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ABSTRACT

Recently, an extension to standard hidden Markov mod-
els for speech recognition called Hidden Model Sequence
(HMS) modelling was introduced. In this approach the
relationship between phones used in a pronunciation dic-
tionary and the HMMs used to model these in context is
assumed to be stochastic. One important feature of the
HMS framework is the ability to handle arbitrary model
to phone sequence alignments. In this paper we try to
exploit that capability by using two different methods to
model sub-phone insertions and deletions. Experiments on
the Resource Management (RM) corpus and a subset of the
Switchboard corpus show that, relative to standard HMM
baseline, a reduction word error rate (WER) of 24.3% rela-
tive can be obtained on RM and 2.4% absolute on Switch-
board.

1. Introduction

The dominant techniques in acoustic modelling for speech
recognition are based on the use of Hidden Markov Models
(HMMs). While there have been a number of advances in
the use of HMMs in recent years, simple left-to-right chain
topology models are still used in most recognition systems.
Even though this “pearls-on-a-string” modelling approach
is widely believed to be suboptimal, more complex schemes
are rarely found in state-of-the-art systems.

In a standard HMM recognition system, each phone (in
context) is uniquely associated with a particular HMM.
Most commonly the associated HMM is found using pho-
netic decision trees which make use of local phonetic con-
text [?]. The decision trees are usually built using an ap-
proximation of the models e.g. using a single Gaussian
distribution per state when targeted at mixture Gaussian
distributions. The decision tree technique allows partic-
ular model states (or complete models) to be used in a
variety of phone contexts and the sets of shared states for
each context to fill a predetermined model topology. The
most common topology is a three state left-to-right model
with only self transitions or transitions to the next state
(i.e. no skip transitions).

Pronunciation variants or pronunciation networks are ad-
ditional methods for model selection. Pronunciation mod-
elling is considered to be particularly important for sponta-
neous speech, where the variability of pronunciation, stress
and speaking rate is considerably greater than for read

speech. Phone level transcriptions of spontaneous speech
show significant differences between the canonical pronun-
ciations in the dictionary and their actual realisation [?].
These differences can be described as substitutions, dele-
tions and insertions where the latter appear to play a fairly
minor role. However explicit modelling of these variations
using pronunciation networks has brought only moderate
improvements [?]. Furthermore, an analysis of sponta-
neous speech data in [?] showed that changes from canon-
ical dictionary forms to surface forms can occur at the
sub-phone level.

We have previously introduced the Hidden Model Sequence
(HMS) modelling framework [?] in which the unique map-
ping from dictionary phones to HMMs was replaced by
a stochastic mapping. This stochastic mapping uses an
additional model sequence model (MSM) and in the HMS-
HMM approach the model sequence for a particular pro-
nunciation sequence is hidden. The most appropriate
HMM to use is dependent on the particular acoustics
rather than determined a priori using decision trees. The
straight-forward HMS implementation used in [?] was con-
strained to use exactly one HMM for each dictionary
phone' and was aimed at better handling within-phone
variability. In this paper the use of HMS-HMMs which
allow insertions and deletions of HMM states is presented
and either a variation of the usual N-gram approach to
MSMs or the general multigram method [?] is used to map
from a dictionary phone sequence to an arbitrary length
HMM sequence.

The rest of this paper is organised as follows. The next
section briefly explains the framework and theory of HMS-
HMDMs and implementational issues. The following section
discusses approaches for modelling of sub-phone insertions
and deletions and explains two strategies that have been
investigated. This is followed by an experimental evalua-
tion of the techniques on the Resource Management and
Switchboard corpora.

