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Abstract

When feedback neural networks are used to solve combinatorial optimization problems,
their dynamics perform some sort of descent on a continuous energy function related to the
objective of the discrete problem. For any particular discrete problem, there are generally
a number of suitable continuous energy functions, and the performance of the network can
be expected to depend heavily on the choice of such a function. In this paper, alternative
energy functions are employed to modify the dynamics of the network in a predictable manner,
and progress is made towards identifying which are well suited to the underlying discrete
problems. This is based on a revealing study of a large database of solved problems, in
which the optimal solutions are decomposed along the eigenvectors of the network’s connection
matrix. It is demonstrated that there is a strong correlation between the mean and variance
of this decomposition and the ability of the network to find good solutions. A consequence of
this is that there may be some problems which neural networks are not well adapted to solve,
irrespective of the manner in which the problems are mapped onto the network for solution.

1 Introduction and Outline

Ever since the Hopfield network was first proposed as a means of solving combinatorial optimization
problems [15], researchers have frequently reported disappointment at the failure of the network to
find valid solutions, let alone high quality ones [16, 24]. More recently, alternative mappings and
modified dynamics have been developed which largely overcome the validity difficulties [3, 20, 23],
and neural techniques have been applied with some success to the solution of a wide variety of
problems.

Notably successful have been the self-organizing networks, which can be applied to problems
with a suitable underlying geometric structure [4, 7, 9], though the neural techniques with the
widest applicability are based around the original Hopfield network approach. These techniques
invariably perform some kind of descent on a continuous energy function, which coincides with
the objective of the combinatorial problem at the valid solution points in the network’s output
space. Neural techniques, like the Hopfield network or the Mean Field Annealing (MFA) algorithm,
perform this descent within a highly parallel framework, which naturally suggests extremely fast,
parallel implementations. Their dynamics dictate that the continuous energy function be quadratic
in the network’s state vector, v. Even with this limitation, there are many problems which can
be mapped onto this system, including the benchmark travelling salesman [3, 1, 20] and graph
partitioning problems [1, 20, 23], along with more useful problems of two-graph matching [10, 11],
scheduling [12], load balancing [8], analogue to digital conversion [22], and a novel implementation
of the Viterbi algorithm for Hidden Markov Models [2].

An issue which has aroused little discussion so far concerns the choice of the continuous energy
function on which the network performs its descent. For many problems there are an infinite
number of quadratic functions which satisfy the condition that they coincide with the combinatorial
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objective at the valid solution points. While transformations of objective functions have been
previously investigated as a means of reducing network costs and mapping a wider variety of
problems [18], little attention has been drawn to how the use of these alternative energy functions
may affect the solution quality. This issue is addressed in this paper, with specific application to
the two-graph matching problem, of which the travelling salesman problem (TSP) is a special case.
In Section 2 we introduce the notation in use throughout the paper, and define some frequently
used matrices. Section 3 reviews much of the background to the subject, including the Hopfield
and MFA dynamics, and the notion of a valid subspace on which all the valid solution points lie.
In Section 4 we recast the entire scenario relative to the basis formed by the eigenvectors of the
network’s connection matrix; the use of this basis highlights many features of both the network’s
dynamics and good solutions which would otherwise remain obscured. Section 5 contains a detailed
analysis of the network’s dynamics relative to this new basis, while Section 6 examines the effect on
these dynamics of the various annealing techniques which are often used to improve the network’s
performance. Included in Sections 4, 5 and 6 are many results taken from [1], which should be
referred to for proofs. In Section 7 we introduce a set of alternative energy functions which are
all suitable for the solution of the two-graph matching problem, and examine how the use of these
functions, coupled with the usual annealing processes, affects aspects of the network’s dynamics.
Section 8 draws on large databases of solved Euclidean and random TSPs to examine properties
of optimal solutions relative to the network’s eigenvector basis (by a random TSP, we mean a TSP
for which the distance matrix does not correspond to any set of points in a 2D plane, but is an
arbitrary, symmetric square matrix). The results suggest how a suitable energy function may be
selected from among the alternatives for the Euclidean TSPs, but that none of these functions
are well suited for the solution of the random problems. A series of experiments, using both the
Hopfield and MFA dynamics on the problem databases, confirms these predictions. Finally, in
Section 10 we present a discussion of the issues raised in the paper, and draw our conclusions.

2 Notation and Definitions

2.1 Matrix Notation

Let AT denote the transpose of A.

Let [A];; refer to the element in the i row and j* column of the matrix A.

Similarly, let [a]; refer to the i'! element of the vector a.

Sometimes, where the above notation would appear clumsy, and there is no danger of ambiguity,
the same elements will be alternatively denoted A;; and a;.

Let the modulus of an n x m matrix A be defined as follows:

1A = ii[A]g = trace (ATA) (1)

i=1j=1

Let A ® B denote the Kronecker product of two matrices. If A is an n x n matrix, and B is an
m x m matrix, then A ® B is an nm X nm matrix given by:

AnB AsB ... ALB
AQB= Ang A22B AgnB (2)
AnB A,2B ... A,,B

Let vec(A) be the function which maps the n x m matrix A onto the nm-element vector a. This
function is defined by:

a:vec(A) = [A11;A21a-"JAn13A123A22J-"aAnZJ-"aAlmaAZmz"'aAnm]T (3)

The following properties of Kronecker products are used in the course of this paper (see [13] for
proofs):

(AeB)T = ATeB” (4)



(A®B)(X®Y) = (AX®BY) (5)

If the n X n matrix A has eigenvectors {w ... w, } with corresponding eigenvalues {71 ...y}, and
the m x m matrix B has eigenvectors {h; ... h,,} with corresponding eigenvalues {1 ...ty }, then
the nm x nm matrix A ® B has eigenvectors {w; ® h;} with corresponding eigenvalues {v;u;}

(fe{l...n},je{l...m}).

2.2 Some Definitions

Let I” be the n x n identity matrix.
Let o™ be the n-element column vector of ones:

[0"];i=1 (ie{l,...,n}) (6)
Let O™ be the n x n matrix of ones:
0" =1 (i,j€{l,...,n}) (7)

Similarly, let O™ be the n x m matrix of ones.
Let 6;; be the Kronecker impulse function:

1 i =3
5“_{0 if i (8)
Let R™ be the n x n matrix given by
R"=T1" - %O” (9)

Multiplication by R™ has the effect of setting the column sums of a matrix to zero:

Z[R”a]i = Z[a - 10ma); = o*Tla— LOma]
i=1 i=1
= o"Ta— %(OHTOHOHT)aI o"Ta—o0"Ta=0 (10)

Another way of considering R” is as a projection matrix which removes the o” component from
any vector it pre-multiplies, since

RPo" = (I~ L0707 =0 — Lno” =0 (

Also note that since R” is a projection matrix, R?R” = R”.

3 Background
3.1 The Hopfield Network

A schematic diagram of the continuous Hopfield network [14] is shown in Figure 1. Neuron ¢
has input [u];, output [v];, and is connected to neuron j with a weight [T];;. Associated with each
neuron is also an input bias term [i®];. The dynamics of the network are governed by the following
equations:

u = —nqu+Tv+if (12)
v, = 9([uly) (13)

[v]; is a continuous variable in the interval 0 to 1, and g([u];) is a monotonically increasing function
which constrains [v]; to this interval, usually a hyperbolic tangent of the form

1
1+ exp(—[u];/TP)

9([uls) (14)
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The network has a Liapunov function [14]

vl

E=-ivITv - (i v+ 772/0 g~ (V) dV (15)

The network was subsequently proposed as a means of solving combinatorial optimization
problems which can somehow be expressed as the constrained minimization of

F°P = —%VTTOPV — (iOp)TV ([V]Z € {Oa 1}) (16)

The idea is that the network’s Liapunov function, invariably with n = 0, is associated with the cost
function to be minimized in the combinatorial optimization problem. The network is then run and
allowed to converge to a hypercube corner, which is subsequently interpreted as the solution of the
problem. Hopfield and Tank showed in [15] how the network output can be used to represent a
solution to the travelling salesman problem, and how the interconnection weights and input biases
can be programmed appropriately for that problem: this process has subsequently been termed
‘mapping’ the problem onto the network. The same authors later showed how a variety of other
problems can be mapped onto the same network, and reported on the results of using analogue
hardware implementations to solve the problems [22].

