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Abstract

The application of statistical physics to the study of the learning curves of feedforward
connectionist networks has, to date, been concerned mostly with networks that do not include
hidden layers. Recent work has extended the theory to networks such as committee machines
and parity machines; however these are not networks that are often used in practice and an
important direction for current and future research is the extension of the theory to practical
connectionist networks. In this paper we investigate the learning curves of a class of networks
that has been widely, and successfully applied to practical problems: the Gaussian radial
basis function networks (RBFNs). We address the problem of learning linear and nonlinear,
realizable and unrealizable, target rules from noise-free training examples using a stochastic
training algorithm. Expressions for the generalization error, defined as the expected error
for a network with a given set of parameters, are derived for general Gaussian RBFNs, for
which all parameters, including centres and spread parameters, are adaptable. Specializing
to the case of RBFNs with fixed basis functions we then study the learning curves for these
networks in the limit of high temperature.
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1 Introduction

Statistical physics has made significant contributions to the study of learning curves for feed-
forward connectionist networks. (It has also been applied with great success to the analysis
of recurrent networks, although we do not consider the latter here. An excellent reference
is Amit [1].) In this context, a learning curve can be defined as a graph of expected gen-
eralization performance against training set size; the term is defined in full below. Most of
the research that has appeared to date has been concerned with networks that do not have
hidden layers, and which are applied to the learning of similarly structured rules; for exam-
ple, a perceptron learning another perceptron from examples. Given that the use of simple
networks such as these in practice is quite rare, the study of more complex networks and rules
constitutes one of the most important directions for continuing research in this area (Watkin
et al. [2]). Most, if not all of the analysis to date for more complex networks has been confined
to committee machines (see for example Schwarze et al. [3] and Barkai et al. [4]) and parity
machines ([2] and references therein), which are again not networks that are applied to any
significant extent in practice.

This paper presents results on the extension of the theory to the class of Radial Basis
Function Networks (RBFNs), which have been used with considerable success in practical
applications (see for example Renals and Rohwer [5] and Niranjan and Fallside [6]). The
learning curves for these networks have already been studied in detail in a predominantly
worst-case framework based on probably approximately correct (PAC) learning theory (An-
thony and Biggs [7]); the results of these studies can be found in Holden and Rayner [8],
Anthony and Holden [9], and Lee et al. [10].

This paper is organised as follows. Section 2 reviews radial basis function networks, de-
fines the learning problems of interest and provides a brief review of the areas of statistical
physics that are relevant to the paper. Section 3 addresses the first step in the analysis of
a network using this formalism, namely to calculate the generalization error of the network
for the tasks of interest. The generalization error, in this context, is the expected error, for
randomly selected input vectors, of a network having a given set of parameters. Section 4
addresses the derivation of learning curves. It has not to date been possible to obtain com-
pletely general results in this part of the analysis, and consequently we investigate learning
curves for the high-temperature limil. Section 5 discusses the results obtained and section 6
concludes the paper.

2 Preliminaries

This section reviews briefly the theory of RBFNs, and fully defines the learning problems of
interest. It then provides a short introduction to the areas of statistical physics relevant to
this paper. We do not provide a full account of the statistical physics relevant to the analysis
of learning curves; such an account can be found in Seung et al. [11], Watkin et al. [2], Hertz
et al. [12], and Landau and Lifshitz [13].



2.1 General Notation

We consider feedforward networks having p real-valued inputs, denoted by the vector x € R?
(vectors are assumed to be column vectors throughout this paper). Input vectors are assumed
to be generated independently at random according to a probability density p(x). The network
computes a function f(x,w): R? X R? — R that depends on a vector w € R? of ¢ real-valued
parameters. Note that we address networks with real-valued outputs; networks of this type
are typically applied to problems such as function interpolation, time-series prediction etc.
In this paper we consider functions f of a particular form, which will be discussed in the next
subsection. In general, networks having binary-valued inputs, outputs or weights can also be
investigated using this formalism, however we do not address such networks here.

2.2 Radial Basis Function Networks

We focus on Radial Basis Function Networks (RBFNs). These networks were introduced by
Broomhead and Lowe [14] and have a strong theoretical basis in interpolation theory (see,
for example, Powell [15, 16]). A convenient way in which to write the function computed by
a neural network with a single hidden layer of k units is,

k
f(x,w)=ap+ E@zé(X,ﬁz)

=1

where w is the vector of all variable weights,

wli=[ag -+ ap BT - Bl

and ¢(.) is called a basis function. In this paper we assume that ag = 0. For the case of
RBFNs we use,

o(x,8;) = (i, [Ix — uif])
where the u; are called the centres of the basis functions and .|| is a norm which, in this
paper, is always the Euclidean norm. Several forms are available for the function ¢, however
we will use the most popular, namely the Gaussian basis function,

b(x,8,) = exp l—%l!x— W] . (1

k3

The vectors B; of parameters can be written 87 = [ o; u’

o; controls the width of the ¢th basis function. Figure 1 shows the function computed by a
typical network of this type, for which p = 2, k£ = 50, the parameters «; and centres u; have

]. For Gaussian basis functions

been selected randomly, and o; =1 for ¢ =1,2,..., k.

