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Abstract

This article addresses the question of whether some recent Vapnik-Chervonenkis (VC) dimen-
sion based bounds on sample complexity can be regarded as a practical design tool. Specifically,
we are interested in bounds on the sample complexity for the problem of training a pattern
classifier such that we can expect it to perform valid generalization. Early results using the VC
dimension, while being extremely powerful, suffered from the fact that their sample complexity
predictions were rather impractical. More recent results have begun to improve the situation
by attempting to take specific account of the precise algorithm used to train the classifier. We
perform a series of experiments based on a task involving the classification of sets of vowel for-
mant frequencies. The results of these experiments indicate that the more recent theories provide
sample complexity predictions that are significantly more applicable in practice than those pro-
vided by earlier theories; however, we also find that the recent theories still have significant
shortcomings.
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1 Introduction

Of the small number of existing, alternative theories that aim to model the phenomenon of
generalization, one of the most widely studied is that based on computational learning theory
(Anthony and Biggs (1992), Natarajan (1991)), which uses ideas originally introduced by Valiant
(1984) and Blumer et al. (1989). It has become clear that a parameter of fundamental importance
in this theory is the Vapnik-Chervonenkis (VC) dimension, which we define in full below. The
VC dimension can be regarded as a measure of the capacity or expressive power of a connectionist
network or other pattern classifier.

In this article we address the following question: do the VC dimension bounds available at
present in any way constitute a practically applicable design tool, in the sense that they can
be used in practice to guide the design of a pattern classifier? This type of question is not
often asked by researchers in computational learning theory, where the emphasis tends to be on
the production of powerful theoretical results. However, despite the significant intrinsic interest
inspired by such results, the long-term aim of such studies must be to provide powerful and
generally applicable tools for the design of machine learning systems, and, consequently, it is
important that some attempt is made to assess the available theoretical results from this point
of view.

The results presented in this article can be regarded as an extension of those obtained
by Cohn and Tesauro (1992), who have made a detailed study of the average generalization
performance of various networks applied to some simple problems, and compared the results
with the worst-case bounds provided by some VC dimension based results. However there are
three important differences. Firstly, all our experiments use types of networks for which either
exact results or very good bounds on the VC dimension are known. This is advantageous for the
reasons discussed in section 3; some, but not all of the experiments in Cohn and Tesauro (1992)
used networks with this property. Secondly, our networks can be trained without the need to use
the back-propagation algorithm; use of this algorithm leads, as discussed in Cohn and Tesauro
(1992), to the need to be extremely careful in the control of possible associated random and
systematic experimental errors. Finally, whereas in Cohn and Tesauro (1992) the experiments
are based on synthetic data for rather unrealistic problems, namely the ‘majority’, ‘real-valued
threshold’, ‘majority-XOR’ and ‘threshold-XOR’ problems, the experiments presented here are
based on real data, namely a large set of formant frequencies for ten different vowels uttered
by people of different age and gender; this data was introduced by Peterson and Barney (1952).
Additionally, in this work we concentrate specifically on the investigation of recent bounds due to
Haussler et al. (1990,1994), which were considered only quite momentarily in Cohn and Tesauro
(1992), but which were found to perform better than earlier bounds in the situations considered.
Finally, we discuss in detail the diffliculties involved in applying these recent bounds in practice.

1.1 Why are VC Dimension Results Useful?

Results based on the VC dimension are useful because they tell us about the ability of a classifier
to generalize after it has been trained. There is at present no single, complete theory of gener-
alization that provides us with general and easily applied design guidelines; such a theory would
obviously be highly desirable. Results based on the VC dimension have taken various different
forms; the best known form (at least, in the connectionist network research community), which
appears in the work of Blumer et al. (1989), Baum and Haussler (1989), Holden and Rayner
(1994), Shawe-Taylor and Anthony (1991) and others, is as follows. Assume that the classifier of
interest takes inputs in R™ and produces outputs in {0,1}, and assume that training examples
are generated independently according to some arbitrary distribution P on R"™ x {0,1}. Assume



for the moment that our classifier is a connectionist network, and let the network of interest have
architecture A (the network can be any type of feedforward network; we ignore the details for
the time being). Finally, assume that we have a parameter 0 < ¢ < 1/4. Then there exists a
value k, which is a function only of A and e, such that if,

1. the network can learn at least a fraction 1 — ¢/2 of k randomly drawn training examples
and,

2. all future examples are also drawn according to P,

then there is a probability® close to 1 that the actual generalization error of the network is at
most €, where generalization error is defined as the probability that, for a random example (x,0)
drawn according to P, the output of the trained network for the input x is not equal to o.

