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Abstract

The Vapnik-Chervonenkis dimension has proven to be of great use in the the-
oretical study of generalization in artificial neural networks. The ‘probably ap-
proximately correct’ learning framework is described and the importance of the
VC dimension is illustrated. We then investigate the VO dimension of certain
types of linearly weighted neural networks. First, we obtain bounds on the VC
dimensions of radial basis function networks with basis functions of several types.
Secondly, we calculate the VC dimension of polynomial discriminant functions

defined over both real and binary-valued inputs.
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1 Linearly weighted neural networks

In this article we are interested in the study of two specific neural networks,
taken from a very simple and extremely effective class of networks called linearly
weighted neural networks (LWNNs). We are interested in using these networks
to solve the standard two class pattern classification problem, where as usual we
assume that a sequence of labelled training examples is available with which we

can train a network.

A LWNN computes a function fy : R™ — {0,1} given by

Jw(x) = plwo + w161 (X) + - - + Wb (x)]; (1)

where wl' =[ wy w; --- w,, ] is a vector of weights, the basis functions

¢; : R — R are arbitrary, fixed functions and the function p is defined as

p<x>={1 el 2)

0 otherwise.

We define the class F2 of functions computed by the network in the obvious

manner as

Fr={fwlweR™)} (3)

where ® = {¢,...,d,,} is the set of basis functions being used.

Networks of this general form have been studied extensively since the early 1960s;
see, for example, Nilsson [23]. The general class of LWNNs described contains
various popular network types as special cases, the most notable probably be-
ing the modified Kanerva model [30], regularization networks [26], and the two
networks which we consider here: the radial basis function networks (RBFNs) in-
troduced by Broomhead and Lowe [8] and the polynomial discriminant functions

(PDFs) [10].

In the case of RBFNs we use a set of m basis functions of the form

¢i(x) = ¢(|lx — ill) (4)

where y; € R™ is a fixed centre, ||.|| is the Euclidean norm and ¢ : R*U{0} — R

is a fixed function. These networks are discussed in detail in section 3, where we
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also consider more general RBFNs. In the case of PDF's the basis functions are

formed as products of elements of the input vector x; for example,

6i(x) = aiasa; . (5)

These networks are discussed in full in section 4.

A simple interpretation of the way in which LWNNs operate is available. Input
vectors are mapped into an extended space® using the basis functions; extended

vectors in the new space are of the form

= [ Gi(x) ba(x) - bulx) ] (6)

The aim here is to produce extended vectors in such a way that the classification
problem is a linearly separable one in the extended space, as clearly training the
network by choosing a suitable w now corresponds to choosing a hyperplane (in
the extended space) which correctly divides the extended vectors. Several fast

training algorithms are therefore available; see for example [12].

The reader may be surprised that we consider networks of the form of equation 1
— are these networks not completely outperformed by multilayer perceptrons?
The answer is in fact a definite no; these networks have proved to be highly
successful in practice and we believe that any casual dismissal of this type of
network, although quite common, is definitely misguided. We do not discuss this
issue at length here: however, the reader is referred to Broomhead and Lowe [§],
Niranjan and Fallside [24], Lowe [19], Renals and Rohwer [32], KreBel et al. [18]
and Boser et al. [7] for examples of the use of RBFNs, PDFs and other linearly

weighted neural networks in practical applications.

2 The Vapnik-Chervonenkis dimension and the

theory of generalization

In this section we introduce the VC dimension and the growth function and give a

brief review of the associated computational learning theory in order to illustrate

3We use this term as typically m > n.



the importance of these parameters. A comprehensive review of the use of the

VC dimension in the theory of neural networks is given in Holden [16].

A given neural network computes a class F of functions fy : R™ — {0, 1}, the

actual function computed depending on the specific weight vector used.

Definition 1 We define the hypothesis hy associated with a function fyw as the
subset of R™ for which fw(x) =1,

hw ={x € R"| fw(x) = 1}. (7)
The hypothesis space H computed by the network is the set

of all hypotheses where W is the total number of weights used by the network.

2.1 The VC dimension

The VC dimension can be regarded as a measure of the ‘capacity’ of a network,
or of the ‘expressive power’ of its hypothesis space. It was introduced, along
with the growth function by Vapnik and Chervonenkis [36] in their study of
the uniform convergence of relative frequencies to probabilities and has recently
become important in machine learning. The reasons for its importance in this

field are introduced below.

Definition 2 Given a set S C R™ and some function fw € F we define the
dichotomy (S*,57) of S induced by fw to be the partition of S into the disjoint
subsets ST and S~ where ST US™ = S and x € ST if fw(x) =1, x € S™ if
fw(x) =0.

Definition 3 Given a hypothesis space H and S € R™ we define Ay (S) as the
set

Ag(S)y={hnNS|heH}. (9)
We say that S is shattered by H if Ap(S) = 25 where 25 is the set of all subsets
of S.



The growth function and the VC dimension are now defined as follows.

Definition 4 (Growth Function) The growth function is defined on the set of
positive integers as

Ap(i) = _max (] Ap(S5)])- (10)

SCR",|S|=i

Definition 5 (Vapnik-Chervonenkis dimension) The VC dimension V(H)
of a hypothesis space H is the largest integer i such that Ay (i) = 2, or infinity

if no such 1 exists.