In applying these networks in their full generality it is usual to adapt all the available
parameters in response to training examples. In this case we have ¢ = k(p + 2) variable
parameters in total. However, good results can also be obtained using simplified networks in
which only the parameters «; are adapted, and hence ¢ = k. In the latter case we deal with
networks that compute functions,

1 & 1 )
J(x,a) = \/—EZ%‘ exp —gHX - uy|
=1 7
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Figure 1: The function f: R? — R computed by a typical RBFN where p = 2, k = 50, the
parameters «; and the centres u; have been selected randomly, and o; = 1 fore=1,2,..., k.

where the u; are fixed and distinct, the o; are fixed, and al = [y @y -+ «p ]is the
vector of adaptable weights. For the purposes of this paper, we assume that when only
weights in a are adapted, the centres and the o; parameters are chosen without reference to
the training examples. For example, centres can be chosen randomly, but can not be chosen
using clustering techniques (Moody and Darken [17]) or such that they coincide with a subset

of the training examples [14].

An important observation can be made at this point. When only the parameters in « are
adaptable, the networks of interest operate by mapping input vectors of dimension p to a new
space of dimension k, and mapping the resulting vectors to an output using a linear network
having parameter vector a. Many results are available for such linear networks [2, 11], however
such results usually apply to networks having Gaussian-distributed inputs, whereas in this
case such inputs are clearly non-Gaussian, as the outputs of the basis functions of equation
(1) are strictly positive. Some of the later results presented in this paper can therefore be
regarded as an extension of earlier results to certain situations where inputs are not Gaussian-
distributed.

2.3 Target Rules and the Learning Problem

We study the supervised learning of a rule from a sequence of P noise-free training examples.
We let P = «g where ¢ is the number of variable parameters used by the network, and we
assume that training examples are generated using a target rule fr : RP — R. The training
sequence Tp is generated by drawing P inputs independently at random according to a fixed



probability density p(x) and forming,

Tp = ((x1, fr(x1)),-- -, (xp, fr(xp))).

Throughout this paper we assume that p(x) is the Gaussian density function,

(2)

We consider two types of target rule. In the first, fr has the same form as the RBFN of
interest, and the function fr therefore has the form,

Zazexp [ ’X—UZH2‘|

where @;, 7;, and u; for i = 1,2, ..., k are fixed parameters that define fr. Overlines are used
in this manner throughout the paper to denote parameters associated with the target rule.
Note that if w; = u; and 7; = o; for + = 1,2,...,k then the target rule is realizable; if the
stated equalities do not hold then this may not be the case. The second type of target rule
considered is a simple linear rule,

Jr(x) = ﬁ7 X

where 7 € RP is a fixed vector of parameters.

2.4 Statistical Physics

We begin with a few definitions. The error ¢(x,w) of a network on a given input is, as
usual, a measure of the distance between its output and the output of the target rule for the
corresponding input,

(o w) = 5L 0x,w) = fr ()

Further, we use the usual measure for the training error, E(w,Tp), defined as,
P
(w,Tp) = Ze X;, W
=1

for the x; in the training sequence Tp. We denote by,

w) = [ elx, w)p(x) dx (3

the expected error of the network for a given weight vector, which is called the generalization
error for that weight vector.

A central assumption in much of the treatment of learning curves using statistical physics
is that the network is trained using a noisy dynamics leading at equilibrium to the Gibbs
density (see [2, 11] and Levin et al. [18]),

P (w) = p(w) expl—3F(w, Tp)]



where 8 = 1/T, T denotes the temperature, p(w) is a prior density on the weights, and the
relevant partition function is,

7 = / p(w) exp[—GF (w,Tp)] dw.

The temperature, in this context, denotes the amount of noise present in the training dy-
namics. It is usual in this type of analysis to use the prior p(w) to impose constraints on the
ranges of the weights. We will not use this approach in this paper; this point is discussed in
more detail in section 4.