The difficulties with mapping problems onto the Hopfield network lie with the satisfaction of
hard constraints. The network acts to minimize a single Liapunov function, and yet the typical
combinatorial optimization problem requires the minimization of a function subject to a number
of constraints: if any of these constraints are violated then the solution is termed ‘invalid’. The
early mapping techniques coded the validity constraints as terms in the Liapunov function which
were minimized when the constraints were satisfied:

E=FEP 41 B + a5y + ... (17)

The ¢; parameters in equation (17) are constant weightings given to the various energy terms. The
multiplicity of terms in the Liapunov function tend to frustrate one another, and the success of the
network is highly sensitive to the relative values of the ¢; parameters; it is not surprising, therefore,
that the network frequently found invalid solutions, let alone high quality ones [16, 24].

3.2 The Valid Subspace

In [3] an eigenvector and subspace analysis of the network’s behaviour revealed how the E°P and
Es terms in equation (17) can be effectively decoupled into different subspaces so that they no
longer frustrate one another. For a wide variety of problems, it was realized that all the hypercube
corners corresponding to valid solutions lie on a particular affine subspace with equation

v=Tvly +5g (18)

\Y

(a) Non-linear threshold functions constrain-
ing v to the unit hypercube.

(b) The change in u is specified by the differ-
ential equation (12).

Figure 1: Schematic diagram of the continuous Hopfield network.



v - (1) Projection of v onto valid subspace

i @ (2) Nonlinear ‘symmetric ramp’ threshold
+ J== v=s+Twy v functions constraining v to the unit hy-
- percube.
* ® (3) Change in v given by the gradient of
) L N
i V=T OPy/+jop the OptlIn.lzathIl energy term E°P  with
Av = Atv

Figure 2: Schematic diagram of the modified network implementation.

where TV is a projection matrix (ie. Tvalpval — T"al) and T"?ls = 0. This subspace was termed
the valid subspace. The constrained optimization can now be re-expressed using only a single
constraint term [1]:

2
E = E°P + %co Hv —(TV¥v + s)“ (19)
Expanding equation (19) we obtain, to within a constant
E = E°% — ¢y (3vI(T = I)v +s'v) (20)
from which we see that the Hopfield network parameters must be set as follows:

T = T 4T — 1) (21)
i = i 4 ¢gs (22)

In the limit of large ¢¢, v will be pinned to the valid subspace throughout convergence, and the
network dynamics will minimize £ = E°P as required. This approach suggests a way in which
the Hopfield network may be approximately simulated with high efficiency and without the need
for penalty terms — see Figure 2. In addition to steepest descent dynamics, we see an extra loop
which continually projects v onto the valid subspace, directly enforcing the validity constraints.
Piecewise linear transfer functions are employed to keep v within the unit hypercube, while allowing
elements of v to fully saturate at 0 or 1. The descent dynamics are now free to minimize E°P alone,
without the need for penalty functions. This model has been successful in solving the benchmark
travelling salesman problem [1], along with the more useful problems of two-graph matching for
invariant pattern recognition [10, 11] and implementing the Viterbi algorithm for Hidden Markov
Models [1, 2]: we shall use it throughout this paper to approximately simulate the behaviour of
the Hopfield network.

3.3 Mean Field Annealing

While the mapping of problems is generally easier to visualize with = 0, in practice the Hopfield
network dynamics may usually be implemented with any value of 7, so long as all hypercube
corners corresponding to valid solutions lie at the same distance from the origin. This is because
the 7 term in the network Liapunov function (15) has the same value at all such hypercube corners,
so the relative energy of all valid hypercube corners is unchanged whatever the value of 7. If we
choose to simulate the Hopfield network dynamics using an Euler approximation with a time step
of At, we obtain

Uiginar = Ugar + At(—nqugay + Tveay +1°) (23)

Furthermore, if we choose At =1 and n = 1, then the Euler approximation becomes
uiinar = Tvear + iP (24)
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This equation, together with (14), describes the update rule for the Mean Field Annealing (MFA)
technique for solving combinatorial optimization problems. It is possible to derive the MFA equa-
tions as an approximation of simulated annealing [1, 20, 21], though for the purposes of analyzing
MFA and the Hopfield network from a common standpoint, they are better viewed as an Euler
approximation of the Hopfield network dynamics with A¢ = 1 and n = 1. Viewing MFA in this way
also allows us to assess the detrimental effect of the approximation which lies between MFA and
simulated annealing, since the latter is guaranteed to find the optimal solution in the (impractical)
limit of an infinitely slow cooling schedule. The MFA equations can also be derived in a way that
makes the satisfaction of one constraint explicit within the update rule [1, 20, 23], allowing many
problems to be mapped so that one of the constraints is enforced without the need for a penalty
term. This approach, which we shall refer to as MFA with neuron normalization, has been success-
ful when solving the benchmark travelling salesman [20] and graph partitioning [20, 23] problems,
along with some more practical scheduling [12] and load balancing [8] problems.

3.4 Mapping some common problems

Throughout this paper we shall consider a class of combinatorial optimization problem which can
be formulated as

minimize E°P = —Ltrace (VTPVQ) (25)
subject to [V];; € {0,1} (26)
and  V=RIVR™ 4 Lomm (27)

where V is an n x m matrix, P is a symmetric n X n matrix and Q is a symmetric m X m matrix.
For the case n = m, the conditions in equations (26) and (27) ensure that V takes the form
of a valid permutation matrix, suitable for representing the solutions to the travelling salesman,
Hamilton path and two-graph matching problems. For n > m, the framework can be used to solve
the graph partitioning problem, where a graph of n nodes is to be divided into m equally sized
partitions. For such mappings it is necessary that the ratio of n to m is an integer. The solution
is represented by V in the following manner: [V];. equals 1 if node 7 is to be in partition j, and 0
otherwise. The conditions in equations (26) and (27) now ensure that a node is associated with only
one partition, and that the partitions are of equal size. Table 1 shows how the P and Q matrices
can be set so that the minimization of the objective function (25) solves the required problem: for
a fuller description of these mappings, see [1, 10]. It should be noted that the travelling salesman
and Hamilton path problems are merely special cases of the two-graph matching problem.

Such problems may be readily mapped onto the Hopfield network for solution as follows [1, 10]:

v = vee(VT) (28)

TP = P®RQ (29)

i = 0 (30)

T = RP@R™ (31)

s = L(o"®o™) (32)

If the network parameters are set as described above, then the network’s objective function (16)

corresponds to the problem’s cost function (25), whilst confinement to the valid subspace (18)
ensures satisfaction of the problem constraint (27). If the network is forced to converge to a
hypercube corner, then the problem constraint (26) is also satisfied.

3.5 The effective objective function

If it is assumed that v is continually confined to the valid subspace, so that v = TV?lv + s, it is
possible to express E°P as follows:

EoP = _%vT TvalToPTvaly — (TVal(TPs + iOp))T v + terms independent of v
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Problem [Pley | [Qlij n m

Two-Graph Matching | €f, egj Number | Number of
of nodes | nodes

TSP —dzy | % @1+ 6 01 | Number | Number
of cities | of cities

Hamilton Path —egy | 0ij+1+6;;—1 | Number | Number
of nodes | of nodes

GPP €y 8sj Number | Number of

of nodes | partitions

€3y 1s the edge weight between nodes z and y
dyy is the distance between cities x and y
j1@l=73+1except md1l=1
jel=j3—1lexcept 161 =m

Table 1: Some possible problem mappings.