This sounds like, and indeed is, a very powerful result. It is completely independent of
the actual distribution P that governs the way in which examples are generated and it is also
independent of the actual algorithm used to train the network. The drawback is that all known
upper bounds on the required value of k are rather large, in the sense that they lead to numbers
of training examples that we would not in general expect to be able to load with the required
accuracy on a network the size of A. This observation was verified experimentally in Cohn and
Tesauro (1992). There are two main reasons for this (see Haussler et al. (1994)); unfortunately,
the result is limited by precisely the characteristics that make it so powerful. First, the result is
valid for all distributions P, even the ones that we would never expect to govern the occurrence
of data in practice. The second reason is that the result is independent of the algorithm used to
train the network, and the explanation here is rather more subtle. Assuming the structure of the
network is fixed, then given a particular vector w of weights the network computes a function
Sfw : R" — {0,1}. We denote by F the class of all such functions, so,

F={fw:weR"} (1)

where W is the total number of weights used by the network and we assume that weights are real-
valued. The result described above would apply even if we were able to use a training algorithm
which always provides a function having acceptable error on the training examples (assuming
that at least one such function exists in F), but which in addition always provides the function
that of all such functions is the one which provides the worst possible performance on future
examples generated according to P.

Of the two reasons stated for the large size of the standard VC dimension bounds, we might
intuitively expect that the first — the distribution independence — is the most significant.
However, recent results obtained by Haussler et al. (1990,1994) suggest that by considering the
precise training algorithm used it may be possible to maintain distribution independence and
obtain quite practical bounds; note however that the model of machine learning used is different
in some respects to that illustrated here, and is described in the next section. This is quite
definitely an encouraging result; to say that we know something definite about the distribution
governing the occurrence of data would in practice tend to mean that we would have a significant
amount of a priori knowledge about the problem being addressed, and it is clearly desirable to
maintain distribution independence if possible.

This article is organized as follows. In section 2 we briefly review some of the most recent
theoretical bounds on the number of examples required when training a classifier or other system
under specific conditions. In section 3 we describe the experiments used to investigate the quality

3The exact probability involved here can be quantified in terms of a further parameter §; in this case & is a
function of A, € and é. Further elaborations are also possible; we omit the full details here, and refer the reader to
Blumer et al. (1989) and Shawe-Taylor and Anthony (1991).
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of these bounds; the results of these experiments are described in section 4 and discussed in full
in section 5, where we also discuss the general practical applicability of the relevant theory.
Section 6 concludes the article.

2 Recent VC Dimension Bounds

In this section we provide a brief summary of some of the results in the articles by Haussler et
al. (1990, 1994), which are investigated experimentally in the remainder of this article. Let X
be an environment, which we identify with the set of all possible inputs to the system of interest.
This is typically R™ or a subset such as [0, 1]" where n is the number of inputs to the system;
it can also be a set such as {0,1}"™. Given any class F of functions with domain X and range
{0,1} we define its VC dimension VCdim(F) in the usual manner. Given an arbitrary set of k
points in X, each function f € F induces a dichotomy or two-colouring on the set by dividing
it into two disjoint subsets consisting of the points mapped to 1 and the points mapped to 0.
Given such a set we can apply all the functions in F and count the total number of distinct
dichotomies obtained. The VC dimension of F is defined as the size k of the largest subset of X
for which we can obtain all 25 possible dichotomies. For examples of VC dimensions for various
relevant classes of functions see Anthony and Biggs (1992), Anthony and Holden (1994), Blumer
et al. (1989), Bartlett (1992), Maass (1993), Sontag (1992), Holden (1992), Wenocur and Dudley
(1981) and references therein.

The task of training a classifier to solve a given problem can be modelled as that of identifying
some target function gy : X — {0, 1} which is assumed to be a member of some class G of target
concepts. We assume that a sequence T of k training examples is generated as follows. The
sequence,

Tr = ((x1,01),(x2,02),- .., (Xk,0r)) (2)

is formed by drawing k inputs x; independently according to an arbitrary distribution P on X
and forming each corresponding o; such that o; = gr(x;). Note that this is slightly different to
the process described in the previous section. In the process described earlier both inputs x; and
outputs o; are governed by a distribution P on R™ x {0,1}. In the process described here only
inputs are generated according to a distribution, and outputs are then obtained using gr. Note
also that examples are in effect assumed to be noise free, and that we also assume that future
examples are produced in the same manner after training.

Throughout this article we will denote by F the class of functions computed by a connec-
tionist network or other pattern classifier (equation 1). Training the network involves adjusting
its weights, on the basis of T}, such that it computes a function fy € F that is a ‘good approxi-
mation’ to gy € G. In all of the following work we assume that the classifier learns to classify the
examples in T} correctly (that the classifier is consistent). We now ask the following question: if,
under the conditions described, our classifier is trained using a sequence T} of training examples,
what is the probability that fw(x) # ¢gr(x) for new random inputs x generated according to P?
We call this probability the generalization error, which we denote €,(k) for the remainder of this
article. If we can answer this question then we clearly know something about the generalization
ability of our network. We now describe some results that allow us to bound the expected value

of e,(k).

