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Abstract

This report presents a neural network architecture which performs pattern classification
using a simple form of learning based on the Hebb rule. The work was motivated by the desires
to decrease computational complexity and to maintain a greater degree of biological plausibility
than most other networks designed to perform similar tasks. A method of pre-processing the
inputs to provide a distributed representation is described. A scheme for increasing the power
of the network using a layer of ‘feature detectors’ is introduced: these use an unsupervised
competitive learning scheme, again based on Hebbian learning. Simulation results from testing
the networks on two ‘real-world’ problems are presented, and compared to those produced by
other types of neural network.



1 Introduction

Most, of the methods currently used in neural networks for pattern classification are based on
the technique of supervised learning using error-correction, the most notable examples being the
Widrow-Hoff (or Least Mean Square) rule (Widrow and Hoff, 1960), and back propagation (Rumel-
hart and Hinton, 1986).

Interest has continued, however, in simple Hebbian learning (Hebb, 1949), or modifications
thereof, in which adaptation of network weights is based on the correlation between the activation
of a unit and the strengths of its inputs. It has for example been shown that a Hebbian rule
with an added decay term to normalise the weights can be used to perform principal component
extraction (Oja, 1982).

This report investigates how, with suitable encoding of the data, Hebbian learning may be used
for pattern classification using a system of forced learning. With the exception of a global learning
rate, the learning rule employed requires only signals available locally to each unit, and no special
mechanism is required during learning phases. There is no requirement for differentiability, and
so simple linear or linear threshold transfer functions in the network units can be used. In many
cases the networks can be trained with just one presentation of the input patterns. Despite the
simplicity of the method, it is able to compete reasonably well with more complex networks — some
experimental results are presented in section 5. It is also possible to draw some parallels between
the input representation, structure and learning of the network model, and what is thought to
occur in the brain.

2 Learning Rules
Hebbian learning in its simplest form is given by the weight update rule
A'wij = na;a; (1)

where Aw;; is the change in the strength of the connection from unit j to unit ¢, a; and a; are the
activations of units ¢ and j respectively, and 7 is the learning rate. In training a network to classify
patterns with this rule, it is necessary to have some method of forcing a unit to respond strongly to
a particular pattern. Consider a set of data divided into classes C1,Cs, ..., ). Each data point
x is represented by the vector of inputs (21,2a,...,2,). A possible network for learning to classify
the data is given in figure 1. All units are linear. During training the class inputs ¢1, ¢a, ..., ¢y for
a point x are set as follows:

=1 xeC;
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Each of the class inputs is connected to just one corresponding output unit, i.e. ¢; connects to o;
only for i = 1,2, ...,m. There is full interconnection from the data inputs z{, z, ..., z, to each of
the outputs.

In terms of Pavlovian conditioning, the class inputs represent an unconditioned stimulus (UCS)
and the data inputs a conditioned stimulus (CS) — the task of the network is to learn an association
between each UCS and CS so that the presence of a CS alone is sufficient to excite the response
produced by the corresponding UCS.

The connections from the class inputs (shown using thick lines in figure 1) have non-modifiable
weights and are treated differently from the others. One approach is to use the following learning
rule for the output units:

Awij = nu;a; (2)

where u; represents the input to unit ¢ from a UCS. For the output units in figure 1 we have that
u; = ¢; for i = 1,2,...,m. This method has the attractive property that it is extremely localised:
only information about the inputs to a unit is required — not even the output is used in the learning



Figure 1: A single-layer network with m class inputs, n data inputs and m outputs.

rule. This corresponds also to physiological evidence — experiments, for example, with the marine
snail Hermissenda crassicornis suggest that the molecular changes that result in learning occur
as a result of local interactions between inputs from a UCS and a CS in the dendritic tree of a
neuron, independently of the firing of the neuron itself (Alkon, 1989).