Hence, for v confined to the valid subspace, the objective function becomes

Eorr = —LyTmerry _ (jorryTy (33)
where ToPr = Tvalporval (34)
and i°P* = TVel(T°Ps +i°P) (35)

It is E°PT which the network effectively minimizes, so long as the evolving state vector v remains
pinned to the valid subspace. For the mappings of Section 3.4, T°P" may be expressed as follows:

TOpI‘ — PI‘ ® QI‘ (36)
where P = R"PR" (37)
and Q" = R™QR™ (38)
Likewise, 1°P" becomes
i°Pr = %(R”Pon @ R™Qo™) (39)

4 An alternative set of basis vectors for network analysis

In this section we shall examine the eigenvectors and eigenvalues of T°PT in some detail, since they
shall emerge as the driving force behind the network dynamics. Subsequently, we shall use them as
a set of basis vectors for any further analysis, since in so doing various features of the optimization
problems are naturally cast in the context of the network dynamics.

We shall start our examination by considering the eigenvectors and eigenvalues of P* and Q.
The null spaces of P™ and QF are readily apparent since

P'o® = R"PR"0" =0
and Qfo”™ = R™QR™0™ =0

So let us define w! and h' to be eigenvectors of P* and QF respectively, with associated eigenvalues
A1 and vq, where

w! = ﬁo” and A =0 (40)
h! = Lo™ and 1 =0 41
Jm 7



Let the remaining eigenvectors of P* be w?...w" with eigenvalues Az ... A,, and those of Q" be
h? .. h™ with eigenvalues 75 ...7,. Let us further assume that the eigenvalues are ordered as
follows:
A > A3 > > A\, (42)
V227322 Tm (43)
The result in Section 2 concerning the eigenvectors and eigenvalues of Kronecker product matrices

allows us to express the eigenvectors and eigenvalues of T°P" in terms of those of P" and Q". If
T°F" has eigenvectors and eigenvalues x*' and yj; respectively, then

x = wf@h! (44)
and xp = v (45)
for 1 <k <nand1l<I!<m. Note that
TvlxH = (R? @ R™)(wk @ h')
= (R"w’ @ R™h)
ST = { G ks e 122 (9

Hence those x* for which £ = 1 or [ = 1 are eigenvectors of T°PT lying outside the valid subspace,
while those x*' for which £ > 2 and { > 2 lie within the valid subspace.

4.1 The eigenvector component matrices A and B

As has already been pointed out, the eigenvectors and eigenvalues of T°P" will emerge as the driving
force behind the network dynamics. It will therefore be very useful to examine the decompositions
of v and i°P" along these eigenvectors. We shall express the decompositions in terms of matrices
A and B, such that

v = ZZ[A]MX ZZ Ju(w* @h') (47)

k=11=1 k=11=1
n m n m

i = ZZ [B],x" = Z Z [B]M(wk @ hl) (48)
k=11=1 k=11=1

Referring to equation (46), we see that the first row and column of A correspond to components
of v outside the valid subspace, so the component of v which lies within the valid subspace may

be expressed as
vl = Tvely = YN [A]x = TS AL (wF @ h) (49)
k=21=2 k=21=2
If it is assumed that v is continually confined to the valid subspace, then the elements in the first
row and column of A are fixed as follows:

[A] = vix! = (T*lv +5)" (wF @ h')
_ n m\T k { T N exp B m1,!
= L"@o™)(w* @h')+v'(R"w"@R™h')
= LTw'e o™Th'y fork=1orl=1
2 ogfk=10=1
(Al {o fork=1and{>2 orl=1andk>2 (50)

Hence [A],; = +/n/m, while all the other elements in the first row and column of A are zero.
Considering now the matrix B, we see that

[B]kl _ 1oprT 17— (Tval ToPg + lop)) kI
— (Tops + 1op)TrI\val ki
=[B],; = 0 fork=1lorli=1 (51)



Thus the elements in the first row and column of B are zero.

4.2 Eigenvalue degeneracy

For many problems it transpires that the eigenvalues of P" or QT are degenerate; this degeneracy
propagates through to the eigenvalues of T°P". As an example, let us consider the Q matrix for
the travelling salesman problem (see Table 1). The (unordered) eigenvalues of the corresponding
Q" matrix are given by [1]

0 fori=1
n= { 2 cos (%’r(l - 1)) for [ > 2 (52)
It follows that many of the eigenvalues of Q" are degenerate, since if we define I=n—1+ 2, then
v1 = 7. For example, if n = 10 then the (ordered) eigenvalues of Q are approximately

y=[0 16 1.6 06 06 —06 —06 —1.6 —1.6 -2.0]"

and it is clear that there are four pairs of degenerate eigenvalues. We should really be examining the
component of v in the eigenplanes of T°P' instead of along each degenerate eigenvector of T°P'.
Since we shall make extensive use of the 10 city travelling salesman problem as an illustrative
example throughout this paper, it would be beneficial at this stage to introduce some notation to
cope with the eigenvalue degeneracy of this particular problem. Let us define a 10 x 6 matrix Z of
complex elements such that

Re((zly) = | w o Pri=t 653)
Kl [Alg 5y for2<1<6

1 (1Z _ 0 forl=1orl=6 ”

m([ ]kl) - [A]k721_1 for 2 S l S 5 (‘ )

Hence, for the degenerate eigenvalues, the magnitude of [Z],, gives the magnitude of v in the
associated eigenplane, while the phase of [Z],, gives the direction in that eigenplane. For the simple
eigenvalues, the corresponding [Z],, is real and gives the component of v along the corresponding
eigenvector. Let us also introduce a reduced 10 x 6 matrix ¢ of eigenvalues of T°P*, such that

Xkl forli=1
- 55
i { Xpo—o for2<1<6 (55)

The eigenvalues (i; correspond to the eigenvectors and eigenplanes in the decomposition Z.

4.3 Validity of solutions and bounds on A

In Section 4.1, 1t was demonstrated how confinement to the valid subspace fixed the elements in the
first row and column of A. We shall now go on to show how bounds on the other elements of A can
be derived by considering the form of a valid solution. It is difficult to analyze the effect on A of
the precise validity condition [V]Z»J» € {0, 1}. However, some progress can be made by considering a
slightly relaxed condition. For the two-graph matching problem (of which the travelling salesman
and Hamilton path problems are special cases) the final V is a permutation matrix, and so

vvl =viv =1 (56)

Equation (56) is a necessary but not sufficient condition for V to be a valid solution. The combi-
nation of equation (56) and
[V],; >0 (57)

1]



is, however, sufficient [1]. Defining a matrix A® such that [A%],, = [A]z,, and assuming that (56)
(but not necessarily (57)) holds, it can be shown that [1]

n n

Z [A®], = Z [A%], =1 (58)

k=1 =1

Moreover, these conditions, which are valid for the fully converged network output, can be relaxed
for the unconverged state vector to [1]

N
=
=
IN
-

(59)

YA, <1 (60)

=1

Hence the sum of the squares of the elements in any row or column of A cannot exceed one at any
time, and must reach this value when the network has converged to a valid solution. The same
conditions can be expressed in terms of the matrix Z for the 10 city travelling salesman problem.
Defining the matrix Z® such that [Z°],, = |[Z]k,|2, the conditions are

Sz, <1 (61)

10
{1 forl=1orl=6 (62)

2 for2<1<5h

with the strict equalities holding when v has converged to a valid solution. A similar result can
be derived for the graph partitioning problem, for which

Vv =11 (63)

In this case, following the approach in [1], it is straightforward to show that

oA, <2 (64)
k=1

with the strict equalities holding when v has converged to a valid solution. Hence, for the graph
partitioning problem, we obtain limits on the sum of the squares of the elements in the columns
of A, but not in the rows.