The growth function thus tells us the maximum number of different dichotomies
induced by F for any set of ¢ points, and the VC dimension tells us the size of
the largest set of points shattered by H. Note that due to the close relationship
between H, F and the actual neural network with which we are dealing, we can
refer to the growth function and the VC dimension of F and of the neural network

and can define the quantities Az(Sg), Ax(i) and V(F) in the obvious manner.

Example 1: Consider the class of functions of the form
F = {fw(x) = plwo + wyzy + - - - + wyz,] | w € R*T} (11)

which is the class of linear threshold functions (LTFs). It is well known that
V(F)=n+1 (see for example Wenocur and Dudley [38]). When wy = 0 we have
the class of homogeneous LTFs and V(F) = n. a

Example 2: As a more interesting example, consider the class of feedforward
networks of LTFs having W weights and N computation nodes. A full definition
of this type of network is given in [4]; it corresponds to the standard multilayer
perceptron network. It is proved in [4] that for the class Fyw n of functions

computed by any one of these networks,
V(Fw,n) < 2W logy(eN). (12)

The best lower bound on the VC dimension of networks of this general type is
Q(Wlog, W), as proved by Maass [20]. This implies that the bound of equation 12



is asymptotically optimal. Various other bounds on the VC dimension for specific

networks in this class can be found in Bartlett [5]. O

Example 3: Consider again the definition of F2, the class of functions computed
by the networks we will consider, given in equation 3. In Holden and Rayner [17]

it was shown that

V(FH) <m+1 (13)

regardless of the functions actually included in ®. It is the purpose of this article
to argue that in practice we can, in many of the cases normally considered, expect
to obtain V(F?) ~ m + 1. We remark that if the set of functions {1, ¢1,..., ¢}
is linearly independent then equality holds in equation 13; this is a direct conse-
quence of a theorem of Dudley [13] (see section 4). Also, it is easy to see that if

we construct a network which does not include the term w, then V(]:S )<m. O

There is a well-known result, commonly known as Sauer’s lemma, which, given
the VC dimension of some class F of functions, provides an upper bound on the

growth function.

Lemma 6 (Sauer [33], Blumer et al. [6]) Given a class F of functions for
which V(F)=d >0 and d < oo,

() < W8 =143 ( " ) (1)

=1 i

where k> 1. When k> d > 1,

U(d, k) < (ej)d. (15)

For finite V(F) a further useful bound, from [36], is
Ax(k) < EYP) 41, (16)

Clearly if V(F) = oo then Az(k) = 2F for all k.



2.2 Using the growth function and the VC dimension to

analyse generalization

Consider a neural network which computes a class F of functions. We can regard
the process of training this network as a process of trying to find some fy € F
which is a ‘good approximation’ to some target function fr on a given set of
training examples. Let x € R"™ be chosen at random according to some arbitrary
probability distribution P on R". We define 7y, to be the probability that fy
agrees with the target function on an example chosen at random according to the
distribution P; that is,

Trw = Prifw(x) = fr(x)]. (17)

Let Ty = (X1, fr(x1)),-- ., (Xk, fr(xx))) be a sequence of k training examples
where the inputs x; are picked independently according to P and define vy, to
be the fraction of the inputs in T} which are classified correctly by fw. When we
train a neural network we choose a particular vector of weights w on the basis of
the value of vy, , and we thus need to know whether vy, converges to 7y, in a
uniform way for all fv € F as k becomes large. If this is not the case then we
may end up choosing a function f for which the value of 7y, is in fact relatively
low. An inequality derived in [35] yields a bound on the probability that there is
a function fy € F for which 7, and vy, differ significantly. Specifically, given

a particular value of «,

Viw — T
Pr [ sup w W g
fweF - ﬂ-fw

< AAF(2k) exp (_fk> . (18)

(The result quoted here is based on a slight improvement on the original result
of Vapnik; see Anthony and Shawe-Taylor [3].) Now, by equation 16 if V(F)
is finite then Ax(k) is bounded above by a polynomial function of k and thus,
since exp (%2]“) decays exponentially in k, we can make the right-hand side of
equation 18, and hence the generalization error, arbitrarily small by choosing
k large enough. Further, equation 18 provides a bound on the rate of conver-
gence which is independent of the particular probability distribution P and the
particular target function fp. The VC dimension clearly influences the speed of
convergence and consequently the number of examples required to guarantee a

particular generalization performance.



2.3 VC dimension and computational learning theory

The above discussion illustrates one reason for the importance of the VC dimen-
sion and growth function in the analysis of generalization in neural networks and
other systems. In their analysis of valid generalization in general feedforward
networks of LTFs, Baum and Haussler [4] used a modified form of Probably Ap-
prozimately Correct (PAC) learning theory, introduced by Blumer et al. [6] and
based on the work of Valiant [34], to relate network size to generalization ability.
This work has recently been extended to a class of networks described in sec-
tion 1 by Holden and Rayner [17], to networks with more than one output node
by Anthony and Shawe-Taylor [3], and to networks with real-valued outputs by

Haussler [15] . In this section we give a brief introduction to the formalism.