2. Hidden Model Sequence Modelling

The standard training procedure of HMMs for speech
recognition maximises the likelihood of an acoustic feature
sequence O given transcriptions of training data. In most
cases a dictionary is used to translate the word sequence

L For state-level HMS-HMMs there were three HMMs per dic-
tionary phone.



into a phone transcription sequence R which in turn is
modelled by a (deterministic) sequence of context depen-
dent HMMs. Therefore, knowledge of R is equivalent to
knowing the HMM sequence M, or p(O|R) = p(O|M). In
contrast, HMS-HMMs assume a stochastic mapping:

p(OIR) = Y " p(0, MIR) = Y " p(OIM)P(MIR) (1)

where the additional stochastic layer P(M|R) is the model
sequence model (MSM) and the sum is taken overall
all possible HMM sequences for the particular phone se-
quence. In (?7?) it is assumed that the probability of a
stochastic sequence depends only on the sequence of the
next level up, not on sequences higher up in the hierarchy.
Note that no assumption about the length or alignment of
the two sequences M and R has been made. The value of
p(O|M) is obtained using a standard HMM set. As shown
in [?], when a model P(M|R) is defined, the Expectation-
Maximisation (E-M) algorithm can be used to locally max-
imise the overall likelihood p(O|R). The Viterbi approxi-
mation at the model sequence level allows independent op-
timisation of the HMM and MSM parts and thus greatly
simplifies the implementation. It has been used for all ex-
periments in this paper.

If both sequences M and R are assumed to be aligned 1:1,
the obvious realisation of an MSM is the N-gram model.
A triphone model equivalent formulation (i.e. dependence
on immediate left and right phonetic context) is given by

N

P(M|R) = [ [ P(milre-arerera) (2)

t=1

where N denotes the number of symbol pairs and m: and
r¢ denote the individual models and phones respectively.
For each phone a set of potential HMMs exists. All of these
models in parallel constitute the new phone model, where
the model distribution gives the probability of each model
being used in a particular phone context. This scheme
allows for modelling of phone or sub-phone substitutions.

To deal with unseen events in training, standard discount-
ing schemes and Katz backoff to an interpolated left and
right biphone and further to a context independent phone
distribution are used. Witten-Bell discounting [?] was
found to give superior performance over other schemes and
has been used for all the HMS-HMM experiments reported
here. HMS-HMMs can be implemented at a phone or sub-
phone (state) level. The latter makes the model distribu-
tions as denoted in (??) dependent on the position within
a phone.

In practice, a large number of parallel models is compu-
tationally too expensive. Thus the distributions over all
models within a certain phone context are pruned to re-
tain only 95% of the probability mass. In a similar way
to how language models are used in recognition, the MSM
scores are scaled in the log domain with an experimen-
tally found scale factor. In this paper HMS-HMMs without
insertion/deletion modelling are initialised from standard
phonetic decision tree clustered HMMs and the set of pos-
sible models for a particular phone is derived by stripping
the triphone context from the standard HMMs.
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Figure 1: HMS-HMM topology on a state level with state
insertions and deletions.

3. Modelling Sub-Phone Insertions
and Deletions

Within the HMS framework several possibilities are avail-
able to model insertions and deletions at a sub-phone level.
One option is to further assume fixed phone (in context) to
model alignment. Since MSMs refer to HMMs in a purely
symbolic way, the underlying topology of an HMM is ar-
bitrary. The model may have multiple states or it even
may contain no emitting state at all, in which case the
model is referred to as “skip” model. Figure ?? shows
an example of a HMS phone model with insertions and
deletions. The objects in boxes are standard HMMs and
the links in-between carry the context-dependent model
distribution. If the alignment remains fixed, training and
model construction schemes may be kept identical to the
ones described in section ??. However the models them-
selves cannot be drawn from an existing HMM set, as was
done for substitution modelling and therefore alternative
methods for initialisation are required.

3.1. Multigrams

Arbitrary phone to model mappings can be implemented
using multigrams [?]. The theory of multigrams allows op-
timisation of the joint probability of two sequences. The-
oretically an arbitrary length subsequence (string) in the
phone sequence can produce an arbitrary length string in
the model sequence. An empty string is not permitted and
practically the string lengths have to be constrained. The
set of possible model strings for a particular phone string is
found automatically within an E-M training scheme, where
the co-segmentation of the two sequences is used as a hid-
den parameter. In the original multigram work [?] the joint
probability P(M, R) served as the objective function for
optimisation. MSMs however only require an estimate for
P(M|R), which only allows arbitrary length model strings
and represents the case of 1:M mappings. In order to en-
able a certain degree of variation in sequence alignment
the longest strings have to contain at least two models.
Since multigrams are affected by data sparsity problems,
the additional use of multiple phone strings seems to be
infeasible.