5 Examining the behaviour of the network

5.1 Linearization of the network dynamics

The Hopfield network’s dynamics are described by the following equations:

a = —nqu+Tv+i° (65)
v, = 9([uly) (66)

Let us assume that the network is initialized with v near the centre of the valid subspace, ie. with
v &~ s. If we also assume that v is continually confined to the valid subspace, then it i1s only
necessary to consider the dynamics of v'2 (49), the component of v in the valid subspace. For
small perturbations of u and v around the initial condition, it is possible to linearize the network
dynamics by writing u"® = a7?v"? leading to the following dynamic equation for v¥2 [1]:

jopr (67)

aTP

1
. val opr val
vvel — [ —_qopr _ p | yval 4
< 7 ) al®
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Using equations (48) and (49), we can rewrite these dynamics in terms of A and B [1]:

d N 1
E[A]M = XulA]+ ﬁ[B]kl (68)
where Y = % -7 (69)

This equation is valid for 2 < k < n and 2 < [ < m, since we know that the elements in the
first row and column of A are fixed by confinement to the valid subspace. If we assume an initial
condition A = A% then (68) can be integrated to give [1]

1 -
[Ao]kl + W[B]klt for X =0
Al = [A°] + [Bly, exp(Xrit) — (Bl for X #0 70
KU aTPygy aTPY

If we are considering a network with piecewise linear transfer functions, as in Figure 2, then
equations (70) are an exact description of the network dynamics until v reaches a hypercube face.

5.2 The effect of the linear bias term 1°**

OPr — (, then the linearized dynamics become

[A] (1) = [Ao]kl exp(Xrit) (71)

If we assume that 1

Equation (71) indicates that the sign of [A],, is totally dependent on its initial value [AO] 4 Which
is generally random for k£ > 2 and [ > 2. In other words, in the absence of a linear bias term 1°P",
the state vector will develop along the eigenvectors of T°P" in an unpredictable direction, and we
would expect the final solution to be highly dependent on the initial state [AO]M. This means
that for most problems, unless there is a multiplicity of optimal solutions located evenly around
the valid subspace (as in the case of the travelling salesman problem [1]), the presence of the linear
bias term is crucial if the network is to converge to a unique solution, let alone the optimal one.
However, the effect of the linear bias term on the network dynamics is not always beneficial. To
start with, it is often the case that i°P' is virtually orthogonal to many of the eigenvectors of T°PT,
and so the evolution of v along these eigenvectors remains indeterminate in terms of direction [10].
As a result, the network cannot be relied upon to converge to a unique solution, even though
i°P #£ 0, and the performance of the network is variable. Even if i°P" is capable of guiding the state
vector towards a unique solution, its effect can still sometimes be detrimental. To see why this
is so, first consider substituting a truncated Taylor series for the exponential in (70), and assume
that the [AO]M are small for £ > 2 and [ > 2. It subsequently transpires that for small ¢ [10]

X

Alu) ~ [A%,+ Bl

<v(t) =~ v(0)+

sopr
Nk t (72)
Hence 1°P" is the driving force behind the initial evolution of v. It is useful to note that the linear
bias term can be associated with a certain auxiliary linear problem [10], namely the minimization
of

Ealp — _vTiopr (73)

In some cases the auxiliary linear problem can be poorly related to the parent problem, inasmuch
as the optimal solution to the auxiliary linear problem lies in a completely different region of state
space to that of the parent problem. Given that the network dynamics are initially concerned
with minimizing £®P, it is not surprising that the initial behaviour of the network can often be
responsible for its eventual failure to find a good solution to the parent problem. In such cases,
it may be advantageous to reformulate the problem such that i°°* = 0, in so doing removing
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the initial dependence on the auxiliary linear problem; we shall see how this can be achieved in
Section 7.1. Of course, this means that the network stands no chance of converging to a unique
solution, and so for problems with no solution degeneracy, it will be necessary to run the network
several times, with different random starting vectors, to ensure that the best possible solution has
been observed. Fortunately, an effect of annealing, which will be illustrated in Section 6.1, is to
limit the number of solutions a network running with i°®" = 0 can find. Experimental evidence
suggests that, for cases where T°P' exhibits no eigenvalue degeneracy, the network can generally
converge to one of two solutions. Moreover, if an initial condition v'3 = v leads to one such
solution, then the initial condition v'® = —va! leads to the other. Hence the network need be run
at most twice to be sure of observing the best network performance on any particular problem, and
only once if there exists a suitable multiplicity of optimal solutions, as with the travelling salesman
problem.

Dispensing with the i°P" term also simplifies the mathematical analysis considerably, and since
all problems may be cast into this form, we shall from this point on assume i°?" = 0, and refer to
the simplified dynamics (71).

5.3 Evolution of v along each eigenvector

Examining equation (71), it is clear that if the network state vector v is going to evolve along
a particular eigenvector x*'| it is necessary that Yz > 0. If, on the other hand, ¥;; < 0, then
[A],, — 0 and the evolution of v along x*! is blocked. Hence, those [A],, with X4 < 0 are not
responsible for the progress of v towards a hypercube corner. Unfortunately the situation is not
quite so simple for the MFA dynamics, which perform an Euler approximation of the continuous
Hopfield network dynamics with 7 = 1 and a time step At = 1. Since this is a rather large time
step, it is feasible that the simulation may fail to stabilize those [A],, with Y < 0, over-correcting
at each time step and leading to an underdamped oscillation of the [A],,’s. Hence the presence of
negative Yg;’s can result in instability of the MFA dynamics, especially if the MFA equations are
updated synchronously [20].

While the above results were arrived at through a linearized analysis, valid only at the start
of convergence when v'3 & 0, it is possible to use an energy based argument to extend their
applicability for the case 7 = 0. The effective objective function, F°P", may be expressed relative
to the eigenvector basis as follows [1]:

B = =3 ) Al fori®r=0 (74)
k=21=2

If we view the network dynamics as continuously reducing the objective function E°P") then by
inspection of equation (74), it is clear that for yz; < 0 it is desirable that [A],, — 0. When the
nonlinearities of the network are taken into account, the [A],,’s are no longer independent, so it
is not the case that the network dynamics will necessarily enforce [A],; — 0 for xz < 0, if in so
doing the augmentation of an [A],; with a large positive yg; is prevented. However, it is reasonable
to assume that those [A],; with xz < 0 will not evolve to any considerable degree, since this is
unlikely to result in a reduction of E°PT,

To extend the applicability of the energy argument to cover MFA, we must consider the effect
of setting n = 1. Since the 7 term in the network’s Liapunov function (15) is convex and minimized
at v = 0, its effect is roughly to force the network to evolve [A],; to a value somewhat smaller that
would be expected given the minimization of E°P' alone. Hence the result that xz; < 0 prevents
the significant evolution of [A],, throughout convergence is certainly true for MFA as well, with
the same proviso concerning instability for yz; < 0.

6 Annealing

Some form of annealing has been commonly employed by most researchers in the field to improve
the quality of solutions attained by optimizing networks. In this section we shall examine two
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different annealing techniques for the Hopfield network and MFA | concluding that they both have
much the same effect on the evolution of A.