2.1 A General Prediction Algorithm

Let us, for the moment, discard the assumption that we will necessarily use some function
chosen from a specified class F in order to predict which output, 0 or 1, is associated with an



input x, chosen according to P. In Haussler et al. (1990) an algorithm, called the randomized
1-inclusion graph prediction strategy, is constructed which has the following property: if it is
provided with a set T} of examples generated as described above, along with a further input
Xk4+1 drawn independently according to P, then the probability that its prediction is not in
fact equal to g7(xg41) is at most VCdim(G)/(k 4+ 1). The fact that an algorithm exists that is
capable of providing this performance can be used to obtain a further result described in the
next subsection.

Some degree of care needs to be taken in interpreting the results of Haussler et al. (1990).
In particular, recall that the generalization error ¢,(k) denotes the probability of error for new
inputs x generated according to P and classified using a classifier trained on a specific sequence
Ty. This is not equivalent to the probability that a single new xj4; generated according to P is
misclassified by such a network. In the former case a single trial corresponds to the generation
of a single input x according to P, whereas in the latter case a single trial corresponds to the
generation of (k + 1) inputs according to P. Formally*,

eg(k) = P[{x: [(x) # gr(x)}] (3)

where f denotes the function computed by a classifier after training on some sequence Tj;. The
generalization error ¢,4(k) is the standard measure of generalization performance used in practice.

2.2 Using a Bayes Optimal Classification Algorithm

We noted above that by producing results that are too powerful — by making them independent
of the actual distributions or algorithms used — we can obtain results that are rather impractical.
In the model of learning being used at present a further source of such problems has been
introduced. Specifically, results must apply even if the actual target function gr being used is
highly unrealistic. In Haussler et al. (1994) this problem is addressed by introducing a probability
distribution P on G that governs the way in which target functions appear. The article then
considers the performance of a classifier that is optimum in the sense that it implements a Bayes
optimal classification algorithm (Duda and Hart (1973)). In this case, it can be shown using the
result given in the previous subsection that the expected generalization error is,

VCdim(G)

E[Eg(k)]g k+1 ”

(4)
where the expectation is taken over all k-element training sequences and all target functions, and
the result holds regardless of the actual distributions P and P.

The bound of equation 4 was proved in Haussler et al. (1994), in which it was also conjectured
that it will be possible to obtain an improved bound of,

. 1VCdim(G).

Ele, (k)] < 2 k+1

(3)

Two important points should be noted here. The first regards the use of a class G of target
concepts and corresponding distribution P. The use of a class G in the theory effectively models
the fact that our classifier might, in practice, have to be applied to a selection of different
problems. The distribution P can be thought of as encoding our prior beliefs about which
function(s) will have to be learned. In this article we consider a single, specific problem (described
in the next section). This specific problem corresponds to a specific gr € G, and we can therefore
assume that P assigns a probability of 1 to this particular gy and a probability of 0 to all other

*We use the notation P[£] to denote the probability of the event £ according to the distribution P.



target functions. As the results of equations 4 and 5 are independent of the actual distribution
P, they still apply.

The second point that should be noted is that the Bayes optimal classification algorithm,
which is assumed in deriving equation 4, is distinct from the Bayes classifier (Duda and Hart
(1973)) for a given problem. The Bayes optimal classification algorithm tells us an optimum
way of predicting the output associated with a new input on the basis of a finite quantity of
training data for the model of machine learning described above, whereas the Bayes classifier
tells us how to classify new examples in order to obtain the smallest possible probability of error,
given complete information about the statistics of a pattern classification problem. In fact, in
the model of machine learning considered, a function exists — namely gr — that classifies all
examples correctly. The Bayes classifier therefore makes no errors for new examples and has an
associated error probability of zero.

To end this section, it is relevant to mention some further attempts that have been made to
obtain more realistic results than those obtained using the standard VC dimension theory. One
such attempt has involved the introduction of the effective VC dimension (Guyon et al. (1992),
Bottou et al. (1994)), and techniques based on statistical physics have also been used for this
purpose. A comprehensive review of the latter work is given by Watkin et al. (1993). We will
not discuss either of these alternative techniques further in this article.