Multigram training requires the optimisation of P(M|R) =
> P(M, L|R) where the hidden parameter L represents a



particular segmentation of the model sequence (i.e. string
boundaries) with exactly the same length as R. The E-
M algorithm can be implemented efficiently using a for-
ward/backward scheme:

P(M{|Ri) (3)

N N
5(73 t) = P(MH-N{ |Rt+R1) (4)
where 7 and t are time indices and the notation M{ de-
notes a subsequence of M including the boundary elements
1 and 7. The forward and backward variables can be com-
puted using the recursions:
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a(r,t) = a(r —k,t —1)P(m]_j11|re)  (5)
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where K denotes the maximum number of models to be
joined together and r; stands for the phone plus context
at position ¢, which in the triphone equivalent case is the
triple (r¢—1,7¢,7¢+1). The reestimation of the probability
of a particular model string p of length k& with a particular
phone context p is

Et,-r a(T - k7t - 1)5(7—7 t)(s-'rl,’f

Plule) = >, a(r—kt— DA(T,0)8 @
where 6!/ and 6} are indicator functions:
o= {4 et @
& = { (1] Z::hirgvise )
3.2. Implementation

In practice the 1:1 phone to model mapping was relaxed
gradually by a first introducing “skips” and then insertions
in a second stage.

The first set of experiments (Scenario A) was aimed at
using multigrams in a straight-forward fashion. For each
phone context a large set of model strings was used. The
model strings themselves consist of three single-state mod-
els. In a next stage the modelling of skips was implemented
by adding all possible alternative models in which a single
state was deleted. After several E-M steps using a standard
N-gram MSM, in the second stage the N-gram model was
replaced by a multigram model. Sharing of states between
adjacent phone contexts was allowed.

Initial model strings for Scenario A were obtained from
a state-level HMS-HMM system. All state-model triplets
within each triphone context were collected and added to
a new HMS-HMM set. The HMS-HMM then operates on
the phone level. Since the number of such triplets is large,
sparsity problems require a considerable amount of prun-
ing of model distributions. The sparsity of distributions is

the major disadvantage throughout all stages of this sce-
nario, which even required hard limits to be placed on the
number of allowable alternative models during training.

To overcome the above difficulties, a second approach, Sce-
nario B, tried to make estimates for model probabilities
more robust by using MSMs on a state level. An explicit
skip HMM (i.e. with no output distribution) was added
to the list of possible models within each phone context.
A common initial value for the probability of these skip
models in all contexts was chosen. After several E-M it-
erations an estimate of the probability of skips in each
phone context was obtained. Two different second stages
were tested. In one case all pairs of models from the same
phone position have been added to the model distribu-
tion. This can be sufficiently modelled using N-grams. In
the second case models from adjacent phone positions but
within a particular phone were added. After some rees-
timation steps using N-grams, a multigram MSM with a
maximum of two elements per model string was used.

4. Experiments

All insertion/deletion experiments used an HMS-HMM
model set for initialisation, which itself was initialised from
the baseline HMM model set (see [?] for details). Thus all
model sets for a particular corpus have exactly the same
number of states and mixture components per state.

Experiments have been conducted using both Resource
Management (RM) and Switchboard. RM was chosen be-
cause of the small amount of training data and the sin-
gle pronunciation dictionary in our standard HMM setup.
The main focus of this work, however, lies in modelling of
spontaneous speech. Experiments on the Switchboard cor-
pus used a 18 hour training set of Switchboard-I (Swbd-
I) data (Minitrain) and tests were conducted on two 30
minute Switchboard test sets (MTtest and WS96DevSub).
The HMM baseline system has 2954 states and 12 mix-
ture components and uses conversation side based cepstral
mean and variance normalisation.

| | MTtest | WS96DevSub || Overall |

baseline HMM 43.68 46.32 45.04
baseline HMS 42.88 44.70 43.82
HMS model level 43.69 45.25 44.49
+ max model 43.36 44.63 44.01
+ deletions 43.41 44.38 43.91

+ multigram 43.14 44.17 43.67

Table 1: Scenario A: %WER on Switchboard using var-
ious model level HMS-HMMs. Results were obtained by
rescoring trigram lattices.