6.1 Hysteretic annealing for the Hopfield network

Hysteretic annealing [6] has proved particularly successful when applied to the Hopfield network
system. Similar schemes have been independently examined by several researchers: see, for exam-
ple, convex relaxation [19] and matrix graduated non-convexity [1]. The idea is to incorporate a
variable amount of self-feedback into the network dynamics, so that

au="Tv+ fBv +i° (75)

The consequences of the self-feedback can be most conveniently analyzed by replacing T°P with
TP + BI in the foregoing analysis. The problem objective function E°P becomes

. 2
[oP — _%VTTOPV - (IOP)TV — Bllvll

which is still a valid objective for the problem, provided ||v||2 is the same for all valid solutions (as
is the case for all the problems considered in this paper). The eigenvectors of T°P* are unchanged,
but the eigenvalues become [1, 10]

| M+ B fork>2and(>2
XM_{O fork=1orl=1 (76)
Hence .
— (A fork>2and{>2
)2;“ = CVTP( k71+ﬁ) or - an - (77)

0 fork=1lorl=1

The annealing starts with a sufficiently negative value of 3 such that all the yj; are negative; the
network therefore stabilizes at the centre of the valid subspace, since [A],, — 0 for all k > 2,1 > 2.
The parameter 3 is then gradually increased, so that one of the xg; becomes positive, at which
point the corresponding [A],, is free to increase in magnitude. Only when £ is increased further is
it possible for other [A],’s to depart significantly from their stable values of zero. Thus the action
of annealing is to control the evolution of A so that the [A],,’s are introduced roughly in the order
of the corresponding y;;’s. In other words, v evolves along those x*' with the largest positive
eigenvalues first, and then along those with the more negative eigenvalues later. By making 3
sufficiently positive, all the y1;’s can become positive, at which point the ||v||2 term dominates the
Liapunov function, ensuring convergence to a hypercube corner as the network drives v outwards
in order to maximize ||v||’.

Figure 3 illustrates the effects of annealing and using different random starting vectors on a
simple, hypothetical problem. In Figure 3(a) we see a 2-dimensional valid subspace within a 3-
dimensional unit cube; there are three valid solution points at the cube corners labelled A, B and
C, all equidistant from the origin O. In Figure 3(b) the contours of the effective objective function
E°PT have been marked on the valid subspace. E°P' is a pure quadratic form with 1°P* = 0, so there
is a stationary point at the centre of the valid subspace, equidistant from the three valid solution
points. The eigenvectors of T°PF, x! and x?, are the axes of the conic sections which make up the
contours of F°P". We have assumed that both of the eigenvalues of T°P"| y; and x2, are positive,
so that the contours are ellipses. We have also assumed that y; > x2, so the descent is steepest
in the x! direction. Examining the contours, it is clear that the corner C represents the unique
global optimum to this problem. As discussed in Section 5.2, since i°?* = 0 and there is no solution
degeneracy, we would expect to have to anneal the network twice to be sure of observing the best
possible solution, starting once with v¥@ = v¥3 and then again with v'® = —v'3l Looking at
Figure 3(b), we see that, in the absence of an annealing process, any of the three corners A, B and
C can reached by descent dynamics starting from positions near the centre of the valid subspace.

The effect of annealing is to make the network behaviour less dependent on the random starting
position and increase the chances of the network finding the optimal solution. Figure 3(c) shows
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the contours at the start of an annealing process, when only x; is positive. The stationary point
at the centre of the valid subspace has been turned into a saddle point, and any move away from
the starting position which increases the magnitude of the x? component also increases E°P*. Let
us consider a network with piecewise linear transfer functions, as in Figure 2, so that the linearized
analysis 1s valid until the state vector reaches a hypercube face. The subsequent trajectory of the
state vector will therefore reduce the x? component towards zero and increase the magnitude of
the x! component: such a trajectory, starting from a position v¥® = v is shown in Figure 3(c).
When the state vector reaches a hypercube face, its components along x' and x? are no longer
independent, and so it is possible that the component along x? can now increase, even though
X2 < 0. In Figure 3(d) we see that this is indeed what happens in this case, and the optimal
solution is attained. Figure 3(e) shows the effect of starting from an initial position v¥3 = —v7al
This time the x! component is introduced with the opposite sign, leading to a suboptimal solution
in Figure 3(f). Note that, for this second starting position, it was necessary to advance the
annealing so that y2 > 0, in order to force convergence to a hypercube corner.

This example illustrates the necessity of running the network twice, starting once with v¥a =
v’ and then again with v'® = —v¥# unless there is a multiplicity of equivalent solutions
located at regular intervals around the valid subspace, as with the TSP. Furthermore, we see that
the annealing has made it necessary to run the network only twice, whereas with no annealing it
would be necessary to try many random starting vectors to be sure of finding the optimal solution
at least once. Remember that it may be necessary to run the network twice even if i°P* # 0, since
it is possible that i°®" may be orthogonal to x!, in which case v’ will still evolve in one of two

directions along x!, depending on the sign of the random starting vector.

6.2 Temperature annealing for MFA

A more familiar form of annealing is often employed in conjunction with the MFA equations. In
a direct parallel with simulated annealing, the ‘temperature’ parameter 77 is gradually reduced
from its initial value as the network converges to a hypercube corner. Recalling that for MFA

o Xk

Xkl = TP
it is apparent that [A],, can depart from its stable value of zero only when x3; > o7?. Hence, the
effect of reducing TP is to gradually free more of the [A],,, again in the order of the corresponding
Xgi’s. Unlike the case of hysteretic annealing, those Yx; with associated yx; < 0 will never become
positive in the course of annealing, and so evolution of v along these eigenvectors cannot take
place, except in the unstable sense as TP — 0 and the y;; become very negative. Instability of the
MFA equations can be avoided by ensuring that none of the y;; become excessively negative. This
is usually achieved by mixing hysteretic annealing with temperature annealing, using a fixed value
of # to make the xg;’s more positive. The stabilizing effect of 5 has been previously noted in [20].

6.3 Annealing for the two-graph matching problem

The likely result of such annealing processes can be examined in more detail for the two-graph
matching problem, for which n = m and so A is square. Remember that the travelling salesman and
Hamilton path problems are both special cases of the two-graph matching problem. In what follows,
hysteretic annealing will be used as our example, though it should be realized that temperature
annealing has approximately the same effect.

To begin with, let us assume that the A; and 4; are all positive for k > 2 and [ > 2. Recalling
that the eigenvalues of T°P* are given by

Xkl = Apvi+ B (78)

and that the Ax’s and v;’s are ordered as in (42) and (43), it is apparent that the most positive
eigenvalue of T°P" is x,,. The network will therefore introduce [A],, first, until [A®],, = 1,
at which point the magnitude of [A],, can increase no further without violating conditions (59)
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(e) Start of annealing, (f) End of annealing,
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Figure 3: The effects of annealing and different random starting positions.
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and (60). The dynamics therefore stabilize at this point until 3 is increased further so that another
Xkt becomes positive. Note that the presence of [A®],, = 1 means that no further elements in the
second row or column of A can be introduced without violating conditions (59) and (60). The next
most positive X with k # 2 and [ # 2 is x33. The dynamics will therefore introduce [A];5 until its
magnitude equals one, and then stabilize again. The presence of [A];5 blocks the other elements in
the third row and column of A, so the next element to be introduced will be [A],,. This process
continues, and it 1s apparent that the network ideally reaches a state for which A® =I". Now, in
the above analysis, the condition [V]Z.j > 0 (57) was ignored, and it is highly unlikely that the state
A® = I" can be achieved without violating this condition. However, it is reasonable to propose
that the network will attain a state not unlike A% = I", without violating (57).