2.3.1 Standard PAC learning

Consider a neural network having a hypothesis space H. We define a concept
class C' in a similar manner as a set of subsets of R"™. In general we also impose
some further restrictions on ' and H, details of which can be found in [6]; these
are rather technical and do not introduce problems for the neural networks likely
to be used in practice. The concept class €' may or may not be equal to the
hypothesis space H. Now, given a target concept ¢y € C, training corresponds to
choosing a weight vector w such that the hypothesis hy is a good approximation

to cr.

Once again we have a sequence Ty, = ((X1,01), ..., (Xx,0x)) of k training examples
where the inputs x; are drawn independently from an arbitrary distribution P on
R" and o; is equal to 1 if x; € ¢y and 0 otherwise. We define a learning function
for C as a function which given a T} for large enough £ and any ¢y € C will return
a hypothesis hy, € H which is, with high probability, a good approximation to
cr. Formally, the error of a hypothesis hy is the probability according to P of
the symmetric difference hwAcy. Given small, specified € and ¢, we demand that
there is some k, which does not depend on either the probability distribution P
or on ¢, such that the hypothesis hw produced by the learning function satisfies

Pr[hwlAer > €] < 6. (19)

9



It is worth emphasising again that we require there to be a suitable k& which
depends only on € and 6. The sample complezxity of the learning function is the
smallest value of k£ guaranteed to achieve this, and any concept class for which

there is such a learning function is said to be uniformly learnable.

An important result proved in [6] is that C' is uniformly learnable if and only if
V(C) is finite. An account of PAC learning theory can be found in [2].

2.3.2 Extended PAC learning

Some shortcomings of PAC learning as described above should immediately be
apparent. In this formalism there is no satisfactory way in which to deal with a
sequence T} containing misclassifications. There is also no way in which to deal
with a target concept which has been defined in a stochastic manner — a common

assumption in pattern recognition — rather than a deterministic concept cy.

PAC learning is extended in [6] in such a way that T} is generated by drawing
examples independently from an arbitrary distribution P’ on R™ x {0,1}. The
error with respect to P’ of a function fi computed by a neural network is then

defined as
Pr[fw(x) # o] (20)

where (x,0) is a random example. Note that now we cannot in general even
define a deterministic target concept, as given some x € R"™ both (x,1) and
(x,0) may have non-zero probability. We are now able to model the situation in
which examples in T} are generated as in the standard PAC learning model but

where x; or o; are subsequently modified by some random process.

In a similar manner to that described above, this extended PAC learning formal-
ism requires us to search for a hypothesis hw € H which, with high probability,
is a good approximation to a particular stochastic target concept. In order to
illustrate the importance of the growth function and the VC dimension in the
theory we state the following theorem, which follows from the same general re-
sult of Vapnik as does equation 18. Some measurability conditions on the class

F of functions computed by the network must be satisfied; see Blumer et al. [6]
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and Pollard [27] for details; these are once again never a cause for concern in

practice. For applications of this theorem see Baum and Haussler [4] and Holden
and Rayner [17].

Theorem 7 (Vapnik [35], Blumer et al. [6]) Consider the class F of func-
tions fw : R™ — {0,1} and a sequence Ty of examples as described above. Let v,
0 and € be such that 0 < v <1, 6 <1 and € > 0 and define P as the probability
that there exists some function fw € F which disagrees with at most a fraction
(1 —~)e of the examples in Ty but has an error which is greater than €. Then P

satisfies

P < AN £(2k) exp (_74%) . (21)

This theorem is important because, clearly, if we can find an upper bound on
the growth function of the network, for example by finding its VC dimension and
applying Sauer’s lemma, then we can say something about its ability to generalize.
Specifically, if our network can be trained to classify correctly a fraction 1—(1—~)e
of the k training examples, the probability that its error — a measure of its ability
to generalize — is less than e is at least 1 —P. This is exactly the type of analysis
carried out in [4, 17], and as the growth function and VC dimension tend to
depend quite specifically on the size of the network measured in terms of, for
example, the total number of parameters adapted during training, this type of
analysis generally allows us to relate the size of a network to the number of

examples which must be learnt in order to obtain valid generalization.

3 Radial basis function networks

Radial basis function networks in their most general form compute functions
fw : R™ — {0, 1} where,

fw = plfw(x)]- (22)
The function fy, : R* — R is of the form,

Ful) = 3 X561l — yill) + 3 Oitsi(x) where g < p (23)

11



inwhichw? =X\ Ay -+ A,
are centres of the basis functions, ¢ : RT U {0} — R, ||.|| is the Euclidean norm,

and {¢; | ¢+ = 1,...,¢} is a basis of the vector space m4_1(R") of algebraic

6, 0y --- 0, ]isavector of weights, y; € R"

polynomials from R™ to R of degree at most (d — 1) for some specified d.

Networks of this type were originally introduced by Broomhead and Lowe [§],
whose work should be consulted for further details. Their main motivation was
that, as we shall see below, the networks have a sound theoretical basis in in-
terpolation theory. The networks can also be regarded as a special case of the
regularization networks introduced by Poggio and Girosi [26] and thus have a
theoretical justification in terms of standard regularization theory. Networks of
this general type have been shown to perform well in comparison to many avail-
able alternatives — see, for example, Niranjan and Fallside [24] — and training
algorithms are available which are considerably faster than hidden layer back-

propagation; see for example Moody and Darken [22] and Chen et al. [9].