Averages with respect to the Gibbs density, referred to as thermal averages, are as usual
denoted by (.)r and similarly, quenched averages over P-element training sequences are de-
noted by () = [TI/Z, p(x;)dx; such that the quenched average of a random variable r is,

(r(x1,...,xp)) = / r(xy1,...,xp)p(x1) - -p(xp)dxy - - - dxp.
The primary quantity of interest in this paper is the expected generalization error,

(P T) = ((e(w))1))-

Plots of ¢,(P,T) against P for fixed T are called the learning curves for the network of
interest. We will also be interested in the expected training error,

&(P,T) = ( (P~ E(w,Tp))r).

It is straightforward to verify that,

«(P,T)= P! %ﬂf“) (4)
where,

F = ~T(In2) (5)

is the free energy.

2.5 The High-Temperature Limit

In this paper we will use a simplified version of the full theory known as the high-temperature
limit (Seung et al. [11]). In the high-T" limit we let ' — oo and o — oo while a3 = constant.
In this case the training error F(w, Tp) can be replaced by its average value ((F/(w, Tp))) and
the expected training and generalization errors become equal. Consequently, the partition
function takes the form,

Zo = [ plw) expl~gage(w)] dw
and it is straightforward to show using equations (4) and (5) that,

10
Gg(P,T):—F%IHZO (6)
The high-T" limit has been used in the analysis of other types of network by Schwarze et al. [3]
and by Sompolinsky et al. [19].



3 The Generalization Error ¢(w)

A central quantity in the analysis of neural networks using this approach, and the first thing
that we must calculate, is the generalization error ¢(w) defined in equation (3). This quantity
can be derived for the networks and target rules of interest for cases in which all parameters in
the network are variable (u; and o; are not assumed to be fixed fori = 1,2, ..., k as described
above), assuming that the density p(x) is the Gaussian density of equation (2). Although
later in this paper we specialize to the case of more restricted networks, we include the fully
general derivation here as it is likely to prove useful in further work on the statistical physics
of these networks.

3.1 Useful Integrals

We make extensive use in this paper of the standard identity,

1 1 Ty -1

where X is a constant, symmetric matrix, y and z are constants, and p is the dimension of
x. A derivation of this result can be found in Godsill [20]. We also make use of the identity,

1 1 .
I:/ alxexp [—5 (XTXX-I—xTy-l—z)] dx = —5(277)7’/2 | X |_1/2 (aTX_ly) X

R e

where X is again a symmetric matrix and a is a further constant vector. This is not, as far

—

as we are aware, a standard result. It can be derived from equation (7) using Leibnitz’s rule
(see Kaplan [21]) by noting that,

(8)

P
I:Zai/ x; exp [—% (XTXX—}-XTy—}-Z)] dx

=1
and,
5]
dy;

. 1 T T _ 1 . 1 T T
{exp [—5 (x Xx +x y+z)]} = —§x,exp [—5 (x Xx+x y+z) .
Finally, we use the identity,

nP/2 Trace(Y_lx_)
SN g ®)

/ xTXx exp[-xT ¥Yx] dx

where Y is constant and non-singular. This result was derived by O Ruanaidh [22].



3.2 Nonlinear Target Rules

The network of interest computes the function,

1 k
(x,w) = \/—E;am(x B;)

where ¢ is the Gaussian basis function of equation (1). In this case the target rule is,

- i

%

for fixed, unknown weights @;, 3; where i = 1,2,...,k, and we can therefore write the error
e(x,w) of a network with weight vector w¥ = [ T BT ... BT ] and inputs x as,
1 2
€(X, W) = 5 [f(xv W) - fT(x)]

2

1 [& : 3
b o7 [Z aiqb(x,ﬂz-) - Zazé(x7ﬁz)]

Note that in the interests of generality we regard for the time being the vectors 3; as containing
variable weights. Introducing the notation >, = f-czl Z?:l we can write,

e(x,w) = ﬂ[Zaza]qb +Zaz%¢ ,B:) (%, B;)

-2 Z ;@ 0(x, B;)o(x, Bj)}

]

and hence,
dw) = [ elx,w) plx) dx

= %ZO@%‘/ o(x,8;)¢(x, B;) p(x) dx—l—% > a@-/ (%, B:)6(x, B;) p(x) dx

5 S [ o0 8003 ) dx (10)

and we therefore need to evaluate integrals of the form,

I(a,b) = [ 6(x,a)(x, b) p(x) dx (11)
for a,b € RPT1) We assume that the Gaussian basis function,
1 2
¢(X7a) = €xp _EHX_ ua”
1 T
= exp [~y ) (x - w)| (12)