The above reasoning can be extended to cover cases in which P* and Q" have both positive and
negative eigenvalues [1], with the same result. The corresponding result for the 10 city travelling
salesman problem is that the network will find a solution for which Z® is not unlike the matrix
Z'° where

ZlO —

OO OO Rk OOoOCOo
OO R PR OO oo
—_—0 O OO OO
O OO OO OO OO

SO DODODOODDODDO OO -
OO OO OO OO O

o
o
o
—

To illustrate the annealing process, let us consider a particular 10 city Euclidean travelling
salesman problem, where the cities have been randomly placed within a unit square. The P and Q
matrices are set according to the mappings in Table 1, and it transpires that the reduced eigenvalue
matrix ¢ for this problem is

1 0 0 0 0 0 N
0 358 1.37 —1.37 —3.58 —4.42 — 1 3 41 44 45
0 1.69 0.64 —0.64 —1.69 —2.08 — 2 5 37 42 43
0 0.87 0.33 —0.33 —0.87 —1.08 — 4 8 33 39 40
0 062 024 —024 —062 —0.76 — 6 10 29 36 38
=10 039 015 —015 —039 —04s | @ =1 _ 7 14 93 34 35
0 024 0.09 —0.09 —024 —0.29 — 9 15 22 30 32
0 0.19 0.07 —0.07 —0.19 —0.24 — 11 16 21 26 31
0 0.18 0.07 —0.07 —0.18 —0.22 — 12 17 20 25 28

| 0 016 0.06 —0.06 —0.16 —0.20 | - 13 18 19 24 27 |

where the right hand matrix shows the ordering of the elements of (; the dashes correspond to
eigenvalues outside the valid subspace, which play no part in the network’s dynamics.

Figure 4 shows the matrix Z° at various values of § as a Hopfield network converges towards
a valid solution. For g = —4.5, all the 5k1’s are negative, and so the network stabilizes at a point
near the centre of the valid subspace. For § = —4.0 only 522 is positive, and the network has
increased the magnitude of [Z],, as predicted. By the time § = 0.2, the Z® matrix has evolved
to a form not unlike the expected Z'° defined above, though those [Z],, with negative (N’kl’s have
yet to be introduced. Finally, when 8 = 0.4 the network has successfully converged to a valid
hypercube corner, and the final form of Z* is similar to Z1°. So this illustrative experiment is in
good agreement with the theory presented above. The tour length for this solution is 2.96 units,
which is in fact the global optimum for this problem.

In order to demonstrate the equivalence between hysteretic annealing and temperature anneal-
ing, Figure 5 shows how the Z® matrix evolves for the same problem being solved by MFA with
neuron normalization [1, 20, 23]. It is apparent that the state vector follows a similar trajectory to
that of the Hopfield network, leading to an identical final solution with a tour length of 2.96 units.
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(¢) B =-0.1 (d) 8 = 1.5 (Fully converged)

Figure 4: Z° matrix for the 10 city TSP being solved by a Hopfield network with hysteretic
annealing. The solution, seen decomposed in (d), is optimal.
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(a) TP = 0.5 (b) 77 = 0.35

(¢) TP =0.30 (d) T? = 0.20 (Fully converged)

Figure 5: Z° matrix for the 10 city TSP being solved by MFA with temperature annealing. The
solution, seen decomposed in (d), is optimal.
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7 Alternative Energy Functions

There are an infinite number of continuous functions which are suitable objectives for any particular
combinatorial optimization problem. Moreover, it is often the case that an infinite number of
suitable quadratic functions exist, any of which can be used in conjunction with the Hopfield
or MFA dynamics. We have already come across a class of such functions when we considered
hysteretic annealing, for which it was demonstrated that any function of the form

Fop — _%VTTOPV — (iOP)TV - ﬁHVHZ

was a suitable objective for a particular problem, so long as all valid solution points have the same
||v||2. It is readily apparent that when we are attempting to solve a discrete problem by descent
on a continuous energy function, the positioning of the discrete problem’s solutions relative to
important features of the continuous energy function is going to be critical to the success of the
descent procedure. Given that there are many applicable continuous energy functions, we would
expect some to be more suitably related to the underlying discrete problem than others, and give
correspondingly better solutions with the Hopfield or MFA dynamics.

There are several levels at which it is possible to derive alternative energy functions for the
same underlying discrete problem. At the highest level, we might choose to modify the problem
representation, so that, taking the two-graph matching problem as an example, we are no longer
searching for a permutation matrix V', but for some other form by which a solution may be uniquely
represented. At this level of abstraction the possibilities for alternative energy functions are vast.
We shall limit ourselves in this discussion to retaining the usual solution representations, and
investigating alternative functions compatible with these representations. As has previously been
mentioned, there are an infinite number of such functions, though identifying analytical expressions
for them is far from straightforward.

One such class of functions may be derived for the unlabelled two-graph matching problem.
By ‘unlabelled’; we mean that there are no features identified with any single node in isolation, so
that the edge weights obey ez; = 0 for both graphs (the travelling salesman and Hamilton path
problems both exhibit this property). The usual objective function for this problem (see Table 1)
is obtained by setting P to be the edge weight matrix for the first graph, and Q to be the edge
weight matrix for the second graph, and minimizing

ESP = —Ltrace <VTPVQ) (where [P],; = [Q],; = 0)
subject to V being a valid permutation matrix. We shall now propose a class of alternative
functions

E°P = —%trace (VT(P +oI")V(Q + Dq)) (79)

where D4 is an n x n diagonal matrix and ¢ is a scalar constant. Using the fact that V is a
permutation matrix for valid solutions, we obtain

P = pep— 1 [trace (VTPVDq> + ¢ trace <VTI”VQ) + ¢ trace (VTI”VDqﬂ
= EgP— % [ZH: [VDqVT] . [Pli; + ¢ Zn: [Ql;; +¢ Xn: [Dq]ii]
i=1 i=1 i=1
= E — ¢ trace(D9) (80)

Hence E°P is a valid objective function for any D9 or ¢, since, to within a constant, the energy
at the valid hypercube corners is the same as that obtained using the original function ESP.
The symmetry of the formulation indicates that it is equally valid to add an arbitrary diagonal
matrix DP to P, and a multiple of the identity matrix to Q. The alternative energy functions so
obtained result in T°P" having different eigenvectors and eigenvalues, and so we would expect the
performance of descent procedures on these functions to be quite variable. We shall now go on to
consider how to exploit this flexibility to our advantage.
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7.1 Removing the linear bias term

As mentioned earlier, the linear bias term i°P* can be a nuisance, as it dominates the network
dynamics at the start of convergence, and can guide v into a poor region of state space on the
basis of an inappropriate linear objective function E2P (73). In this section, we shall consider how
an alternative objective function may be selected for any unlabelled two-graph matching problem
such that the linear bias term i°"" vanishes. Recall that for n = m (39)

ir = L(R"Po" @ R"Qo")

Now consider adding a diagonal matrix D4 to Q, where

n

[D];; =0 —[Qo"], =0 — Z [Q]” (81)

ji=1

and @ is an arbitrary constant. This results in all the row sums of (Q + D9) equalling 0, in which
case (Q + D%)o" = fo". The linear bias term subsequently becomes

jopr  —

(R"Po" @ R*(Q + D%)o™)
(R"Po" @ fR"o™)

O 3= 3|

& 1PT (82)
In this manner, any unlabelled two-graph matching problem can be formulated with no linear bias
term. The elements of DY may be made, on average, as small as possible by setting

0= %ZZ[Q]” (83)

i=1 j=1

which ensures that the eigenvalues of the modified Q are not uniformly shifted by any significant
amount; this may be advantageous when attempting to modify the annealing process, as described
in Section 7.2.