Due to the problems of data sparsity, experiments for Sce-
nario A have only been conducted on Switchboard. Table
?? shows word error rates (WERs) on both test sets for the
baseline HMM and HMS-HMM systems and for the various
stages within Scenario A. As can be seen the step towards
phone unit modelling brings a performance degradation
which can be partly recovered by setting a hard limit to
the maximum number of models per phone context (max



model). The addition of deletion modelling brings only
minor improvements and still has a poorer WER than the
HMS-HMM baseline. The use of multigrams finally brings
slightly better performance than the baseline HMS-HMM
system.

Scenario B was tested on both RM and Switchboard. The
speaker independent Resource Management corpus con-
sists of 3990 sentences of training data and 1200 sentences
of test data split into the feb89, oct89, feb91 and sep92
evaluation sets. Our standard RM model sets have 1581
states and 6 mixture components. The dictionary contains
991 words with single pronunciations. A word-pair gram-
mar is used for recognition. Table ?? shows word error
rates on all four test sets.

The baseline HMS-HMM system already gave a consid-
erable improvement over the standard HMM models. A
further slight improvement could be made by added skip
models. However on this data the gain from added inser-
tions was larger. Modelling of sub-phone insertions and
deletions within the same phone position gave a 5.7% rela-
tive reduction in word error rate over the HMS baseline and
thus a 24.3% relative reduction over the HMM baseline.
Using skips brought a 0.09% absolute reduction both in
word deletions and substitutions but an increase in inser-
tions. Modelling insertions further reduced the number of
deletions while other substitution and insertion errors re-
mained virtually unchanged. Using models from adjacent
phone positions gave an overall word error rate of 3.20%
and poorer results if further extended to using multigrams.
A potential reason for this are overestimated skip proba-
bilities.

[ System [ feb89 | oct89 | feb91 [ sep92 || overall |
HMM 3.16 3.80 3.30 6.17 4.11
HMS-HMM 2.62 3.20 2.54 4.81 3.30
+ skips 2.66 3.09 2.86 4.34 3.24
+ insertions 2.23 2.94 2.74 4.53 3.11

Table 2: Scenario B: %YWER on RM using state level
HMS-HMMs. Results have been obtained using Viterbi de-
coding with a single pronunciation dictionary and a word-
pair grammar.

Table 7?7 shows Scenario B results on Switchboard. The
difference in the HMS baseline (compared to Table ??) is
due to the silence modelling now used which is identical to
that in the HMM baseline. Again the largest improvement
of 1.6% WER absolute comes from straight-forward HMS
modelling. However, in contrast to the results on RM a
further WER reduction by 0.8% can be achieved by the
use of skip models. Whereas the number of word deletions
remained approximately the same, most of the improve-
ment stems from a reduced number of word substitutions.

Again in contrast to RM, insertions brought no signifi-
cant reduction in word error rate, even though a consider-
able increase in acoustic log-likelihood was observed. The
probable reason for this is the broadness of the MSM dis-
tributions which could not be controlled even with stricter
pruning. Thus an overall improvement of 2.4% WER ab-

solute over the HMM constitutes the best result so far.
Similarly to the situation on RM, the use of models from
adjacent positions and multigrams actually gave consider-
ably poorer performance.

| System || MTtest | WS96DevSub || Overall |
HMM 43.68 46.32 45.04
HMS-HMM 42.80 43.92 43.38
~+skips 42.14 43.11 42.64
+insertions 41.81 43.29 42.57

Table 3: Scenario B: %A WER on Switchboard obtained by
rescoring of trigram lattices.

5. Conclusions

Sub-phone insertions and deletions have been modelled
within the HMS framework. Although substantial im-
provements can be gained using HMS-HMMs in a straight-
forward fashion, only context-specific deletion modelling
seems to give consistent performance improvements. One
of the major reasons for this are the very broad model
distributions obtained for insertions especially on Switch-
board data which add confusion to the overall system. Fu-
ture work in this area will have to concentrate on mecha-
nisms which enforce compact distributions.
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