It is usual in practice not to include the polynomial terms in the network, so that

the network computes functions,

Fulx) = p [Z Aol yiM . (21)

=1
A single constant offset term )\ is often added to the summation, but is omitted

here.

In this section we investigate the VC dimension of this class of networks, using
various standard choices for the basis function ¢. We will mostly be interested
in networks where the centres y; are fixed, although we briefly mention networks
with variable centres in section 3.3. Our proof technique is a simple one relying
on the interpolation properties of the functions f,, and in particular on the use

of two well known theorems due to Micchelli [21].

3.1 Interpolation and Micchelli’s theorems

Why use functions of the form of equation 22?7 Broomhead and Lowe [8] in-
troduced RBFNs on the basis that functions of the form of f,, had previously

12



proved very useful in the theory of multivariable interpolation (a review is given

by Powell [28, 29]; see also [26] on which our review is based).

Consider the problem of finding a function g : R* — R which is a member of a

given class of functions G and which exactly interpolates a set T}, of k examples,

Ty = {(x1,00)s- -, (Xp, 00)} (25)

where x; € R"™ are distinct vectors and o; € R can be chosen arbitrarily. This

means that ¢ must satisfy
g(x;)=o0; fori=1,... k. (26)

Now let G’ denote the class of functions G’ = {pog | ¢ € G} where o denotes
function composition. Assume we have a particular set S, = {xy,...,x¢} of k
points where x; € R", and we form a corresponding set T} having arbitrary o;.
Now clearly if we can prove that given such a set T}, there exists, regardless of
the o; used, a ¢ € G which performs the interpolation, then V(G’) > k. This is
because, given any particular dichotomy (Si, S;) of the initial set S;, we simply
pick o; to be an arbitrary positive quantity when x; € S} and an arbitrary
negative quantity when x; € S, . As there is a ¢ € G which interpolates the
corresponding 7}, the corresponding ¢’ = p o g induces the required dichotomy,

and as this applies to any dichotomy, G’ shatters Sj.

The functions f, are useful because it is always possible to interpolate k points

in such a set Sj using a function
B k g
Ton(3) = Y- Nl — xill) + 3 6,05(), where g < I, 27)
=1 =1

regardless of the values chosen for o;, provided ¢ satisfies some simple conditions

which we discuss below. The class of functions G is now simply
G={fw|weR"Y, (28)

where f,, is as defined in equation 27. Notice that in equation 27 the original
centres y; of f,, have been made to correspond to the points x;. Notice also that

when using functions fy, in this manner the constraints of equation 26 give us a

13



set of k linear equations for (k+¢) coefficients. The remaining degrees of freedom

are fixed by requiring that,
k
> Abi(x;) =0 where j =1,...,q. (29)
=1

A sufficient condition on ¢ for the existence of an interpolating function of the
form of equation 27 is that ¢ € Py(R") where P4(R") is the set of strictly
conditionally positive definite (SCPD) functions of order d.

Definition 8 Suppose h is a continuous function on [0,00). This function is
strictly conditionally positive definite of order d > 1 on R"™ if for any k distinct

points Xq,...,X, in R" and ¢1, ..., ¢ € R (not all 0) where

Zcﬂ/}(xi) =0 (30)

for all o € wq_1(R"), the quadratic form Y&, Ele cicih(||xi — x;||) is positive.
The function is SCPD of order 0 if the form Y_r_y YF_; cicih(||xi —x;||) is positive
definite.

Let P, be the set of functions which are in P4(R") over any R",

P, = (] P.(R"). (31)

n>1

Note that for all non-negative integers d, P; C P4y1. An important theorem due
to Micchelli provides us with a simple means of determining whether a function
¢ is in P4, and hence whether it is a suitable basis function for use in forming

fw- We first need to define a completely monotonic function.

Definition 9 A function h is completely monotonic on (0,00) if h € C*°(0, c0)

and its sequence of derivatives is such that
(—1)h0(z) 2 0 (32

forz € (0,00) and ¢+ =0,1,2,....

14



Theorem 10 (Micchelli [21], Dyn and Micchelli [14]) If a function h(r) is
continuous on [0,00), h(r?) € C*(0,00) N C[0,00) and (=1)*hD is completely

monotonic on (0,00) but not constant then h(r?) is in Py.

Now, consider the special case in which we attempt to interpolate the data in T},
using
B k
Fa(x) =22 Nio([lx — xi]). (33)
=1
The function po f,, now corresponds to the networks most often used in practice.

The interpolation is possible provided we can find a solution to the set of equations

01 b1 P12 bk A1
0 — 0:2 _ ¢:21 ¢:22 : ¢:2k )\.2 — 62 (34)
O Pr1 Pra Ok Ak

where ¢;; = ¢(||x; — x]|), so that
A=¢"o. (35)

It is possible to show (see Powell [29]) that ¢ is nonsingular if ¢ is SCPD of order
0, or if ¢ is SCPD of order 1 and ¢(0) < 0. Thus, in some cases theorem 10 will
tell us whether a particular ¢ can be used successfully. An alternative sufficient

condition also exists for this special case, again proved by Micchelli.