While this technique is of no relevance to the travelling salesman problem, for which i°P" = 0
without any modifications to Q, it may be useful for more general two-graph matching problems
in which the linear bias term is having a detrimental effect. Such a problem is illustrated in the
following example, in which two random 10-node graphs are to be matched. Figure 6(a) shows the
decomposition of the solution found by a Hopfield network using the original objective function
ESP. The values plotted in rows 1 to 10 give the elements of A%, while the extra value plotted at
position (0,0) gives the component of v along i°P: ie. it measures (v¥i°Pr)/ [|i°PF||. It is apparent
that the solution obtained with the original formulation contains a significant component along
i°?", which is not surprising since it is i°°" which guides v in the early stages of convergence.
Figures 6(b) and 6(c) show the solutions obtained using the alternative objective function with
0 set as in (83), starting once with v'3 = v’ and then again with v'® = —v?3! The values
plotted at (0,0) give the component of v along the i°P" of the original mapping, though there is
no actual linear bias for this alternative mapping. Both alternative solutions are superior to the
original solution, and both exhibit smaller components along the original linear bias term i°P*. In
particular, the best solution, seen in Figure 6(b), has a component along i°P" less than half that
of the original solution in Figure 6(a), and it is most unlikely that this solution could have been
found using the original objective function with i°P" #£ 0.

However, it is by no means certain that removing i°P" will always improve the solution quality;
an improvement can be expected only when the auxiliary linear problem is misleading in the
context of the parent problem. Removing i°P" can indeed have a detrimental effect, since there
is no guarantee that the alternative objective will be any more suited to the underlying discrete
problem than the original objective. In an experiment, 1000 pairs of 10 node random graphs
were generated, and then matched using a Hopfield network running with both the original and

alternative objective functions. The results are summarized in Table 2: for the alternative objective
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(a) Original objective,
ES%P = —51.16

(b) Alternative objective, (c) Alternative objective
initial v¥® = v¥a!, initial v'& = —vYal
E%® = —51.75 E% = —51.42

Figure 6: A® matrices and i°P"

problem.

components for the alternative solutions to the two-graph matching
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Problem Frequency | Mean ESP | Mean ESP
subset with i°P* without i°P*
Removing i°P" | 599 —13.5 —13.2
detrimental

Removing i°P* | 328 —13.1 —13.4
beneficial

Removing i°P" | 73 —13.1 —13.1

has no effect

All 1000 —134 —13.3
problems

Table 2: Effect of removing i°?" in 1000 random two-graph matching problems.

Problem Frequency | Mean ESP | Mean EJP
subset with i°P* without 1°P*
Removing i°F" | 645 —14.0 —13.8
detrimental

Removing i°P" | 197 —13.5 —14.0
beneficial

Removing i°P* | 158 —14.1 —14.1

has no effect

All 1000 —13.9 —13.9
problems

Table 3: Effect of removing i°?" in 1000 Euclidean two-graph matching problems.

function, the best of the two possible solutions is represented in the statistics. We see that there
is a subset of 599 problems for which the original objective is better, a subset of 328 problems for
which the alternative objective is better, and a subset of 73 problems for which both objectives
perform equally well. On average, the original objective outperforms the alternative objective by
a narrow margin. However, the fact remains that in about 33% of the problems, the removal of
i°P* was beneficial. The same experiment was carried out with 1000 Euclidean graphs, where the
edge weights represent the Euclidean distance between the two nodes in a plane (such a graph has
applications in invariant pattern recognition [10, 11, 5, 17]). The results, summarized in Table 3,
show that while the removal of i°°* was beneficial in only 20% of the cases, the improvement
in solution quality for these cases was more significant than for the random graphs, resulting
in the average performance of the two objective functions being virtually identical. While it is
unfortunate that there is no clear first choice of objective function, it is important to bear in mind
that alternative objectives exist, and that the alternatives must be fully explored to be sure of
finding the best possible solution.

7.2 Influencing the annealing

If we are to reserve modifications to Q for the purpose of removing linear bias terms; then the
alternative objective functions (79) still offer us one more degree of freedom, that being to add
a multiple of the identity matrix to the leading diagonal of P. While this has no effect on the
eigenvectors of T°P", it does modify the eigenvalues. Recalling from Section 6 that the course of
an annealing process relies heavily on the ordering of these eigenvalues, it is clear that we can use
this remaining degree of freedom to influence the annealing.

As an example, let us consider the Fuclidean travelling salesman problem of Section 6.3. By
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adding the matrix DP = —I" to P, the reduced eigenvalue matrix becomes

1 0 0 0 0 0 - - - -
0 196 075 —0.75 —196 —2.42 — 1 15 37 44 45
0 007 003 —0.03 —0.07 —0.08 — 24 95 26 27 28
0 —0.74 —028 028 074 0.92 — 36 29 23 16 14
0 —1.00 —038 038 1.00 1.24 — 38 30 22 13 11
C=10 —193 —047 047 123 152 order(() =1 49 31 91 12 ¢
0 —1.38 —053 053 138 1.71 40 32 20 10 5
0 —1.42 —054 054 142 1.76 — 41 33 19 9 4
0 —1.44 —055 055 1.44 1.78 42 34 18 8§ 3
| 0 —146 —056 056 1.46 1.80 | | — 43 35 17 7T 2

Note that this gives a very different eigenvalue ordering compared with the original objective
function in Section 6.3, and so we would expect the annealing to follow a correspondingly different
course. Figure 7 shows the result of annealing on this energy function. It is apparent that a
different solution has been achieved: in fact, this solution is poorer, with a tour length of 3.07,
compared with 2.96 for the original objective.

Given that by adding different multiples of I” to P we can realize an infinite number of alter-
native objective functions, the obvious question is which one is it best to use? Of the two we have
investigated so far, one took the network to the optimal solution, while the other achieved a poorer
solution. We are really asking which continuous energy function leads most directly to the global
optimum of the discrete problem. To answer this question, we require some knowledge of the likely
structure of the optimal solution relative to the eigenvector basis of T°P". Given the mathematical
intractability of the combinatorial optimization problems in question, it is highly unlikely that this
information can be obtained analytically. Instead we must appeal to experimental means.

8 Investigating properties of the optimal solution

While exhaustive search for the optimal solutions to combinatorial optimization problems is gen-
erally impractical, it is a reasonable undertaking for small problems, and if we take the properties
of the small problems to be typical of larger problems of the same class, then the results should be
very useful. To this end 1000 Euclidean 10 city TSPs were generated, and exhaustive search was
applied to each problem to find the optimal solution. The same process was carried out for 1000
random 10 city TSPs (by a random TSP, we mean a TSP for which the distance matrix does not
correspond to any set of points in a 2D plane, but is an arbitrary, symmetric square matrix). Fur-
thermore, the Z° matrices for all the optimal solutions were calculated, along with their mean and
standard deviation across the ensemble of 1000 problems; the results are summarized in Figures 8
and 9.

Looking first at the Euclidean problems (Figure 8), we see that the optimal solutions’ decom-
positions, on average, bear a close resemblance to the Z!° matrix. The resemblance is closest
around the largest elements, to be found in the (2,2) corner, where the standard deviations are
also relatively low. So it seems that the optimal solution consistently has large components [Z°],,
and [Z®],,, while the activity towards the (10,6) corner of Z® becomes less predictable. Hence, if
we were to arrange the annealing so that the elements in the (2,2) corner were introduced first,
and those in the (10,6) corner later, we would expect an optimizing network to perform very well
on these problems. By the time the network has introduced the [Z°],, and [Z®];, components, v
would already be in a very good region of state space, with a good chance of finding the optimal
hypercube corner by local descent. Conversely, is we arranged the annealing so that the elements
in the (10,6) corner were introduced first, then v is likely to enter a poor region of state space
from the outset, since the optimal solution has an unpredictable structure in the directions along
which v initially evolves: the resulting solution is likely to be poor. These arguments are in good
agreement with the experimental findings of Sections 6.3 and 7.2.

Turning now to the random problems (Figure 9), we see a more diffuse matrix Z*, though still
not wholly unlike the Z!° matrix. The standard deviations of all the significant elements of Z*
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(¢) B=-0.1 (d) 8 = 0.0 (Fully converged)

Figure 7: Z° matrix for the 10 city travelling salesman problem at several values of 8 with the
alternative energy function.
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(a) Mean of Z° (b) Standard deviation of Z*

Figure 8: Mean and standard deviation of the Z® matrix for the optimal solutions to 1000 Euclidean

TSPs.

