiliary linear problem matches outlying points in P
with outlying points in Q, and central points in P with central points in Q.

As with the Hamilton path problem, we must now address whether the auxiliary linear problem
is in sympathy with the parent point matching problem. To do this, we study several typical 20-
point matching problems for which good solutions have been found — see Figure 10. For each
problem, Figure 11 shows the decomposition of the solution’s v'* along b and the eigenvectors of
A; also shown is the decomposition of b along the same vectors. For clarity, only those components
corresponding to the largest positive eigenvalues are displayed, as well as the component along b. It
seems that all the good solutions contain significant components along up.x, a strong prerequisite
for a successful mapping. It is also apparent that the solutions contain significant components
along b, indicating a good degree of sympathy between the auxiliary linear problem and the
parent problem. However, the Figure also shows that for some problems the vectors b and umax
are nearly mutually orthogonal. This means, as in the case of the Hamilton path problem, that
the evolution of v'@ in the direction of Wmay is governed solely by opmax, which has random sign.
However, unlike the Hamilton path problem, in which each of the two possible routes led to an
optimal solution, the point matching problem has only a single optimal solution, and so one of
the routes 1s bound to lead to a sub-optimal hypercube corner. This hypothesis is confirmed in
Figure 12, which shows the result of solving the ‘4’ problem of Figure 10 twice on a modified
Hopfield network, starting once with v'® and then again with —vY2!. As expected, the component
of v¥8l along uny., develops different signs in the two runs, leading to two different solutions, one
with d(p) = 0.157, the other with d(p) = 0.346. The unknown point labellings corresponding to
these solutions are shown in Figure 13; these should be compared with the template in Figure 10.

It is reassuring to observe in Figure 11 that in none of the problems does the vector b contain
a significant component along uy,x with the opposite sign to the good solution’s component in
that direction. If this were the case, then the action of b would invariably introduce the wpax
component into v'® with the wrong sign, leading most probably to poor solutions. So, unlike the
Hamilton path problem, we cannot say here that the auxiliary linear problem is antagonizing the
parent problem. Instead, the auxiliary linear problem simply doesn’t contain enough information
to steer v'@ in the right direction from the outset. This is not such a serious shortcoming as in
the Hamilton path problem, in that this time we can be sure of obtaining one good solution if we
run the network twice, negating the random v'® between runs. This may not be a particularly
elegant solution, but it is certainly very effective.

6.3 Simulation Results

As a small illustrative experiment, the network was used in a pattern recognition system to rec-
ognize instances of the ten handwritten digits. The template and unknown digits used in the
experiment are shown in Figure 14. A point positioning algorithm was used to place 20 points
around the outlines of the digits; each of the ten unknowns were then compared with each of the
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Template Patterns Unknown Patterns
3,12 20
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x15x1 2 48
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s A3 3 4
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1 16
17
Template 2 Unknown 2
19 29
16 16
12 A2
9
2 6
6 4
K D 4 s 14 18
2 2 14 A48 J 2
13 PR 15 1
s M A0 10
a7
xl;o 2
Template 4 Unknown 4
20 2448
19 a3
17
2
xlss 10
g 9 s 4 g » J 9
. 4 5 6 4 : 1
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3
a1 A7
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Template 5 Unknown 5
20
a9
gzt 2 Loe A8
A6 B 2
15 x3x4 7 2
10 9
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8 3
T 2o 15 6
a7 :
18 * a1
Template 9 Unknown 9

Figure 10: Template and unknown patterns with labelling for a good match.
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Figure 11: Decompositions for the point matching problems.
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ten templates, using the modified Hopfield network to solve the point matching problems. The
network was run twice on each comparison to ensure a good solution was found at least once. The
results are displayed in Table 1. The only misclassification was that of the ‘6’, which was mistaken
for a ‘9’; this is clearly a result of the rotational invariance of the recognition scheme.

Figure 14: Template (top) and unknown (bottom) digits used in the experiment.

Unknown Template Digit
Digit 0 1 2 3 4 5 6 7 8 9
0 0.98 382 213 216 276 230 212 3.08 225 281

449 0.55 2.67 231 333 197 3.00 251 230 3.06
207 320 1.44 246 228 216 256 199 296 2.87
392 195 1.8y 1.17 261 146 222 189 2.18 251
288 3.11 230 230 1.57 225 235 2.63 2.17 2.86
244 295 216 214 195 1.43 232 224 193 233
3.561 250 3.06 242 284 197 1566 224 216 1.39
436 163 260 224 267 175 255 1.23 243 230
3.19 218 233 167 287 181 234 273 1.33 2.54
313 274 292 199 268 219 133 202 207 1.20

WO 00 ~J O O b Lo N =

Table 1: Distance measures for all templates against all unknowns; shortest distances are shown
in bold type.