Theorem 11 (Micchelli [21]) If h is continuous on [0,0), positive on (0, 00),
and has a first derivative that is completely monotonic but not constant on (0, 00),

then for any set of k vectors x; € R"™ where n is arbitrary,

(—1)* ' deth(||x; — x;||*) > 0. (36)

Now clearly if we choose a suitable function ¢ such that ¢(y/r) satisfies the
conditions in theorem 11 it is not possible that det(¢) = 0, which implies that ¢
must be nonsingular and consequently that there exists a suitable weight vector

A regardless of the actual values for o; used.

15



Form of basis function Type of basis function
érin(r) =r Linear
¢cup(r) =r° Cubic
¢rps(r) =r*inr Thin plate spline
dmo(r) = (r’ + Cz)%, ce RT Multiquadric
drq(r) = (r* + 02)_%, ce Rt Inverse Multiquadric
bcavuss(r) = exp [— (%)2] ,c € Rt | Gaussian

Table 1: Standard basis functions used in radial basis function networks.

In summary, provided we use a basis function ¢ chosen using the relevant condi-
tions given in theorem 10 or theorem 11, then our radial basis function network,
having fixed centres and as defined in equation 22 shatters the set of p vectors

{x;} which correspond to the centres {y;} such that

X; =y; wherei =1,...,p. (37)

3.2 Networks with fixed centres

Table 1 summarizes some of the usual basis functions ¢ used in RBFNs; two
further standard basis functions are given in equation 39 below. The use of
these functions is justified by the theory introduced above [26]. Note that the
parameter ¢ is fixed — it is not adapted during training. We immediately obtain

the following two corollaries.

Corollary 12 Consider the simple RBFNs of the form,

P
Fu() = |3 Al = i) 39
=1
where the centres y; are fized and distinct. If ¢ is one of the functions ¢pin,

bcavuss, ¢mo or drvo then the VO dimension V(F) of the network is exactly p.

This result also applies if ¢ is one of the following two functions, which are more

16



general forms of the multiquadric and inverse multiquadric respectively.

ro(r) = (r*+c*)° where 0 < g <1
qb}MQ(r) = (7"2 + cz)_o‘ where o > 0. (39)

Clearly ¢rpq and ¢rnq are special cases of ¢y and @7y respectively.

Proof: The functions ¢gauss and qb}‘MQ are in Pg by theorem 10 and the func-
tions /7 and (r+¢c?)® where 0 < 3 < 1 satisfy the conditions in theorem 11. This
means that by the arguments given above V(F) > p for all four cases. Also, from
example 3 we know that V(F) < p, and consequently we must have V(F) = p.
O

Corollary 13 Consider the RBFNs of the form,
p
fw(x) = p |2 No(llx —yill) + ¥(6,x) (40)
=1

where ¥(0,x) is the degree 1 polynomial,
V(0,%x) = b + O1z1 + O35 + - - + 0,2, (41)

x; are the elements of x, and p > n+1. Again, the centres y; are fized and distinct.
If ¢ is the function ¢cup or ¢rps then the VO dimension of the network obeys
p<V(F)<p+n+l.

Proof: By theorem 10 both ¢cyp and ¢rps are in Py and hence V(F) > p.
From example 3 we know that V(F) < p+ n + 1 and the results follows. O

3.3 Networks with variable centres

What happens to the VC dimension of a radial basis function network if we allow
its centres y; to adapt during training, rather than force them to remain fixed?
Obviously, the results presented above provide lower bounds on the VC dimension
of RBFNs having basis functions ¢ of the appropriate type. We also have the

following simple result.

17



Corollary 14 Consider the networks of the types mentioned in corollaries 12
and 13. If the centres y; are allowed to adapt then the networks can all form

arbitrary dichotomies of any set of p distinct points.

The proof of this result is trivial — the networks can shatter the set of p points
corresponding to the p centres y; and these centres can now be placed anywhere.
It is interesting that there is no requirement that the p points be in any kind of

general position as is often the case in similar results for other types of network

(see Cover [10]).

Corollary 14 suggests that the lower bounds suggested for the VC dimension of
this type of network are unlikely to be tight. We have not been able to improve
them however, and we leave as an open question whether or not it is possible to
obtain a lower bound similar to that recently proved by Maass [20] for certain
feedforward networks, and mentioned in example 2. Similarly, we have not been
able to prove upper bounds on the VC dimension of these networks for all but

the simplest cases. For example, if ¢ is a function,
¢(r) = r* where i is even (42)

then the network computes a class of polynomial discriminant functions and the

results of section 4 can be applied.