(a) Mean of Z® (b) Standard deviation of Z*

Figure 9: Mean and standard deviation of the Z° matrix for the optimal solutions to 1000 random

TSPs.
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Figure 10: Mean reduced eigenvalue matrices ¢ for the TSPs without modification to P.

are relatively high, indicating that the optimal solutions have a far less predictable structure than
those of the Euclidean problems. Indeed, the variability of the optimal solutions’ decompositions
along the eigenvectors of T°P" can be taken as a good indicator of the difficulty of solving the
problems with optimizing networks, since such networks will always converge to a solution with a
fairly predictable decomposition along these eigenvectors (in this case the Z!® matrix). So it seems
that the random TSP is going to be an altogether more difficult problem to tackle. In particular,
there is no direction along which the optimal solution has a large component with low variance,
and so there is no corresponding criterion for selecting a suitable annealing process. Nevertheless,
since the variances in the (2,2) corner are slightly lower than those in the (10,6) corner, we will
attempt to arrange the annealing so that these elements are introduced first.

For the planar Euclidean travelling salesman problem, there is strong experimental evidence
that if the elements on the leading diagonal of P are all set to zero, then the Aj, are all positive [1, 10];
this is presumably a consequence of the constraining effect of the Euclidean geometry on the
distance matrix P. This ensures that, without any modifications to the leading diagonal of P, the
elements of Z* will be introduced in the desired order, that is (2,2) corner first. This is confirmed
in Figure 10(a), where we see the mean of the reduced eigenvalue matrices ¢ for the 1000 Euclidean
problems with [P];; = 0: the ordering of the eigenvalues is suitable for introducing the [Z*],, in the
required order. Figure 10(b) shows the mean of the reduced eigenvalue matrices for the random
problems, again with all the elements on the leading diagonal of P set to zero. While this is suitable
for introducing the elements in the (2,2) corner of Z*® first, considering the high variance of the
optimal solutions’ decompositions in these directions, some experimentation with the eigenvalue
ordering (via the leading diagonal of P) might be beneficial.

9 Testing the theory

The results of experiments on the TSP problem sets are displayed in Table 4. Each problem was
solved using the Hopfield network and MFA, and an alternative energy function was tried out
for the random TSPs. The Hopfield network was simulated using direct projection onto the valid
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Problem | [P],; | Mean HN | Std. dev. of | Mean MFA | Std. dev. of | No. valid
error HN error error MFA error | for MFA
Euclidean | 0.0 | 0.71% 1.64% 1.36% 2.39% 987
Random 0.0 | 13.5% 13.7% 9.85% 11.1% 988
Random | —0.2 | 11.1% 13.2% 10.5% 11.2% 985

Table 4: Results of experiments on the Euclidean and random problem sets.

subspace, as in Figure 2, thus ensuring that valid solutions were obtained 100% of the time. Neuron
normalization [1, 20, 23] was used in conjunction with the MFA algorithm to directly enforce one of
the two validity conditions. This left two parameters to set: the weighting given to the remaining
penalty term in the energy function, and the amount of self-feedback used to prevent instability.
These parameters were manually adjusted to extract the best possible performance from the MFA
algorithm, without obtaining an unacceptably large number of invalid solutions. Annealing was
started at a sufficiently high value of 7% (or low value of 3) to ensure that the network initially
stabilized at the centre of the valid subspace. The ensuing annealing schedule was made deliberately
slow, in order to tilt the balance of the compromise towards high quality solutions, and away from
rapid convergence rates.

As expected, performance on the Euclidean problems was excellent, with the average solution
quality being about 1% suboptimal. Performance on the random problems was significantly poorer,
with average tour lengths being about 10% longer than the optimal tour. Note that the use of an
alternative energy function to influence the annealing considerably improved the performance of
the Hopfield network, though slightly degraded the MFA results.

In order to verify the cause of failure for the random TSPs, it would be useful to study the
solutions which the optimizing networks found to these problems. Figures 11 and 12 show the mean
and standard deviations of the Z® matrices for the solutions obtained by the networks to the random
TSPs, using the original energy functions with [P],, = 0. Both mean decompositions resemble the
Z'° matrix much more closely than the decomposition of the optimal solutions (Figure 9(a)),
indicating that the networks are not capable of finding solutions which deviate from this form by
a large degree. The eigenvalue ordering for the random problem was such that the elements in the
(2,2) corner of Z° were introduced first, and we see that the standard deviations in these directions
are correspondingly low, especially when compared to those of the optimal solutions (Figure 9(b)).
What is somewhat obscured in the plots is the value of the standard deviation of [Z®],,: 0.23 for
the optimal solutions, 0.11 for the Hopfield network solutions and 0.14 for the MFA solutions.
Hence both networks consistently (ie. with low variance) introduce a large component [Z°],,, as
expected from considerations of the dynamics, whereas the optimal solutions exhibit considerable
variance in this direction. As this is the first component introduced by the network, any error will
take the state vector into a poor region of state space from the start, leading most probably to
a poor solution. Hence, 1t is likely that this constitutes the main cause of failure on the random
problems. We could not expect to do any better by arranging the annealing so that some other
element of Z®° is introduced first, since the optimal solutions exhibit even greater variance along
any such alternative direction.

10 Discussion and Conclusions

While recent trends have been towards using optimizing networks to solve ever more useful and
complex problems, it is most important to note the network’s failure to perform well on a problem
as small as a 10 city random TSP. There is nothing particularly special about the random TSP;
we can expect the solutions to other problems to have just as undesirable properties relative to the
eigenvector basis of T°P".

The use of alternative energy functions can potentially improve the network’s performance on
such problems. In this paper, we have demonstrated that such alternative functions exist for the
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(a) Mean of Z° (b) Standard deviation of Z*

Figure 11: Mean and standard deviation of the Z° matrix for the Hopfield network solutions to

1000 random TSPs.

(a) Mean of Z® (b) Standard deviation of Z®

Figure 12: Mean and standard deviation of the Z° matrix for the MFA solutions to 1000 random
TSPs.
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two-graph matching problem, and we have described how the structure of the network’s solution
can be predicted by examining the effect of the specific function being employed. We have also
demonstrated how alternative energy functions can improve the solution quality of the network,
but it has seemed difficult to predict which energy function will perform best without some prior
knowledge of the structure of the optimal solution.

Even with such knowledge about the optimal solution, we have seen for the random TSPs
that none of the alternative energy functions could dramatically improve the performance, since
the optimal solutions exhibit considerable variance when decomposed along the eigenvectors of
T°P". We could in this way distinguish between ‘hard’ problems, like the random TSP, and
‘easy’ problems, like the Euclidean TSP. ‘Easy’ problems have optimal solutions with a predictable
structure relative to the eigenvectors of T°P' at least along those eigenvectors which are most
prominent in the decompositions. For ‘hard’ problems, however, there are no eigenvectors along
which the optimal solutions have predictably large components, and so there is no way in which
we can arrange the annealing to rapidly guide v into a good region of state space.

In conclusion, the main contributions of this paper have been to identify a significant cause of
poor performance in optimizing neural networks, and to draw attention to degrees of freedom in
the problem mappings which have not been previously examined. Bearing in mind the networks’
performance on the random TSPs, it would seem a little rash to use such networks to solve
more complex problems for which a high quality solution is required, without first performing
a detailed study of these problems’ solutions to demonstrate the applicability of the network
technique. However, optimizing neural networks would seem to present a sensible compromise
between solution quality and speed when applied to a wide range of problems, especially when the
potential for fast, parallel implementations is considered.
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