3 Experiments Using the Peterson/Barney Data

3.1 The Peterson/Barney Data

The data used for the experiments was derived from a database containing the first four formant
frequencies for ten different vowel sounds uttered by people of different age and gender; this
database was originally due to Peterson and Barney (1952). For the purposes of this study, a
two-class pattern classification problem was constructed in which we attempt to discriminate
between the front vowels [i], [I], [e] and [ae] (class 1) and the mid vowels [a] and [o], and back
vowels [U] and [u] (class 2). Figure 1 illustrates the entire set of available examples as it appears
using only formants 2 and 3; in the following experiments all four formant frequencies were used
as inputs to the networks. Class 1 contains a total of 600 examples, and class 2 a total of 594
examples. There were no conflicting examples in the complete set of 1194 examples, in the sense
that no two examples exist with equal input vectors but conflicting classifications.

3.2 The Networks Used

The networks used in the experiments were specific examples of Linearly Weighted Connectionist
Networks. These networks have been studied for many years; examples can be found in Nilsson
(1965) and Cover (1965), and an extensive review can be found in Holden (1993). This class of
networks computes functions of the general form,

Sor(%) = H [ [ (x)] (6)
where,
Jw(x) = wo+ ) wigi(x). (7)
=1
In equations 6 and 7, wl = [wo wy -+ wy |€ R™t! is a vector of W = m + 1 real-valued

weights, the ¢; : X — R are m fized, typically nonlinear basis functions, and H denotes the
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Figure 1: The Peterson/Barney data. Only two formants are shown in this figure. Examples in
class 1 are displayed using ‘o0’ and examples in class 2 using ‘4.

step function,
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Standard, linear perceptrons are clearly a specific case of this definition, but are not very useful for
our purposes. In the following experiments we used two other network types, namely polynomial
networks, and radial basis function networks having fized centres. In the former case, the basis
functions are products of elements of the input vector x” = [ 21 z2 --- z, ], for example
¢i(x) = z12%23,. If a network of this type has n inputs and uses basis functions corresponding
to all possible products of up to d input elements then we call it an (n,d) discriminator. For

example, an (n,2) discriminator computes functions of the form,

n n n
fw(x)="H |wo + Z w;x; + Z Z Wi L% 5 | - (9)
It is possible to show that an (n,d) discriminator has W = (n:d) weights. In the case of radial
basis functions we use inverse multiquadric basis functions of the form,

1
[x —yill? +1

¢i(x) = (10)
where each y; € X is a fixed centre chosen according to the technique described below and ||.||
is a suitable norm; in our case we assume that X = R™ and use the Euclidean norm.

There are two reasons for using these networks in preference to more usual alternatives, such
as multilayer perceptrons or radial basis function networks with adapting centres. First, in both
cases we have very good results for the VC dimension of the network. In the case of polynomial
networks we have VCdim(F) = W and in the case of radial basis function networks we have
W —1 < VCdim(F) < W; this is proved in Anthony and Holden (1994) (see also Anthony
and Holden (1993)). In the following work we assume that VCdim(F) = W — 1 in the case of



radial basis function networks. In the more usual cases mentioned the best that we can do at
present is to bound the VC dimension for some specific cases, and it is not even known in general
whether the bounds available are tight. Secondly, there is a technique available for training
these networks that has significant advantages, when compared with the nonlinear optimization
required for training the alternative network types, in that it allows us to significantly reduce the
likelihood that various potential sources of random and systematic experimental error will affect
our results.

It is well-known (see Wan (1990) and Gish (1990)) that when addressing a two-class pattern
classification problem using a sufficiently powerful connectionist network with a single, real-
valued output we can obtain an approximation to the posterior probability that a given input is
in class 1 by minimizing the usual squared error,

k

E(w) = loi — fy(xi)]? (11)

=1

for the examples in a training set Tp. We can therefore obtain an approximation to a Bayes
classifier using a network of the form of equation 6. Of course, it is important to remember
that we are unlikely to obtain the exact Bayes classifier, and consequently that the measured
generalization errors obtained are in fact likely to be worse than those obtained using the true
Bayes classifier. (The points raised above regarding the distinction between the Bayes classifier
and the Bayes optimal classification algorithm should be recalled at this point.)

We must be rather careful to consider precisely how much experimental results obtained using
classifiers trained by minimizing £(w) can tell us about the quality of the bounds in equations 4
and 5. We use this approach as it is much closer to the types of technique used in practice than
the Bayes optimal classification algorithm, and as the latter algorithm is in general likely to be
extremely difficult to implement in full. The performance of the Bayes optimal classification
algorithm depends on the value of k, as the algorithm only has access to a finite number of
training examples. Although minimizing £(w) can allow us to approximate the Bayes classifier
under suitable conditions, it should be noted that it still corresponds to training a classifier using
k examples. As the Bayes optimal classification algorithm is the optimal procedure for predicting
outputs corresponding to new inputs within the model of machine learning described above, we
should expect classifiers designed by minimizing £(w) to perform worse in general than the Bayes
optimal classification algorithm. This is discussed further in section 5.

