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ABSTRACT

Current large vocabulary continuous speech recognis-
ers (LVCSR) do not model the effects of speech rate
on the speech unit durational characteristics. This pa-
per presents work on the investigation of speech rate,
presents three durational models which make use of this
rate information and the integration of the models into a
TIMIT based LVCSR is described. Although TIMIT con-
tains controlled, read speech, with little speech rate varia-
tion, experimental work has shown that the relative dura-
tion models produce greater word error rate improvements
than models which do not take account of the speech rate.
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1. INTRODUCTION

Many large vocabulary continuous speech recognisers
(LVCSR) use durational constraints ranging from simple
subword unit minimum durations [1] to more sophisticated
attempts to model state/unit durations [2]. These con-
straints can improve recogniser performance by penalising
alignments with unlikely durations, arising, for example,
from inadequacies in acoustic or lexical modelling. They
can also assist in discriminating between recognition units
(e.g. ‘leek’ has a shorter vowel than the one in ‘league’).

The overall speed at which utterances are produced (the
speech rate) obviously effects the durational characteris-
tics of the individual speech units. However, LVCSR sys-
tems do not make use of these relative effects. Quantifying
rate requires knowledge of the total duration of an utter-
ance section and the number of units produced in that
time. This information is unavailable as recognition pro-
ceeds.

In earlier work [3] we suggest that features like duration
can be exploited using a postprocessing phase after the
N-Best algorithm has been used to generate the N most
likely utterance hypotheses. The main advantage of the
scheme is that utterance level information, such as that
needed to calculate speech rates, is made available. This
paper discusses the use of speech rate information in phone
duration modelling and three possible model schemes are
described. Performance changes resulting from the use of
the relative duration models are presented. These results
are compared with the improvements when using duration
models which do not take account of the speech rate.

2. SPEECH RATE

By speech rate, we mean the rate at which individual
speech units are produced. This can be expressed as the
average unit duration. In deciding how to actually calcu-
late this rate, a number of choices have to made.
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The length of the utterance used in the calculation
should be long enough to ensure that the rate is repre-
sentative, while short enough to account for changes in
speech rate during the utterance. In our work, we calcu-
late the rate using the entire utterance. This is because
the utterances in the TIMIT database are fairly short,
with an average of 31 phones.

The speech unit used in the calculation should be such
that the variance of the inherent durations of the different
units is as small as possible. Otherwise, the rate will be
affected more by the content of the utterance than by the
actual speech rate. The ‘word’, then, would be a useless
unit to be used in speech rate calculation. In our work we
use the phone as the speech rate unit. The syllable was
also considered but was rejected due to the greater vari-
ance in inherent durations arising from different syllable
structures.

Phone durations are normalised before the average
phone duration is found. Normalisation causes the speech
rate to be affected more by changes in the phones with
the smallest variance of absolute durations. This em-
phases the effect of actual speech rate changes and reduces
the impact of other causes of duration variations such as
stressing and prosodic phrasing.

Normalised phone duration, 7, is computed as,
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where d is the absolute duration and, p and ¢, the mean
and standard deviation of the phone absolute durations
found in the training set. After normalisation, the speech
rate, r, is found by summing the durations over the utter-
ance and finding the average.

The effectiveness of the average normalised phone dura-
tion in differentiating utterance rates was assessed. This
was done by computing the weighted average shift of the
absolute phone duration distributions for phones found in
the slow, average and fast training utterances. The aver-
age shift is defined as,
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where p is the number of phones in the phone set, n, the
number of examples of phone p, N the total number of
phones in the training set and ¢ is the number of different
utterance classes used in the evaluation (c=3: fast, aver-
age and slow utterances). The duration distribution data
was gathered in the way described in Section 3.1.

The average shift using average normalised phone du-
ration as the speech rate measure is shown in Table 1.
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The shifts achieved using unnormalised phone duration
and syllables are also shown for comparison. The larger
the shift, the more effective the measure for our purposes.
Although in our work we use speech rate in LVCSR, rate

Speech Rate Measure Avg. Shift x 10-3
Avg. syllable dur. 7.2
Avg. phone dur. 9.8
Avg. normalised phone dur. 12.2

Table 1. Measures of speech rate and the weighted average
shift between phone distributions of slow, average and fast
utterances.

information has also been used in various other speech
processing tasks such as syntactic disambiguation [4] and
keyword spotting [5].