4 Polynomial discriminant functions

In this section, we discuss the polynomial discriminant functions (PDFs), deter-
mining the VC dimension in two distinct situations: when the inputs are real
numbers and when the inputs are restricted to be binary-valued (that is, 0 or
1). As mentioned in Section 1, the PDFs are linearly weighted neural networks
in which the basis functions compute some of the products of the entries of the

input vectors. In other words,

= [ Gi(x) da(x) o dnl(x) ] (43)
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where each ¢; is of the form
¢i(x) = I =i, (44)

for some non-negative integers r;. We say that the PDF is of order at most k
when the largest degree of any of the multinomial basis functions ¢; used to define
f is k; that is, if f can be expressed as a LWNN over those basis functions in
equation 44 having -7, r; < k. Furthermore, the order of a PDF f is said to
be precisely k& when f has order at most & but not at most & — 1; that is, when
in every representation of f in the form given in equation 1, one of the basis
functions required has degree k. Thus the PDFs of order 1 are precisely the
linear threshold functions of Example 1 and, for example, the PDFs of order 2

defined on R? are of the form
plwo +w121 + 10979 +waT3 + W4T 10575+ WeT; +WrT1 To+ WeT1 T3+ WeToT3] (45)

for some contants w;, (0 < <9), in which at least one of the terms of degree 2

has a non-zero coefficient.

Polynomial discriminators have been studied in the the context of pattern clas-
sification (see, for example, [12, 11, 23]), where the aim is to classify a given
set of test data points into two categories correctly, this classification being used
as a (hopefully valid) means of classifying further points. In addition, they have
recently been employed in signal processing [31]. It is therefore an important
problem to determine the ‘power’ of classification achievable by such discrimina-

tors and to quantify the sample size required for valid learning.

We shall denote by P(n, k) the (full) class of PDFs of order at most k defined
on R”. That is, P(n, k) is the set of linearly weighted neural networks formed
from all basis functions of degree at most k of the form ¢; given in equation 44.
Further, we shall denote by Pg(n, k) the (full) class of boolean PDFs obtained by
restricting P(n, k) to binary-valued inputs; i.e., to {0, 1}". Thus P(n, k) is the set
of {0, 1} functions on R™ whose positive and negative examples are separated by
some surface which can be described by a multinomial equation of degree at most
k and Pp(n, k) is the set of {0, 1} functions on {0,1}" (i.e, Boolean functions of
n variables) whose positive and negative examples can be separated in this way.

To start with, we consider only these two classes of PDFs. Later we shall discuss
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more restricted classes; for example, one may be interested only in PDFs over a

restricted set of all basis functions ¢; of at most a given degree.

4.1 Threshold order of a boolean function

As an example, consider the exclusive-or boolean function XOR of two variables,
defined by
1 if T % T

0 if Iy = I3.

XOR((z1,22)) = { (46)

Clearly the exclusive-or function is not a linear threshold boolean function; that
is, it does not lie in Pg(2, 1). However, it does lie in Pg(2,2). One representation
of XOR in PB(2,2) is

XOR((z1,xq)) = plas + 2 — daqzy — 1]. (47)

One way in which to quantify the power of binary-input polynomial discriminant
functions of a given degree is to bound the number of functions realised by such
discriminators. Wang and Williams [37] have studied the classes Pg(n, k) and
have shown that every boolean function is in Pp(n, k) for some k£ < n. In par-
ticular, the parity function on n variables is in Pg(n,n) but not in Pp(n,n — 1).
(Note that XOR is the parity function of 2 variables.) Since each boolean func-
tion of n variables lies in Pp(n,n), it is possible, as in [37], to define the threshold
order of a boolean function f to be the least value of k for which f € Pg(n, k).
Wang and Williams asked for bounds on the cardinalities of the sets Pp(n, k) and
made a number of conjectures. In particular, they conjectured, as Anthony [1]
has recently shown, that for large n, all but a negligible proportion of the boolean
functions of n variables have threshold order at least [n/2] and that for odd val-
ues of n, at most half have threshold order equal to |n/2]. This shows, in a
sense, that the PDFs are of limited expressive power; however, it is certainly very
demanding to require that a class of boolean functions compute most boolean
functions and it is, for the reasons discussed in section 2, more appropriate in
learning theory to quantify expressive power through the VC dimension. First,

though, we introduce some notations.
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4.2 Further notations and definitions

Let us denote the set {1,2,...,n} by [n]. We shall denote the set of all subsets
of at most k objects from [n] by [n]*¥) and we shall denote by [n]* the set of all
selections, in which repetition is allowed, of at most & objects from [n]. Thus,
[7]* may be thought of as a collection of ‘multi-sets’. For example, [3]®) consists
of the sets

0, {1}, {2}, {3}, {1,2}, {1, 3},{2,3},

while [3]? consists of the multisets

0, {13 {1, 13, {2},{2, 2}, {3}, {3, 3}, {1, 2}, {1,3},{2,3}.

In general, [n]®*) consists of 3.5, (7;) sets, and [n]* consists of (nzk> multisets.
With a slight abuse of mathematical notation, [n]*) C [n]*. Foreach () # S € [n]*,
and for any x = (21, 22,...,2,) € R", xg denotes the product of the z; for : €
(with repetitions as required). For example, X1 931 = 212223 and X119} = ziz,.

We define x¢ = 1 for all x.