The weight vector that minimizes £(w) can be obtained easily as,
w=P%o (12)

where,
L di(x1) ¢a(x1) -+ dm(x1)

L ¢i(xg) da(x2) -+ dm(x2) (13)

L ¢i(xk) d2(xk) -+ Pml(xk)

ol = [ 01 02 --- op ] and Pt denotes the Moore-Penrose pseudoinverse of P (Golub and Van
Loan (1989)). By training using this technique we obtain a unique, global minimum of {(w). We
therefore avoid the potential introduction of errors due to convergence to local minima, and in
addition we avoid several other potential sources of error, as it is not necessary to choose initial
weights, learning rates, momentum constants, training batch size, training cutoff time or order of
pattern presentation as in many alternative techniques. A potential problem with this training
technique is that it does not guarantee to find a weight vector that correctly classifies all the
examples in T}, even if such a weight vector exists. This is discussed in section 5.



3.3 The Experiments

In order to assess the bounds of equations 4 and 5 we conducted six experiments, three using
polynomial networks and three using radial basis function networks. The polynomial networks
were a (4,2) discriminator, a (4,4) discriminator, and a (4,5) discriminator, having 15, 70 and
126 weights respectively. The radial basis function networks again had 15, 70 and 126 weights,
and the centres used were chosen at random such that they were uniformly distributed in the
subset of R* populated by available inputs®. For each radial basis function network the same set
of centres was used throughout the relevant experiment. The networks were trained using the
method described; all six networks are powerful enough to learn exactly the entire set of 1194
available examples illustrated in figure 1.

There is an important point that should be noted regarding the choice of networks and the
interpretation of the results that are presented below. The actual bounds in equations 4 and 5
require that we know the VC dimension of the class G of possible target concepts; recall also that
we must assume that the network can always learn the training examples exactly. The former
point is a significant shortcoming of the current theory, as clearly we are unlikely in practice
to be in a position to draw any conclusion about the VC dimension of G. However, because
we assume that our network can always learn the available training examples exactly we can
assume that VCdim(G) < VCdim(F), and for the purposes of the following work we assume that
VCdim(G) = VCdim(F). This issue is discussed in full in section 5.

In each experiment values of k in the range 50 to 790 were examined, using steps of size 20.
For each value of k the relevant network was trained for 40 different, randomly selected sets of
training examples. In each case the generalization error was estimated using a further (disjoint),
randomly selected set of 350 test examples. This allowed us to obtain estimates of the expected
and worst case generalization error. Sets of training and testing examples were generated by
selecting examples uniformly at random, without replacement, from the entire set of available
examples. Examples were selected without replacement in order to reflect the fact that, as real
speech has a high degree of variability, it is unlikely that any real set of examples will ever contain
two or more identical sets of formants. When training and testing the networks sets of examples
were chosen such that there were equal numbers of examples from each of the two classes.

A potential problem exists in using this method for selecting examples in that it does not
exactly reflect the process of generating examples that is assumed by the theory, in which inputs
x; are selected according to arbitrary P and outputs are formed as gr(x;). All the experiments
were repeated using an alternative selection method in which training and testing examples were
chosen uniformly at random with replacement and without forcing the sets to contain equal
numbers of examples from each of the two classes. The training and testing sets were still forced
to be disjoint. The results of the second set of experiments are given in appendix A; precisely
the same conclusions can be drawn from either set of experiments.

A final point should be noted regarding the manner in which examples are selected. Use of a
disjoint testing set reflects a standard experimental procedure, whereas the theory allows training
and testing sets to have common elements. This suggests that our measured generalization errors
might be higher than those obtained if we allowed training and testing sets that are not disjoint
and hence correspond more exactly to the theory.

®This, of course, involves designing the networks having taken into account the characteristics of all the available
data, and it is not clear whether the current theory strictly allows us to do this. We do not regard this as a problem
in this case however, as enough is known about the characteristics of speech formants to allow good guesses for
the relevant ranges in which to place centres to be made without making any reference to the actual data.
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Figure 2: Results obtained for a (4,2) discriminator. The two upper lines show the theoretical
bounds of equations 4 and 5 respectively, assuming VCdim(G) = VCdim(F); for each value of k
the bound on Efe,(k)] is shown. The line with points marked using ‘0’ shows the worst measured
generalization error, and the final line shows the average generalization error along with error
bars showing the standard deviation.

4 Experimental Results

Figures 2, 3, 4, 5, 6, and 7 show the results obtained using a (4,2) discriminator, a (4,4)
discriminator, a (4,5) discriminator, a radial basis function network with 15 weights, a radial
basis function network with 70 weights, and a radial basis function network with 126 weights
respectively.