3. RELATIVE DURATION MODELS

Three duration models which make use of the speech
rate information were built for the hidden Markov model
(HMM) phone models used in our speech recogniser. The
first modelling scheme uses the utterance rate to partition
each phone duration model into a number of submodels
while the others use it to adapt a single model. In all
cases, the duration training material was phone hand la-
belled transcriptions from the TIMIT database.

3.1. Partitioned Model

The training utterances were put into three groups, each
group containing approximately 700 sentences. The first
group contained the fastest utterances and the last the
slowest utterances.

For each phone, three submodels were then trained, one
for each of the utterance groups. Each model consisted of
the absolute minimum/maximum duration observed; the
durations between which 90% of durations occurred (i.e.
5% lower /upper limits); a smoothed histogram represen-
tation of the distribution of durations using 100 bins of
10ms each; and, the mean/standard deviation of duration
for use in a Gaussian model of duration distribution.

To illustrate the differences between models for the dif-
ferent partitions, Table 2 gives some of the statistics for
the phone /f/ and Figure 1 shows the envelope of the
smoothed histogram duration distributions. The differ-

Rate Group | Min. | Max. | Mean | Std. Dev.
Fastest 13.3 | 173.7 92.7 28.7
Average 20.2 | 202.1 | 101.2 32.1
Slowest 22.6 | 2685 | 114.6 36.3

Table 2. Example statistics from training three submod-
els for the phone /f/. Absolute duration minima/maxima
(Min./Max.); and, duration mean and standard deviations
(Mean,Std. Dev.). The three models are for the fastest, av-
erage and slowest speed utterances. Durations in ms.

ences between the statistics of the rate bands was gener-
ally not dramatic. There are two explanations for this.
TIMIT is read, controlled speech, leading to less varia-
tion in speech rate. Furthermore, no explicit information
about the stressing, phrasing, or other duration changing
factors, is used in the speech rate measure so no adjust-
ment for these can be made.
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Figure 1. Smoothed histogram of the durations of /f/ found
in the fastest, average and slowest utterances.

3.2. Shifted Mean Model

A disadvantage of the partitioned approach is that utter-
ances used to train each partition model have a relatively
wide range of utterance rate. Utterances at the top end
of one rate band are likely to have durational character-
istics similar to utterances at the lower end of the adja-
cent, succeeding band rather than to those found in the
lower end of the same rate band. Increasing the number
of rate groups to improve in-class cohesion would lead to
a training problem with there being reduced numbers of
utterances in each group.

A possible solution to this problem might be to try to
adapt an undivided duration model with respect to the
speech rate. This adjustment could occur during the scor-
ing of recogniser hypotheses. In this work, we use a very
simple adaption scheme. Following [4], the mean of the ab-
solute phone duration, u, is adapted to give, p, as shown
in 3.

or
N or 3
p=nt (3)
where ¢ is the standard deviation of the absolute phone
duration, r is the sentence rate and N is a scaling factor
which was set to give small, cautious shifts without mak-
ing them negligible as would be the case if N was large.

3.3. Relative Normalised Duration Model

In both of the models described above, the phone dura-
tions are absolute ones with the model forms being ad-
justed by the speech rate. In the third model, relative
durations are modelled. This approach was considered to
attempt to capture directly the effects of the rate on the
normalised phone durations while avoiding the rigidity of
the partitioned model and the lack of sophistication in the
shifting mean approach.

Each normalised phone duration, 7, is transformed into
a relative one, 7., by,

T=T—7r 4)

Histogram and Gaussian models were generated for the
training data.

The distribution of the relative durations was compared
with the distribution of durations (7) which are not rel-
ative to the sentence rate. Table 3 gives some example
variances of the two statistic types. As was expected, the
variances of the relative durations were lower than those
where the rate was ignored. The margin was smaller than
hoped for, however; the possible reasons for this have been
mentioned above.