An alternative is to use the standard Hebbian rule (1), but with large non-modifiable connection
weights w! from UCS (class) inputs. This technique is often referred to as forced learning, which
is similar in effect to supervised learning, but rather than having an explicit teacher signal, the
unit’s activation is forced to approximately the correct value during learning by the class input.
Provided that w} > w;; for all 4, j, then this method is approximately equivalent to (2).

A problem with both of these rules is that as the networks are presented with more and more
training patterns, the weights will grow without limit. A useful way of dealing with this problem
is to keep the weights normalised — from a biological point of view this can be thought of as the
synapses competing for a share of limited resources. One method of doing this is with Oja’s rule

(Oja, 1982)
Aw;; = nai(a; — ajwij) (3)

which can be shown to converge to a state in which the weights are normalised provided that 5 is
sufficiently small.

3 Input Representation

For simple networks of the type described above to perform any useful function in pattern classifi-
cation, the form in which data are presented to the network is of primary importance. It is worth
considering what it should mean when a unit (input or otherwise) becomes more strongly acti-
vated. In many pattern classification networks, a unit is required to ‘mean’ two or more different
things: for example, below a threshold value it may denote the presence of one class of input, and
above the threshold the presence of another class. There is little evidence that biological neurons
behave in this way — if a neuron responds to a stimulus, then a more rapid firing of the neuron
is typically in response to ‘more’ of the same stimulus. As a consequence of such units, networks
that use them require relatively complex learning rules (typically based on error-correction) and
adjustable thresholds (by the use of a variable ‘bias’ term).

Nevertheless the raw data for many pattern classification problems, if fed directly to a network,
would require just this type of behaviour of the input units. To avoid the complications mentioned
above we need to use some pre-processing to re-represent the data in a form more suited to
processing by a neural network. An example from nature of such pre-processing is the ear, which
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Figure 2: Overlapping receptive fields used to encode a continuous-valued input. Each different
style of line represents the output value of a different receptive field.

takes a single continuous input signal, and re-represents it as a large number of signals, each
coarsely tuned to a particular frequency component.

Figure 2 depicts a simple scheme for performing such pre-processing on a continuous-valued
input signal. A number of ‘receptive fields’ are scattered evenly across the range of possible values.
Each is ‘tuned’ to a particular value at which it has an output of one, and its response falls away
linearly with distance from this value until it reaches zero. The overlap between neighbouring fields
can be characterised by W, the width of the field relative to the spacing of the fields. Having a
large overlap between adjacent receptive fields provides a distributed representation for the data,
and does not decrease the accuracy with which a data point is specified. The advantage of such
a representation is that it increases the network’s power to generalise: two data points that are
reasonably close to each other will produce similar responses from the pre-processor. If the receptive
fields were very narrow, even points that were close to each other would result in the activation of
completely different units with no overlap in the activation patterns. These factors are discussed
at greater length in Hinton, McClelland and Rumelhart (1986).

A final crucial factor in the use of such pre-processing (a fixed non-linear mapping) is that it
improves the discriminatory power of the network. A single-layer network is only able to form
a linear discriminant function, but by transforming the input into a higher dimensional space,
the pre-processing allows the network to form non-linear discriminations (for the case where there
are two data inputs, the class boundaries are piecewise linear over the input space — at higher
dimensionalities, they are composed of a number of hyperplanes, that number being dependent on
the number of receptive fields used).

Providing that an integral value of W is used, the sum of the responses from all active receptive
fields will be constant (equal to W) over the input space, except at the edges. Thus, assuming these
responses are summed linearly (as they are in the networks presented here), no special emphasis
is placed on the values chosen as the centres of the receptive fields. In order to avoid edge effects,
it is necessary to place (W — 1) receptive fields on either end of each dimension of the input space.
Thus in figure 2 only the input values between the peaks of the third and fourth receptive fields
are devoid of edge effects.