It is clear that the basis functions ¢; for the PDFs may be written in the form
¢i(x) = xg for some non-empty multi-set S. Therefore a function defined on R"
is a PDF of order at most k if and only if there are constants wg, one for each
S € [n]F, such that

fx)=0» [ > wsxs} : (48)

Se[n]k

Restricting attention to {0, 1} inputs, note that any term xg in which S contains
a repetition is redundant, simply because for x = 0 or 1, " = z for all r; thus,
for example, for binary inputs, ¥ z323 = x1z923. Therefore, we arrive at the
following characterisation of Pg(n, k). A function f : {0,1}"* — {0,1} is in
Pr(n, k) if and only if there are constants wg, one for each S € [n]*), such that

f(X) =p [ Z w5XS:| . (49)

Of course, each boolean PDF is the restriction to {0, 1}" of a PDF; what we have

emphasized here is that in the case when the inputs are restricted to be 0 or 1,
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some redundancy can be eliminated immediately. This last observation shows
that in considering the classes Pp(n, k), it suffices to use extended vectors of the

form
x' =] hi(x) Yo%) v Pm(x) ], (50)

where each ; is of the form

@bZ(X) = Xg = H Z;, (51)

i€s
for a non-empty subset S of at most k elements of [n]. The number of such 5,
and hence the length of these extended vectors, is 325, (?) For general PDF's of
order at most k., one uses the extended vectors of equation 44, of length <nzk) —1;

the entries here are xg for ) # S € [n].

4.3 VC dimension and independence of basis functions

As noted earlier, classification by LWNNs corresponds to classification by lin-
ear threshold functions of the extended vectors in the corresponding higher-
dimensional space. This is explicit in the context of PDFs and boolean PDF's

from equations 48 and 49.

We shall make use of the following well-known characterisation of sets shattered
by homogeneous linear threshold functions, a proof of which we include for com-

pleteness.

Lemma 15 A subset S = {y1,y2,...,¥s} of R? can be shattered by the set
of homogeneous linear threshold functions on R if and only if S is a linearly

independent set of vectors.

Proof: Suppose that the vectors are linearly dependent. Then at least one of
the vectors is a linear combination of the others. Without loss, suppose that
Y1 = Y i, Aiy; for some constants A;, (2 <7 < s). Let (x,y) denote the standard
(Euclidean) inner product on R%. Suppose w is such that for 2 < j < s, (w,y;) >
0 if and only if A; > 0. Then (w,y1) = >/, Ai(w,y;) > 0. It follows that there
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is no homogeneous linear threshold function for which y; is a negative example
and, for 2 < 5 < s, y; is a positive example if and only if A; > 0. That is, the

set S of vectors is not shattered.

For the converse, it suffices to prove the result when s = d. Let A be the matrix
whose rows are the vectors yi,ya,...,yqs and let v be any of the 27 vectors with
entries 1, —1. Then A is nonsingular and so the matrix equation Aw = v has a
solution. The homogeneous linear threshold function ¢ defined by this solution
weight-vector w satisfies {(y;) = 1 if and only if entry j of v is 1. Thus all possible

classifications of the set of vectors can be realised, and the set is shattered. 0O

Recall that a set {hy, hg, ..., hs} of functions defined on a set X is linearly de-
pendent if there are constants A; (1 < ¢ < s), not all zero, such that, for all
x e X,

Ahi(x) + Agha(X) + ... 4+ Ashs(x) = 0; (52)

that is, if some non-trivial linear combination of the functions is the zero function
on X. The following result is due to Dudley [13]; we present here a new proof

based on the idea of extended vectors.

Theorem 16 Let 'H be a vector space of real-valued functions defined on a set
X. Suppose that H has (vector space) dimension d. For any h € H, define the
{0, 1}-valued function hy on X by

{3 g2
and define
nonneg(H) = {hy : h € H}. (54)

Then the VC dimension of nonneg(H) is d.

Proof: Suppose that {hy, ha,...,hg} is a basis for H and, for x € X, let x"* =
(h1(x), ha(X),..., hg(x)). The subset S of X is shattered by nonneg(H) if and
only if for each St C S there is h € H such that h(x) > 0if x € ST and h(x) < 0
if x € S~ =S5\ S*. But, since {hy,...,hq} is a basis of H, for any h € H there
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are constants w; (1 <4 < d) such that h = 2%, w;h;. Thus, equivalently, S is
shattered by nonneg(H) if and only if there are constants w; such that

>0 ifxe St

) (55)
<0 ifxe S

Z: wihi(x) {

that is, the inner product <W, XH> is non-negative for x € S* and is negative for

x € S7. But this says precisely that the linear threshold function ¢ given by

H(x) = plwrey + waxg + . .. W] (56)
satisfies
1 if +
ity =4 Lifxes (57)
0 ifxesS,

It follows that the set S is shattered if and only if the set {x' | x € S} is
shattered by homogeneous linear threshold functions in R%. Hence, by lemma 15,
V (nonneg(H)) < d. Further, by lemma 15, the VC dimension equals d if and
only if there is a set {Xi—(, .. .,XZf} of linearly independent extended vectors in
R?. Suppose this is not so. Then the vector subspace of R? spanned by the set
{XH | x € X} is of dimension at most d — 1 and therefore is contained in some
hyperplane. Hence there are constants Ay, Ag, ..., Ag, not all zero, such that for
every x € X, 2%, A(xM); = 0. But this means that for all x € X, >4, \ihi(x) =
0, and hence the function %, A;h; is identically zero on X, contradicting the
linear independence of hy, ..., hy. It follows that the VC dimension of nonneg(H)

is d, as claimed. O

This theorem is very useful and has been mentioned already in earlier parts of

this paper. It applies directly to linearly weighted neural networks as follows.