Phone | Var. » | Var. 7
Jao/ 0.84 1.0
/t/ 0.90 1.0
/sh/ 0.79 1.0

Table 3. Example variances (Var.) for relative (7, ) durations
and those (7) which do not take speech rate into account.
Lower variances in relative case indicate correlation between
speech rate measure and phone duration behaviour.

4. INTEGRATING THE MODELS WITH A
LVCSR

The duration models are used in a postprocessing phases
after the N-Best algorithm has generated a number of hy-
potheses for each of the test utterances.

4.1. N-Best Algorithm

In speech recognisers using Viterbi decoding the (single)
most likely utterance transcription is produced. By con-
trast N-Best decoding algorithms generate the N most
likely hypotheses [6]. The sentence hypotheses are found
in order of decreasing likelihood and each has a likelihood
score associated with it. In our work, the N-Best front-
end recogniser produces word and phone alignments for
each transcription.

4.2. Postprocessing

Each of the N transcriptions produced by the front-
end recognizer is scored with the duration information.
Firstly, a rate is hypothesised for the transcription. The
way this is then used depends on the model being em-
ployed. In the partitioned case, the rate is used to select
the appropriate partition of the model for scoring the tran-
scription; for the shifted mean case, the rate adapts the
mean of the phone duration distribution; and, with the
relative durations model it is subtracted from each nor-
malised phone duration in the transcription to derive a
relative value which can be given a log likelihood from the
model.

The duration likelihood is then added to the acoustic-
phonetic log score. A weight is used to give appropriate
emphasis to the duration information, the weight being
trained during system development. After the combina-
tion of likelihoods, the N-Best list is reordered such that
the top transcription has the highest combined score.

5. EXPERIMENTAL WORK

5.1. Baseline System

Experiments were carried out using the TIMIT database.
To achieve a large but manageable vocabulary size a sub-
set of the utterances is used which consists of the sz type
sentences, giving a vocabulary of 1794 words. For the new
database two thirds of the speakers in the original TIMIT
database were placed in the train set and the remainder
made up the test set, with no overlap between sets.

A speaker independent HMM based word recogniser was
built using the HTK Toolkit [7]. Monophones were used to
build up single pronunciation word models. A word pair
grammar acted as the language model constraint. Further
details can be found in [3]. Five hundred randomly cho-
sen test sentences were used in the experiments described
below. The baseline performance on this set was, 13.62%
(word error rate), 29% (sentence error rate). The N-Best
algorithm was used to find the 30 most likely transcrip-
tions for every test sentence.

5.2.

Each of the three duration models were used to score the
transcriptions produced by the front-end recogniser. For
the cases where an histogram or Gaussian model was used
scoring involved finding the log likelihood of the observed
phone duration from the models. However, where bound-
ary statistics were used (i.e. absolute min/max and 5%
lower /upper limits) the transcription score was the per-
centage of phones in the transcription which had durations
within the boundaries.

Table 4 details the relative duration models used to
score the N-Best lists. The change in recogniser word ac-
curacy, relative to the baseline given in Section 5.1., after
N-Best list reordering was recorded. For comparison, the
transcriptions were also scored using models which were
not adapted for speech rate.

Applying Relative Duration Information

Model Type Model Params
Partitioned Abs min/max duration
Lower /upper bounds
Histogram
Gaussian
Shifted mean Gaussian
Relative durations | Histogram
Gaussian

Table 4. Relative duration models used in the scoring of
N-Best transcriptions. The transcriptions were also scored
using models unadjusted for speech rate.

6. RESULTS

6.1. Effect on Baseline Performance

Tables 5, 6 and 7 show the changes in test set word er-
ror rate after scoring/reordering the N-Best transcriptions
when using the partitioned, shifted and relative models.
The effects of using unadjusted models are also given.

Info Type Structure | % reduction w.err
Abs min/max | Unadjusted -0.6%
Partitioned 2.7%
Lower/upper | Unadjusted 2.2%
Partitioned 4.1%
Histogram Unadjusted 6.2%
Partitioned 10.1%
Gaussian Unadjusted 5.6%
Partitioned 9.7%

Table 5. % reductions in word error (w.err) using the parti-
tioned model. ‘Unadjusted’ results are those obtained with
an unpartioned model: no adjustment for speech rate.