9



is used, where u, is the centre of the basis function and o, controls its width. The parameter

vectors a and b are written as,
ol = [0, ul]
bY = [ uf ]
Inserting (2) and (12) in (11) we obtain,
I(a,b) = L ' 2 T T d
(a,b) = W/exp -3 U—g(x u,) (x—u,) + g(x—ub) (x—w) +x'x X
1 / (202 ) (2 4
= ——— [ exp|—=|xx|=+—= x' | ——u, — —u
(2m)p/2 P17 o ' o} o? of ’
1 1
+2 (—uTua + ngub))] dx
o2 o}
in order to obtain,

We now apply the identity stated in equation (7) i
a = ! 2 ulu
e <1+<2/az)+<2/a>p/2 [ ( ( 2 (L4 (2/00) + <2/UZ>>) "
1
= (a_z‘ z*<1+<2/aa> </b>>)“”“b
(13)

8
0207 (1 + (2/02

Simplifying equations (10) and (13) we obtain the final result

e(w) = /e(x,w)p(x)dx
QkZaa] (W, 1;,7;,5;)

1
= 3 Z a1 (ug,uj,04,0;)
— F

uTub)] |
T+ @)

7 Z a1 (v, 0;,0;,7;)

3]

where,
I(u;,u;,05,0;,) = (o))" %exp u ulu — -
73 U7y Uy Uy 02_20]20/ 1 ] U;_z 0240/
1 2 ) T
{27 3 u; U-J]
(Uj a;0'
and 9 9
o =1 : 5

This is a general expression that applies when all the parameters in the network are regarded
as variable weights. Figures 2, 3, and 4 illustrate the form of ¢(w) for a very simple network

10
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Figure 2: Generalization error ¢(w) for the simple network described in the text for varying
centre v and weight a.
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0.25

Generalization error

00.0.

N

Q

OGN
"’:ﬁ’!‘:’o”.‘:‘o‘b

X

DR
’:’ .0.0.0.0“.

()
’»’atwa.‘.*.’..o.b.:.té.»AA&!&QQ““‘
\\\\‘
|

0 -10
Spread value Centre position

Figure 4: Generalization error ¢(w) for the simple network described in the text for varying
spread ¢ and centre u.

and target rule. The target rule in this case corresponds to a network having a single input,
a single centre at the origin, and @ = @ = 1. The network has a single input, a single centre,
a single weight o and a single spread parameter, and the three figures show the variation
of €(w) as two of the three network parameters are varied, the third parameter in each case
taking the same value as the corresponding parameter for the target rule.

Consider now the restricted case in which only the parameters in a are considered to be
variable weights. Let M be the symmetric matrix having elements M;; = I(u;, u;,0;,0;).
Also, let N be the matrix having elements N;; = I'(u;,W;, 0;,7;) and let al=[=m a --- @]

Then we can write,
1

1
ela) = ﬂaTMa — EaTn%— T (14)
where n = Na and,
l— e = =
& =3 Z a1 (a;,v;,7,,0;).
g
The weight vector erg that minimizes ¢(a) can now be found by differentiating equation 14.

We require that
de(a) 1

Yo k[Ma—n]:O

and so,
ag=M'n.
Consequently, the minimum value for ¢(a) is,

1 1
€0 = €(ag) = z ) — inTM_ln . (15)

12



3.3 Linear Target Rules

Having obtained expressions for the generalization error of a RBEFN learning a similar RBFN

we now address the case of a RBFN learning a linear target rule. In this case the target rule

is,
L _r

Jr(x) = —=7"x

VP

where 7 is a fixed, unknown vector of parameters. We therefore have,

k 2
1 1
=Ty

€(x,w) = ) [\/—Ezaié(xﬁi) - %’Y

I 7 . | J—
= _Zazajé(xvﬁz)¢(xvﬁj) - (kp)1/27 X;O&Zé(x,ﬁz) + %x Y X
This leads to,

e(w) = /€(X7W)p(x)dx
1
- ﬂizjo‘iom‘/ ¢(x, B;)¢(x, B;)p(x) dx

—}—%/ xT7 7 x p(x) dx
1 & T
— 1 2% [ 7 xo(x,B;)p(x) dx.
w2/

For Gaussian basis functions and Gaussian-distributed inputs, the first term in this expression

is exactly as derived above. The second term can be evaluated using equation (9), and is given
by,
1 7

1
%/ x'F ¥ x p(x) dx = 57 7

The integral in the final term can be evaluated using equation (8), and is given by,

2 2 1

_T =T T

. dx = cexp [l [ —2— — )]
/ ¥ xo(x, B;)p(x) dx (@07 1 1)p/2(2+03)7 u; exp [uz u ((2022 o U?)]
For linear target rules we therefore obtain the final result,

e(w) = /e(x,w)p(x)dx

1 1 k - N
= ﬂ - OZiOéjI(lliy llj70i70j) — WZ;O{Z‘J(UZ',UZ-’V) + ? (16)

where I(u;, u;, 0, 0;) is as defined above,

o 2 =T . o T, #_i
J(llz70277) - ((2/02.2)_'_1)23/2(2_}_02.2)7 u; exp |}h u; ((202_2+g;.1) U?)]