7 Discussion and Conclusions

There have been many papers in the past reporting the discovery of neat mappings of combinatorial
optimization problems onto the Hopfield network for solution, but few have reported in-depth
results of the network’s performance. Indeed, it is often the case that the solutions obtained from
the network are not as good as might be expected given the integrity of the mapping, though there
has been little attempt to explain this in the past. In this paper we have introduced a new level
of understanding into the field: we have demonstrated how it is possible to estimate the likely
efficacy of a particular mapping by way of an eigenvector analysis of the network’s dynamics and
an investigation of the structure of ‘good’ solutions relative to this eigenvector basis.

Although not observed in experiments reported in this paper, it seems likely that a major cause
of mapping failure would be that a good solution’s v'3! contains an insignificant component along
the dominant eigenvector upax. The other principle mode of failure arises through inappropriate
action of the vector b. In the course of our argument, we have introduced the concept of an
‘auxiliary linear problem’, which we have found useful in gaining a greater understanding of the
‘strategy’ associated with b. It remains to be pointed out that not all problems have an auxiliary
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linear problem: for example, the classic mappings of the Travelling Salesman and Graph Partition-
ing problems both exhibit the property b = 0. The absence of an auxiliary linear problem is to be
associated with a local maximum of the objective function at the centre of the valid subspace, and
so the initial direction of v from this point is entirely random. For the aforementioned two prob-
lems, this is consistent with the distribution of the degenerate optimal hypercube corners, which
are positioned evenly around the perimeter of the valid subspace. For problems which lack this
degeneracy of solution, it is indeed essential that the mapping yields an auxiliary linear problem,
else the network output is most likely to head away from the optimal hypercube corner from the
outset.

However, the presence of an auxiliary linear problem where it is required is not enough to
guarantee the success of a mapping. It is also necessary that the auxiliary linear problem be
in sympathy with the corresponding parent problem. By ‘in sympathy’, we mean that the v'@!
corresponding to good problem solutions must not contain large negative components along b.
Furthermore, for problems with a unique optimal solution (eg. the point matching problem), it
is necessary that the auxiliary linear problem contain correct information as to the direction of a
good solution’s v¥2 component along Umay. If this information is incorrect, or lacking, then the
Upax component may be introduced with the wrong sign, most probably leading to a poor quality
solution. For cases in which the up,,x information is lacking, as with some point matching problems;,
a good solution can be found by running the network twice, starting once with v¥® = v¥a and
then again with val = —val,

To conclude, the results of this paper demonstrate how it is possible to predict the likely success
of a problem mapping without having to resort to trial and error. Weaknesses in the mapping are
highlighted by investigating the decomposition of good solutions along the eigenvectors of the
network’s matrix A and the auxiliary linear problem vector b. This eigenvector analysis sheds
new light on the problem mapping by placing it in the context of the network’s dynamics. There
is often a certain degree of flexibility in the way a particular problem is mapped onto the network
for solution; the analysis presented in this paper seeks to go one step further towards successfully
exploiting that flexibility.
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Appendix A

Invariance of Results to Different Problem Instances

In this Appendix we examine how the decomposition of a particular solution’s v¥® along b and
the eigenvectors of A is affected by different instances of the same problem. Any of the problems
studied in this paper may be expressed in many different ways: for example, an n-city Hamilton
path problem may be expressed in n! ways, each one corresponding to a different ordering of
the cities in the matrix P. For the point matching problem, both the template and unknown
point orderings may vary. For the results of this paper to have any significance, it is necessary to
prove that the decomposition of a particular solution’s v¥® along b and the eigenvectors of A is
independent of problem instance.

We shall start by looking at the point matching problem. Consider a particular problem instance
given by

P=P,, Q=Q.

Call this instance A: henceforth all quantities relating to this instance will be denoted by the
subscript ,. Then any other instance B of the same problem may be expressed as

P, = v, p,Vv,7
QB = VqQAVqT
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where V, and V are arbitrary permutation matrices. Any network output V, for instance A
may be interpreted as a partial solution to the problem being solved. The same partial solution
for instance B is then

Vy=V,V, Vv, (78)

This analysis can also be used for the Hamilton path problem with the added constraint that
V4 =TI", since Q is the same for all problem instances. Before going any further, it is necessary to
obtain two results concerning the effect of an arbitrary permutation matrix V(p) on the projection
matrix R”:

V(p)'R"V(p) = V(p)" (I" - L0") V(p)
= V(p)'I"V(p) - LV(p)' 0" V(p)
I"— Lo" = R" (79)
R"V(p) = (I"-10")V(p)