Perhaps the most important observation that can be made here is that the fully proved
bound of equation 4 in fact overestimates both the expected and worst case generalization error
in these cases by a significant factor. Although this bound is a great improvement on those
typically encountered using the earlier theories, it still provides significant overestimates. (Note
however that we must be cautious in drawing the latter conclusion, for reasons discussed in the
next section.)

The conjectured bound of equation 5 appears to be more realistic. In fact this bound also
bounds the worst measured generalization errors in all the experiments conducted with only a
very few exceptions such as, for example, in figure 11 in appendix A. Given that, as noted
above, our networks cannot in general be expected to perform as well as the Bayes optimal
classification algorithm, and also considering some other factors, discussed below, that lead us to
expect that our measured generalization errors are worse than would be obtained if we were able
to match exactly the conditions required by the theory, we conjecture that if it were possible to
match exactly the required conditions then the worst measured generalization errors might also
be bounded by equation 5 in the instances studied.
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Figure 3: Results obtained for a (4,4) discriminator. The plots are as described in figure 2.

(4,5) discriminator
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Figure 4: Results obtained for a (4,5) discriminator. The plots are as described in figure 2.

12



Radial basis function network with 15 weights
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Figure 5: Results obtained for a radial basis function network with 15 weights. The plots are as
described in figure 2.

Radial basis function network with 70 weights
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Figure 6: Results obtained for a radial basis function network with 70 weights. The plots are as
described in figure 2.
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Radial basis function network with 126 weights
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Figure 7: Results obtained for a radial basis function network with 126 weights. The plots are
as described in figure 2.

5 Discussion

As a result of the specific assumptions involved, the theory described in section 2 appears to be
quite difficult to interpret in any truly practical sense. In particular, the fact that we must assume
that the classifier implements a Bayes optimal classification algorithm after training, that the
available examples are noise free, and that VCdim(G) is known are all significant shortcomings
of the present theory, and should be addressed.

5.1 Optimal Classification Algorithms and Noise Free Data

The first of these assumptions was mentioned above: it is unlikely in practice that it will be
possible to implement exactly the Bayes optimal classification algorithm studied by Haussler et
al. (1994). In our experiments we have attempted to solve this problem, and to use an approach
more similar to that generally used in practice, by using a standard error minimization technique.
As argued above, we consequently expect our measured generalization performances to be worse
in general than those that could be obtained using the Bayes optimal classification algorithm.

The assumption that data is noise free is more problematic. It is highly unlikely to be
a fully valid assumption in practice. FEven in the case of the data used in the experiments
described herein, which was collected with significant care, it is unlikely to be a completely
valid assumption (Peterson and Barney (1952) and Nowlan (1994)). However, a simple intuitive
argument regarding this problem is as follows: if we make the assumption when it is not in
fact the case we are likely to overfit the data and consequently increase the generalization error
obtained.

As a result of these two considerations we can therefore expect that the actual generalization
errors measured are worse than those that would be obtained using a Bayes optimal classification
algorithm with truly noise free data. This is important as the theoretical bounds of equations 4
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and 5 nonetheless apply in all our experiments, and this suggests that these bounds may in fact
overestimate expected generalization error to a greater extent than that suggested directly by
our experimental results. (Note however that, as a result of considerations discussed in the next
subsection, it is not certain that the results can be interpreted in this manner.)

There are also two further reasons for drawing this conclusion. First, as noted above, we
force training and testing sets to be disjoint. Secondly, and again as noted above, our training
technique does not guarantee to learn correctly all the examples in each T},. If at any time this is
the case then we obtain a measured generalization error corresponding to a network that learns
exactly some subset of T}.

5.2 Knowing the Target Class

The assumption that we have some knowledge of VCdim(G) is possibly the most important
shortcoming of the current theory because, as noted above, it is highly unlikely to be a good
assumption in practice. (This problem, and the related problem of choosing P, are obviously
quite similar to the ubiquitous problem of choosing a prior over weight vectors in the standard
Bayesian treatments of learning, see for example Buntine and Weigend (1991).)

In fact, the assumption that in practice we will encounter target functions gy drawn from a
class G does not itself accurately model the actual situation that we generally encounter when
designing a pattern classifier. Although the assumption that g7 is some member of a class G is
a good one if we wish to consider general learning algorithms, that work in a variety of different
circumstances, it is more usual that we approach a specific problem, that is, we wish only to learn
some specific gr. This is precisely the case in this article, and was discussed above. We might
therefore expect that we can assume any G such that g7 € G and further assume that F = G.
Our experimental results suggest that this may in fact be a good strategy. The assumption that
F = G seems reasonable as the Bayes optimal classification algorithm must itself know G in
order to make a prediction (although its hypothesis is not necessarily a member of G), and the
assumption that g7 € G = F also seems reasonable because all our classifiers can learn exactly
all the data that is available to us. A theoretical result relevant to this problem can be found
in Haussler et al. (1990) (theorem 4.1 of that article). This result upper bounds a particular
measure of generalization performance for a consistent classifier using an expression that depends
on the VC dimension of F and is independent of the characteristics of G.