Theorem 17 Let ® = {¢1,...,0n} be a given set of basis functions defined on a
set X and let F2 be the set of linearly weighted neural networks on X based on ®.
If {1,®} is a linearly independent set in the vector space of real-valued functions
on X, where 1 denotes the identically-1 function on X, then V(F2) = m + 1.

In general V(F2) is the mazimum cardinality of a linearly independent subset of

{1,®).
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Proof: Let Sp(l,®) be the vector space of real functions on X spanned by the
identically-1 function on X and the basis functions ® = {¢1, ¢2,...,d,}. Then
Sp(1, ®) consists of all functions of the form

h(x) = wo + w1¢1(X) + ... + Wi Pm (X) (58)
for all possible choices of constants w;. It is clear from this and equation 1 that
F® = nonneg(Sp(1, ®)), (59)

so that the VC dimension of F? is the vector-space dimension of Sp(1, ®). The

result follows. O

4.4 VC dimension of PDFs

We now apply the above results to the classes P(n, k) and Pp(n, k). For P(n, k),
the full class of PDFs of order at most &, the basis functions are given by ¢;(x) =
xs for § # S € [n]*. For Pg(n, k), the basis functions can be taken to be
i(x) = x5 where ) # S € [n]®). Let

b(n, k) ={xs |0 #S e}, @plnk)={xs|0#SeR®}.  (60)

Proposition 18 For all n and k, the set {1,®(n,k)} is a linearly independent

set of real functions on R™.

Proof: We prove by induction on n that for all m, {1,®(n,k)} is a linearly
independent set of real functions on R™. The base case n = 1 is straightforward;
2 3 m

it is well-known that the functions 1,z,z%, x°,..., 2™ are linearly independent.

(This can be verified analytically or by using Wronskians; see [25], for example.)

Suppose now that the assertion is true for a value of n > 1 and let k& be any
positive integer. By the inductive assumption, the set {xs : S € [n]f} is a
linearly independent set. For 0 < k < m, let M, C [n + l]k be the set of or
multi-subsets containing n + 1 exactly r times. Suppose that for some constants
ag, for all x € R,

Z agXg = 0. (61)

Seg[n+1]k
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Then, .
dal > asxz=0 (62)
r=0 SES,
for all x, where, for S € S,, x% is xg with the r factors equal to x,41 deleted.
(So, x% is of the form x7 for some T' € [n]*; that is, x5 € ®(n,k).) It follows,
from the linear independence of 1,%,11,%x2,,...,x7, that for all x1,Xs,...,X,,

we have

Z asxg =0 (63)
SESy

for each r. But the inductive assumption then implies that for all » and for all
S € 5,, ag = 0; that is, all the coefficients ag are zero. Hence the functions are

linearly independent. a

Now consider ®g(n, k), regarded as a set of real functions on domain X = {0, 1}".

Proposition 19 For all n, k with k < n, {1,®g(n,k)} is a linearly independent
set of real functions defined on {0,1}".

Proof: Let n > 1, and suppose that for some constants oy and ag, for all
x € {0,1}",

A(X) = g + Z gXg = 0. (64:)
0#Seln](¥)

Set x to be the all-0 vector to deduce that ag = 0. Let 1 < r < k and assume,
inductively, that ag = 0 for all S C [n] with |S| < r. Let S C [n] with |S| = r.
Setting ; = 1if¢ € Sand ; =01if j ¢ S, we deduce that A(x) = ag = 0. Thus
for all S of cardinality r, ag = 0. Hence as = 0 for all S, and the functions are

linearly independent. a

The above two results, coupled with theorem 17, enable us to determine the VC
dimensions of the classes of PDFs and boolean PDFs.

Corollary 20 For all n,k,

V(P(n,k)):( . ) (65)



and for all n, k with k < n,

V(Py(n, k) = zkj (’.‘). (66)

2

Note that if all inputs are restricted to be binary and if m > 1, then the VC
dimension of the corresponding LWNN is lower than if the inputs are allowed
to be arbitrary real numbers. We remark that the VC dimensions coincide for

m = 1, the case of linear threshold functions.

Theorem 17 tells us a little more than this. As mentioned near the beginning of
this section, one may only be interested in LWNNs based on a strict subset of
the basis functions ®(n, k). For example, the special case of RBFNs in which the
centres are fixed or variable and the function ¢ is of the form ¢(r) = r* for an
even positive integer 7, reduces essentially to PDFs based on some of the functions
¢i(x) = [T1<i<, ¥i' as in equation 44. But since the set {1, ®(n, k)} is a linearly
independent set for any n, k, it follows that any LWNN based on a strict subset,
of m of the functions in Ug>1 ®(n, k) has VC dimension m+1. A similar comment
applies to binary-input LWNNs based on strict subsets of ®p(n, k) for all n and

for any k£ < n. These observations may be summarized as follows.

Theorem 21 Any class of PDFs based on m of the standard basis functions
Ur>1®(n, k) has VC dimension m + 1. Any class of boolean PDF's based on m of
the standard boolean PDF basis functions ®g(n,n) has VC dimension m+1. O
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