I"V(p) — - O"V(p)
V(p)— 10" =V(p)I" - LV(p)O"
= V(p)(I"-10")=V(p)R" (80)

We shall start by relating the vector v for instance B to instance A quantities:

v\éal TvalvB
TValvec(Vy)
T lvec(V V.V, 1)
T"al(Vp ® Vq)vec(V,) (using (8))
= T"al(Vp @ Vg)va

We now go on to obtain an expression for the instance B vector by in terms of instance A quantities:
b, = T"T%g

LTel(P, © Q,)(0" © 0”)

= %Tval(VPPAVPT ® VqQAVqT)(On ®@o")

= LTV, 0 Vy)(P,®Q.)(V, 0" ® VyTo") (using (6))

= 1TV, @V )TF (0" ® o)

= TV, © V)TV

Hence

bIvEl = (T¥(V, ® VTP TRV, & Vo)v, |
STTﬁp(Vp ® Vq)TT"al(Vp Q@ Vq)va (using (56))
SITE\p(VpT @ VqT)(Rn @R")(Vp @ Vg)va

s"TP (VT RV, @ VTRV )v, (using (6))
sTTP(R® @ R™)v, (using (79))
ST TipTvalvA

sTopvalvaly (using (56))
— (TvalTiPS)Tvxal

= bfvxal

This proves that the component of a particular solution’s v¥®' along b is independent of problem
instance. Next, we relate the eigenvectors of Ay (let a general eigenvector be called ug) to those
of A, (general eigenvector u,). We state that the eigenvectors of Ay are given by

s = (V, @ Vou, (81)

26



and that they have the same eigenvalues as those of A, ie. Ay = A,. The proof is as follows:

ABuB — TvangpTvaluB

(R"®R")(Ps © Qp)(R” @ R"Ju,

(R" @ R”)(V P,V," @ ViQ. V" )(R" @ R)(V, @ Vo)us  ( (8
(R"V, @ R"Vg)(P, @ Q) (V TRan @ VqTRan)uA ( (6
(R*V, @ R"V q)TOp(R” @R")u, (using (7
(V,R" @ V;R"TP(R” @ R")u, ( (8
(Vp ( (6
(Vp
(Vp

= @V )R @ R")TF(R" @ R")u, using (6))
— QV )TvalTOPTval

= @V ) aly

= A(Vp@Vyu,

= Aug (using (81))

Hence, for any eigenvector of Ag:

u£v\éal = ((Vp ® Vq)uA)TTval(Vp ® Vq)VA
Uf(VpT ® VqT)(Rn ® R”)(Vp ® Vq)vA
(VIR @ VIRV v, (using (6))
u/(R" @ R")v, (using (79))
TTval Vi

— T val
A A

This proves that the component of a particular solution’s v¥®' along any eigenvector of A is
independent of problem instance.

Appendix B

Matrix Graduated Non-Convexity

In [1] a scheme is proposed, dubbed Matrix Graduated Non-Convexity, which both helps avoid
entrapment of the network state vector v in sub-optimal local minima and also forces eventual
convergence of v to a hypercube corner. Its action is similar to that of the annealing procedures
proposed for networks of this kind. In this Appendix we show that the results of this paper are
not affected by the use of Matrix Graduated Non-Convexity.

Matrix Graduated Non-Convexity works by adding a multiple of the identity matrix to T°P:

TP — TP + g1 (82)

The network is started running with a negative value of 3, and then /3 is gradually increased
through to positive values until convergence to a hypercube corner is achieved. First let us see
what effect § has on the vector b:

b — T™(TP + gI)s = T TPs+ FT"s

TvalTopS + ,B(Rn ® Rn)(on ® On)
TvalTopS + ,B(R”O” ® Rnon)

— TvalTops

Hence b is unchanged by 3. The eigenvectors u; of A are also unchanged by 3, though the
eigenvalues are affected, since

Alli _ Tval(Top + 6I)Tvalui — TvalTopTvaluZ_ + BTvaluz
_ 0 for u; in the invalid subspace.
(A + B)u; for u; in the valid subspace.
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So we see that the eigenvalues in the valid subspace are all shifted by an amount 3. However,
the relative values of the valid subspace eigenvalues are unchanged, and so the result that the
dominant eigenvector up,y should be a very significant influence on the evolution of v¥® still holds.
In fact, Matrix Graduated Non-Convexity enhances the dominance of up,x in the early stages of
convergence, since [ is usually started sufficiently negative to ensure that only Anyax, out of all
the eigenvalues, is greater than zero. Referring back to equation (37) this means that, neglecting
the action of b, only the component along up,x is developed, the others being suppressed. In the
simulations reported in this paper, we have used Matrix Graduated Non-Convexity to ensure that
the best possible performance is extracted from the network.
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