Info Type | Structure % reduction w.err
Gaussian Unadjusted 5.6%
Shifted mean 6.4%

Table 6. % reductions in word error (w.err) using the shifted
mean and unadjusted models.

6.2. Discussion

As can be seen, the relative duration models outperformed
the absolute duration ones in all cases. The better per-
formances when using relative durations can be explained



Info Type | Rate % reduction w.err

Histogram | Rate Constant 6.1%
Sentence Rate 7.4%

(Gaussian Rate Constant 5.7%
Sentence Rate 7.1%

Table 7. % reductions word error (w.err) after applying the
relative durations model compared with case when speech
rate not used (rate constant).

by considering the scoring of transcriptions in the N-Best
list.

Firstly, it is important to remember that a speech rate
is calculated for every transcription in the N-Best list. An
incorrect transcription may have a similar rate to the cor-
rect transcription. However the rate may differ to the
that of correct transcription due to erroneous recognition
leading to incorrect phone recognition and duration as-
signments.

Table 8 shows the actual speech rate of two of the test
set utterances along with the rates calculated for the first
transcription, which is incorrect, and the correct tran-
scription, which occurs further down the N-Best list. After
scoring/reordering the N-Best lists using a relative dura-
tion model, the correct transcriptions were moved to the
top of the N-Best list. In cases such as the first exam-

Sent. Id. U.Rate | Inc.Rate | Cor.Rate
mdhl0-5-sx359 | -0.22 1] [ -0.19[1 -0.19 1]
fcall-5-sx357 | 0.00[2] | -0.17[1 0.00 [2]

Table 8. Test sententces and rates of transcription in hand
labbeled data (U.Rate), incorrect and correct transcriptions
(Inc.Rate, Cor.Rate). Figures in brackets give submodel rel-
evant to rate, 1 being for the fastest utterances.

ple, where an incorrect transcription and the correct one
have a similar rate, the relative duration models have the
advantage over non-relative models of being more specific.
Where an incorrect transcription has a much different rate
from that of the correct transcription, as in the second ex-
ample, phone durations in the incorrect transcription are
scored using data applicable to that speech rate and not
the one which the utterance was produced at. As well as
penalising incorrectly recognised phones, correct phones
should score less well than if they were scored using dis-
tributions for the rate they were actually produced at. In
this way, durational errors can be amplified by affecting
the likelihoods of correct as well as incorrect phones.

The different types of durational information used to
score transcriptions bring about varying degrees of im-
provement in word error rate. The smallest improvements
come from using the simple boundary constraints of phone
absolute min./max. duration and the 5% lower/upper du-
ration boundaries. This is because of the small number of
transcriptions with very unlikely phone duration assign-
ments. The best improvements are achieved using full
distribution information (histogram/Gaussian).

Histograms have the potential to model the actual du-
ration distributions more closely than a parametric model.
We did achieve better results using histograms than when
Gaussian models were employed, but the differences were
not significant. Parametric models would be needed if du-
ration models were built for context-dependent subword

unit models due to a smaller amount of training data for
each duration model.

Of the three relative duration models, the partitioned
scheme is the one which produces the best result (10.1%
reduction in word error). It accounts for changes in the
duration distribution with respect to the speech rate to a
much greater extent than the shifted mean model where
only the mean is affected. Further work on the shifted
model could look at adjusting the variances and finding
the optimal (rather than arbitrary) weight given to the
rates in shifting. The partitioned model also seems to
make better use of the speech rate effects in transcrip-
tion scoring through using hard partitioning decisions and
modelling of absolute durations within the partitions. The
other model smooths out these useful contrasts. The rela-
tive normalised duration and the shifted models do though
have the advantages of being simpler, leading to smaller
storage space and computation costs.

7. CONCLUSION

The rate at which utterance sections are spoken affects
the duration of the units they contain. Ways of modelling
and using these effects in a LVCSR have been investigated
with the N-Best algorithm and a postprocessing phase.

Results using a database of controlled, read speech show
that greater performance improvements are possible when
using the relative models than when using duration mod-
els which do not take account of the speech rate. It is be-
lieved that these improvements might be more dramatic
where there is greater variation in speech rate such as in
spontaneous speech.
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