13



and,

1_p_

5’)’ -

Equation (16) again applies when all parameters, including centres and spread parameters,
are variable. Let o be the vector having elements o; = J(u;,0;,7%). Then in the restricted
case, when only the parameters in a are considered to be variable weights, we can write,

Cy =

1 T 1 T C2
€(a) = Y e Ma — (kp)l/Qa o+ PR
Consequently, we obtain,
Je(a) 1
= “Ma —
dax IR
such that,
k —1
O T
and
1 L 7ar-1
€ = €(lag) == |ea— 0" M "o

4 Learning Curves

In this section we consider the learning curves for RBFNs learning the target rules considered
in the previous section in the high-temperature limit. For this limit we have the partition
function,

Zy = / p(a) exp[—kafe(a)] da.
as discussed above and the quantity of interest is,

10
GQ(P, T) = —F% ln ZO
(equation (6)). In order to calculate Zy we need to specify a prior density p(e) for the weight
vectors . The usual approach here is to use this prior density to constrain the ranges of
the weights, and a density is usually specified that forces weight vectors to have a specified
length (see for example [11]). This is not the approach that is in general applied in practical
network design, and accordingly we will use a Gaussian prior,

pla) = (2n) 2o Fexp [ aTal. (17)

2
207

We begin by considering nonlinear target rules. In this case we have,

Zy = (271')_]“/20;]“/ exp [—ozﬂ <laT1\/Ia — aTn+cl) - QLaTa da

2 o2

o

= (271')_1“/20;]“/ exp [—% (aTNa — 2a8a"n + QOzﬂcl)] da

14



where,

N = oM + 0’1
Applying the standard integral identity given in equation (7), and re-arranging we obtain,

Zo=0."|N |_1/2 exp [—% (204501 - erﬂQHTN_ln)] .

The learning curve for the high-T limit is now given by,

ég(P,T) = —lenZO
L L[I0 (a1 2 |
= —P[Qaﬁ(aﬂnN n)—28ﬁ1n|N|—0zcl.

At this point the need to deal with the inverse and determinant of the matrix N becomes
problematic, as we need to differentiate expressions containing these quantities with respect
to B and it does not appear to be possible to do this analytically. We therefore consider the
case in which o, is large—in effect the case in which we place no constraints on the ranges
of the weights—such that,

N ~ oM
and hence,
17071 k
(PT) = -5 |:§0znTM_1n — ey — %]
1 1 7oy ] 1
= 7 [cl 2n M 'n 0B

Comparing this expression with equation (15) we obtain the final result,

1
fg(P, T) = € + m (18)

For the case of a RBFN learning a linear target rule, a calculation exactly analogous to
that given for nonlinear target rules leads again to equation (18).

5 Discussion

Until section 4 our analysis applied to completely general RBFNs for which all available
parameters are adapted during training. The results obtained are therefore potentially useful
in any further analysis of RBFNs using this formalism. In order to obtain actual learning
curves it was necessary in section 4 to restrict our area of interest to more limited RBFNs, for
which only the parameters of the vector a are adapted during training. An area for future
research is therefore the extension of the analysis of the previous section to fully general

RBFNs.

A further area for further research is the analysis of RBFNs using more sophisticated
and general techniques such as the annealed approzimation and replica method (see Seung et

al. [11]).
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6 Conclusion

Statistical physics has made significant contributions to the study of learning curves for feed-
forward neural networks, however most of the research to date applies to networks that are
not used in practice to any significant extent. We have used the formalism provided by sta-
tistical physics to investigate the learning curves for Gaussian radial basis function networks,
which have been used in many practical applications with excellent results. We have derived
general expressions for the generalization error of a network with a given set of parameters
learning nonlinear and linear, realizable and unrealizable rules in the absence of noise. We
then obtained learning curves for a more restricted class of networks trained using a stochas-
tic algorithm in the high-temperature limit. Two further possible areas for future research
are the analysis of fully general networks in the high-temperature limit, and the analysis
of radial basis function networks using more sophisticated techniques such as the annealed
approximation and the replica method.
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