It is important to note that this problem has two main consequences in the context of this
article. The first is that there is some uncertainty regarding how the theoretical bounds should
be placed in relation to the experimental results. Our conclusion that these bounds are better
than earlier ones is still highly likely to be sound, simply as a result of the degree of improvement
observed (see Cohn and Tesauro (1992)). Also, this observation serves to accentuate the difficulty
of applying this theory to practical classifier design.

5.3 Further Experiments

Further experiments would now be useful in order to investigate these bounds further. In par-
ticular, experiments using a larger set of data would be interesting, as well as useful in the sense
that they would allow generalization errors to be calculated using a set of more than 350 test
examples. Unfortunately, the requirement that all training examples are learnt exactly makes
experiments using large sets of real data difficult. It would also be interesting, in the case of
radial basis function networks with fixed centres, to examine the effect of using a different set
of randomly chosen centres each time a network is trained, rather than using the same set for
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an entire experiment. We have not examined this approach as the time required to perform
an experiment in this case is likely to become prohibitive. Finally, it would be interesting to
investigate the extent to which the assumptions of the theory can be violated before the bounds
become invalid. For example, how good are the bounds for cases where the training set cannot
be learned perfectly?

6 Conclusion

In this article we have addressed the question of whether some recent bounds on the sample
complexity of the task of training a pattern classifier such that it performs valid generalization
can be used as a practical design tool. The bounds considered, although they are probably
the most ‘practical’ available at present within the general framework of computational learning
theory, require us to make several assumptions that will not in general be accurate in practice. In
particular, it is necessary to assume that our classifier implements a Bayes-optimal classification
algorithm, that all data is noise free, and that the VC dimension of the class G of target functions
is known. The last of these assumptions forms at present the most important shortcoming of this
theory. The need to make these assumptions makes it rather difficult to fully assess the bounds
or to apply them in the design of practical pattern classifiers. At present, the only conclusion
that can be drawn regarding the use of these bounds in practice is that they appear to provide an
approximate, probably pessimistic guide to expected generalization error, and appear therefore
to be applicable in certain circumstances as an initial aid to design. In the experiments performed
the bounds were also found to be valid for worst case generalization error in most cases.

This conclusion is a rather pessimistic one. However we note, finally, that these bounds are
still rather more practically applicable, although unfortunately less powerful, than earlier bounds
obtained in computational learning theory, and that they therefore provide an excellent starting
point for further research.

7 Acknowledgements

Thanks are due to Martin Anthony for his comments on the initial draft of this article, and for

many useful discussions. Thanks are also due to the reviewers for various helpful comments.
This research was supported by SERC research grant #GR/H16759.

A Experimental Results Obtained using the Alternative Ex-
ample Selection Technique

Figures 8 to 13 are exactly analogous to figures 2 to 7, the only difference being that in
producing these figures the alternative method for selecting examples was used. This method
was described in section 3. The centres used by the radial basis function networks were identical
to those used in the experiments described above.
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Figure 8: Results obtained for a (4,2) discriminator. The plots are as described in figure 2.
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Figure 9: Results obtained for a (4,4) discriminator. The plots are as described in figure 2.
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(4,5) discriminator
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Figure 10: Results obtained for a (4,5) discriminator. The plots are as described in figure 2.

Radial basis function network with 15 weights
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Figure 11: Results obtained for a radial basis function network with 15 weights. The plots are
as described in figure 2.
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Radial basis function network with 70 weights
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Figure 12: Results obtained for a radial basis function network with 70 weights. The plots are
as described in figure 2.

Radial basis function network with 126 weights
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Figure 13: Results obtained for a radial basis function network with 126 weights. The plots are
as described in figure 2.

19



References

[AB92]

[AH93]

[AH94]

[Bar92]

[BCV94]

[BEHWS9]

[BHS9)

[BWO1]

[Cov65]

[CT92)

[DHT73]

[Gis90]

[GL89]

[GVBT92]

[HKS94]

[HLW90]

Martin Anthony and Norman Biggs. Computational Learning Theory. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1992.

Martin Anthony and Sean B. Holden. On the power of polynomial discriminators and
radial basis function networks. In Proceedings of the Sizth Annual ACM Conference
on Computational Learning Theory, pages 158-164, July 1993.