4 Feature Detection

A problem with the pre-processing scheme just described is that each input value is encoded
separately, and so when the network architecture of figure 1 is used, each output unit can only
form a linear combination of the (encoded) inputs, that is to say that if it is to respond strongly to
a combination of two or more inputs, then it must respond moderately to one of them in isolation.



Figure 3: A network incorporating a ‘hidden’ layer of p feature detectors. The connection weights
for this layer are adapted using unsupervised competitive learning.

In many cases this is desirable, but in others it limits the ability of the network to correctly
discriminate between classes.

One could envisage a scheme of pre-processing where receptive fields were responsive to uni-
formly spaced regions in the input space as opposed to values of a single input. The problem
here is that the number of receptive fields required to cover the input space uniformly grows
exponentially with the number of input values. Furthermore, data points from most real-world
classification problems only occupy a small fraction of the total input space, so a large proportion
of the receptive fields would never be used.

What is required is an adaptive method of responding to important ‘features’ (i.e. combinations
of inputs) in the input patterns. Figure 3 demonstrates one such method. The inputs are encoded
using receptive fields as before to give an input vector (z1,zs,...,%,) to the network. These
inputs are fully connected to a layer of ‘feature detectors’ which are activated competitively using
a ‘winner takes all’ scheme, i.e. only the unit with highest excitation is active at any one time.
This could be achieved using a system of self-excitation and mutual inhibition within the layer,
but in computer simulations it is convenient just to select the unit with the highest activation.
The weights from the inputs are initialised with random values and updated using Oja’s rule (3)
so that the weights are normalised. The effect is that as a unit learns, it becomes more specialised
to a particular combination of inputs. If the initial weight values are sufficiently large then an
untrained unit (one that has not previously been activated) is likely to respond to a point in the
input space that is not already covered by a trained unit, and thus become responsive to a new
‘feature’.

The results of this extra processing stage are fully connected to the output units, where forced
learning using the class inputs takes place as before. Note that the learning in the layer of feature
detectors is unsupervised — the class inputs take no part in it. This corresponds to what is thought
to occur in both visual and auditory systems in mammals: early processing extracts ‘interesting’
features from the data, and it is only at a higher level that any meaning is assigned to them.

5 Experiments

The networks described above have been tested on a number of ‘real-world’ problems. Some of the
results obtained are summarised here.
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Figure 4: The classifications formed by a single-layer network trained using the iris database. The
giving the strongest response to test patterns distributed evenly over the entire input plane.

large symbols indicate the training examples.

The Iris Plants Database
The database described here was obtained from Murphy and Aha (1992). It was first reported in

Fisher (1936), and has been used in many publications since.

5.1

The problem involves classifying the data into one of three types of iris plant (Setosa, Versicolor
and Virginica) based on measurements of sepal length, sepal width, petal length and petal width.

In order that the results be displayed diagrammatically here, only the last two of the measurements

were used for classification. The database contains 150 instances, with 50 of each type of plant. The
inputs were pre-processed with 11 evenly-spaced receptive fields in each dimension with a relative
width, W, of 4. A single presentation of each data point was made, and the weights modified

after each presentation using equation (2) with a learning rate, 5, of 0.01. The network was then

tested with points distributed evenly across the input plane, and the unit with the largest output

was taken as the network’s classification. Figure 4 shows the input data (large symbols), and the
resulting division of the input plane (small symbols). Only four mis-classifications were made, one

of which was unavoidable because two data points from different classes were coincident. The class

boundaries away from the training examples (the top left and bottom right corners of figure 4) are

not highly significant because the responses of all three outputs are relatively low in these regions.

Figure 5 gives an indication of how one of the three output units responds to the test data. It

clearly shows how the response for a combination of inputs is the sum of the responses for each of

the inputs individually as discussed in section 4.