Martin Anthony and Sean B. Holden. Quantifying generalization in linearly weighted
neural networks. Complex Systems, 1994. To appear.

Peter L. Bartlett. Lower bounds on the Vapnik-Chervonenkis dimension of multi-
layer threshold nets. Technical Report IML92/3, University of Queensland, Depart-
ment of Electrical Engineering, Intelligent Machines Laboratory, September 1992.

L. Bottou, C. Cortes, and V. Vapnik. On the effective VC dimension. Unpublished
manuscript, February 1994.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.
Learnability and the Vapnik-Chervonenkis dimension. Journal of the Association for
Computing Machinery, 36(4):929-965, October 1989.

Eric B. Baum and David Haussler. What size net gives valid generalization? Neural
Computation, 1:151-160, 1989.

Wray L. Buntine and Andreas S. Weigend. Bayesian back-propagation. Complez
Systems, 5:603—-643, 1991.

Thomas M. Cover. Geometrical and statistical properties of systems of linear in-
equalities with applications in pattern recognition. IEEF Transactions on FElectronic
Computers, EC-14:326-334, 1965.

David Cohn and Gerald Tesauro. How tight are the Vapnik-Chervonenkis bounds?
Neural Computation, 4(2):249-269, March 1992.

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. John
Wiley and Sons, 1973.

Herbert Gish. A probabilistic approach to the understanding and training of neural
network classifiers. In Proceedings of the IFEFE International Conference on Acous-
tics, Speech and Signal Processing, pages 1361-1364, 1990.

Gene H. Golub and Charles F. Van Loan. Matriz Computations. Johns Hopkins,
second edition, 1989.

I. Guyon, V. Vapnik, B. Boser, L. Bottou, and S. A. Solla. Structural risk mini-
mization for character recognition. In Advances in Neural Information Processing
Systems, volume 4, pages 471-479. Morgan Kaufmann Publishers, INC., 1992.

David Haussler, Michael Kearns, and Robert Schapire. Bounds on the sample com-
plexity of Bayesian learning using information theory and the VC dimension. Machine
Learning, 14:83-113, 1994.

D. Haussler, N. Littlestone, and M. K. Warmuth. Predicting {0,1}-functions on
randomly drawn points. Technical Report UCSC-CRL-90-54, Computer Research

Laboratory, Applied Sciences Building, University of California, Santa Cruz, Santa
Cruz, CA 95064, December 1990.

20



[Hol92]

[Hol93]

[HR94]

[Maa93]

[Nat91]

[Nil65]

[Now94]

[PB52]

[Son92]

[STA91]

[Val84]

[Wan90]

[WDS1]

[WRBY3]

Sean B. Holden. Neural networks and the VC dimension. In Proceedings of the IMA
International Conference on Mathematics in Signal Processing, 1992.

Sean B. Holden. On the Theory of Generalization and Self-Structuring in Linearly
Weighted Connectionist Networks. PhD thesis, Cambridge University Engineering
Department, September 1993. Cambridge University Engineering Department Re-
port number CUED/F-INFENG/TR.161.

Sean B. Holden and Peter J. W. Rayner. Generalization and PAC learning: Some
new results for the class of generalized single layer networks. IEEFFE Transactions on
Neural Networks, 1994. To appear.

Wolfgang Maass. Bounds for the computational power and learning complexity of
analog neural nets. In Proceedings of the Twenty-Fifth Annual ACM Symposium on
the Theory of Computing, pages 335-344, 1993.

Balas K. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kaufmann
Publishers INC, 1991.

Nils J. Nilsson. Learning Machines. Foundations of Trainable Pattern-Classifying
Systems. McGraw-Hill, 1965.

S. J. Nowlan, 1994. Private communication.

G. E. Peterson and H. L. Barney. Control methods used in a study of the vowels.
Journal of the Acoustical Society of America, 24:175-184, 1952.

Eduardo D. Sontag. Feedforward nets for interpolation and classification. Journal of
Computer and System Sciences, 45(1):20-48, August 1992.

John Shawe-Taylor and Martin Anthony. Sample sizes for multiple-output threshold
networks. Network, 2:107-117, 1991.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134~
1142, November 1984.

Eric A. Wan. Neural network classification: A Bayesian interpretation. IEEF Trans-
actions on Neural Networks, 1(4):303-305, December 1990.

R.S. Wenocur and R. M. Dudley. Some special Vapnik-Chervonenkis classes. Discrete
Mathematics, 33:313-318, 1981.

Timothy L. H. Watkin, Albrecht Rau, and Michael Biehl. The statistical mechanics
of learning a rule. Rev. Mod. Phys., 65(2):499-556, April 1993.

21