5.2 The Peterson & Barney Vowel Database

Tests were carried out with a version of the Peterson and Barney vowel data (Peterson and Barney,
1952) consisting of two repetitions of 10 vowels by 76 people (33 men, 28 women and 15 children).
Some of the data is missing and the database used contains 1494 of the possible 1520 vowels. Each
data item consists of the four formant frequencies of the associated vowel, and the task was to

classify a set of formant frequencies as corresponding to one of the 10 possible vowels.



A0

- TR N
o AN
Nad 7y SR
05 | AR
i 427 “’Q SV
5 05f Z QO™
Q. N
3 41 4 ji":"
L2 77 L7
03 e ",
Ny 0
0.1+ XX
0
25

3 1 Petal width (cm)

4

0.5
Petal length (cm) 6

Figure 5: The activation of the output unit trained to respond to the Iris Virginica class in response
to test patterns distributed over the input plane.

Two tests were made: the first used all 1494 examples for both training and testing; the second
split the database randomly into a 1000 example training set and a test set of 494 examples.
The second of these gives an indication of the network’s ability to generalise, that is to correctly
classify unseen data. These tests were carried out using the single-layer network of figure 1, and
then with two networks of the type shown in figure 3 incorporating 100 and 500 feature detecting
units respectively. For convenience in the latter case, the two layers were trained separately —
the feature detectors were presented with examples picked at random (with repetitions) from the
pre-processed training set. The weights were adapted using Oja’s rule (3) with a learning rate, 7, of
0.001. A number of examples equal to four times the number in the training set were presented to
allow the weights to normalise. Tt was found that the number of times each detector was activated
over the examples was fairly well spread — after 5976 examples had been presented to 500 feature
detectors, the number of times each unit had ‘won’ (i.e. been activated) had an average of 11.95
and a standard deviation of only 2.03.

In both cases, just one presentation of each example was made to the output units, whose
weights were adapted using equation (2). The results are summarised in table 1. Results reported
in Prager (1993) and Gosling (1992) on exactly the same problem are included for comparison.
The ‘conventional’ single-layer network refers to a network without pre-processed inputs trained
using a relaxation algorithm as described in Duda and Hart (1973). Tt was trained until no further
improvement in the performance was seen. The back propagation network used the standard
backprop algorithm with 15 hidden units, a learning rate of 0.9 and a momentum term of 0.1.

The single-layer network achieved 62.1% successful classifications on the second test, and the
networks using feature detectors achieved 66.4% and 70.9% success. All of these outperformed
the conventional single-layer network, but were themselves outperformed by the back propagation
network. This is not surprising, but the remarkable feature is that such results were achieved with
just one presentation of the inputs (training cycle). In this case there is in fact no benefit to be
had from repeated presentations — because both the activation function and the learning rule are
linear, further training using the same examples will increase the responses of the outputs, but the
ratio between responses will remain identical.



Network Type Training | Train & Train: 1000
cycles test: 1494 | test: 494
Single-layer 1 72.4 62.1
Two-layer (100 feature detectors) 4,1 80.6 66.4
Two-layer (500 feature detectors) 4,1 86.3 70.9
‘Conventional’ single-layer 4371 - 99.3
Two-layer back propagation 1000 - 85.2

Table 1: Network performance percentages for the Peterson & Barney vowel classification problem.
A single training cycle is a complete presentation of all the training examples. The two figures
for training cycles for the feature-detecting networks are those for the first and second layers
respectively.

6 Conclusions

The networks presented here compete reasonably well with established methods of pattern classi-
fication based on error-correction, while having extremely simple learning rules and low computa-
tional complexity. The results are achieved without the need for large numbers of presentations of
the input patterns.

The networks retain more biologically plausibility than most current neural network classifiers
in that they use simple Hebbian-based learning rules and do not require any special mechanism
for training. The price to be paid for this is that the data used must be pre-processed into a form
which itself has some degree of biological plausibility, and a greater number of inputs are required
as a result.

However, while increased numbers of units may be required, the units are basic, use learning
rules that can operate solely on data available locally, and do not need any great degree of external
control.
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