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ABSTRACT

The acoustic-phonetic modelling used in state-of-the-art

large vocabulary continuous speech recognisers (LVCSR)
cannot effectively exploit the prosody based distinctions
known to exist at the syllable level. These distinctions
are between the strength of the syllable (strong or weak)
and the stress (stressed or unstressed) it is given. This
paper shows how a small set of syllable-sized Hidden
Markov Models (HMMs) can model syllable type effec-
tively. These models have been applied to a large vocab-
ulary continuous speech recogniser and a 23% reduction
in word error rate was achieved.

1. INTRODUCTION

State-of-the-art large vocabulary continuous speech
recognisers (LVCSR) achieve good performances using
constraints including acoustic-phonetic models and lan-
guage models. However, the search continues for ad-
ditional constraints to reduce current levels of error
and the likely greater error rates when speech complex-
ity /variability intensifies, for example, in the case of spon-
taneous speech. Although, there is growing interest in
higher level knowledge sources (KSs), such as sophisti-
cated language and semantic models, it is important not
to overlook lower level constraints.

This paper considers two syllable-based phenomena
which have not been fully exploited in LVCSR systems.
Syllables are speech units which extend over one or more
phonetic segments: they have a nucleus (usually a vowel),
preceded and succeeded by one or more consonants. Some
work has been carried out on using syllable models as the
basis of speech recognition but the concern, here, are gen-
eral syllable characteristics: syllable strength (strong or
weak) and stress (sententially prominent or not). Strong
syllables are well formed over the entire syllable and in
particular have full vowels. In contrast, weak syllables
usually contain a schwa or a reduced vowel form. Strong
syllables are also longer and louder than the weak ones.
In general, syllables marked for stress in a lexicon are
realised as strong syllables in speech; function words usu-
ally are realised with weak syllables. With every content
word having at least one strong syllable, there are many
strong syllables in any utterance. However, some of these
will be distinguished further by pitch changes and greater
loudness and duration: these are the stressed syllables.

The aim of the study was to see if the syllable char-
acteristics could be modelled and then employed as ad-
ditional constraints in state-of-the-art LVCSR systems.
The KSs are attractive because of the low-level of the
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information being modelled: the syllable characteristics
are carried directly in the speech, no sophisticated higher
level processing is required and they can be modelled and
employed in well understood ways.

A number of sets of syllable sized Hidden Markov Mod-
els (HMMs) were tested and the sets that gave the best
classification used in an N-Best rescoring scheme. This
was done in an attempt to improve the word error rate
of a high performance LVCSR system for the TIMIT
database.

The paper begins by describing the database used in all
of the experiments. Then, the syllable modelling work is
presented and the use of the characteristics in the LVCSR
system is discussed. Experiments are reported that illus-
trate the problems of trying to model syllable charac-
teristics directly in the front-end recognition system and
which show the ways in which the N-Best approach can
overcome these difficulties.

2. DATABASE

All of the experimental work was carried out using a
LVCSR system for the TIMIT database. This database
was chosen partly because of the availability pitch track-
ings for all of the utterances [6]. In order to have a task
which was large but manageable, the speech material was
was reorganised as in [3],[4]: only the sz utterances were
used leading to a recogniser vocabulary of 1794 words;
and, one third of all speakers were placed in the test set,
two thirds in the training set (no speaker appeared in the
test and training sets).

For all the data, time aligned syllable transcriptions
were generated from the phone transcriptions. To do
this, the TIMIT lexicon was used after it had been pro-
cessed by a simple syllabification algorithm. The algo-
rithm marked syllable boundaries and defined all sylla-
bles containing a lexically stressed vowel as strong and all
other syllables as weak. All function words were marked
as unstressed: in reality, some function words may be
produced with stress for emphasis.

3. MODELLING SYLLABLE STRENGTH

The aim was to produce models that provided a good
classification of syllable strength. To this end, the feature
set, model inventory and the size of region modelled were
considered.

3.1. Syllable HMMs

Strong/weak and stressed/unstressed syllables differ in
respect to a number of features which interact in a com-
plex way. Instead of attempting to build separate clas-
sifiers for the different features and combining these, the
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HMM was chosen as the modelling tool. This work fol-
lows Freij and Fallside [1] who had success using HMMs
to recognise lexical stress patterns in isolated words.
Five emitting states were used in each HMM with self
and next-state transitions. Skip next-state transitions
were also added to take account of variability such as the
number of phones in pre-nucleic or post-nucleic clusters.
All the models were developed iteratively, beginning
with a single Gaussian component per state and increas-
ing the number up to 12 per state. The large number of
components was required because of the broadness of the
classes being modelled. As is described later, the mod-
els were applied given fixed boundaries: because of this a
simple non-embedded training procedure was used.

3.2. Features

To capture the strong/weak distinction, the feature set
should characterise articulation quality and loudness. To
this end, spectral features (MFCCs) and normalised log
energy were employed. First and second time derivatives
of these features were also included.

To assess the usefulness of the different features in clas-
sification, models were trained and tested using various
combinations of features (see Table 1).

Feature set | Features

Loudness Energy + derivatives

Spectral 12 MFCCs + derivatives

All Energy, 12 MFCCs + derivatives
Final Energy, 6 MFCCs + derivatives

Table 1. Different feature sets used for the strong/weak
syllable classifications.

It is well known that there are durational differences be-
tween strong/weak and stressed/unstressed regions. The
standard HMM, however, models duration only in a very
limited way. Relative duration models which accounted
for different speech rates (following [4]) were built for the
various syllable models but only insignificant improve-
ments in classification were achieved due to large vari-
ances in duration. For this reason, no additional duration
parameters were used in the final models.

3.3. Model inventory

In the first experiments just two HMMs were used, one for
strong syllables and the other for weak ones. There was
a wide range of syllabic structures, however, which were
conflated by using the basic model set. For this reason,
in a further experiment, four models were used for strong
and weak cases, leading to a set of eight HMMs. The four
models related to the syllable structures, CVC, CV, VC,
and, V, where V was the nucleus and, C, a non-nucleic
cluster of one or more phones.

3.4. Region modelled

An experiment was carried out to assess the effect of us-
ing just the vowel region for syllable classification. This
involved building and training models on only the vowel
sections of the strong and weak syllables.

In this experiment, the parameter set used was the fi-
nal one (see Table 1) and the set of eight models were
employed. Two types of model were tested: the first had
five emitting states with the same transitions as the other
syllable HMMs; and, the second used a phone-sized model
structure of 3 emitting states with only self and next-state
transitions. The latter set gave the best classification re-
sult of the two.

3.5. Assessing the models

As is explained in Section 7., the N-Best rescoring process
did not require an unconstrained recognition of syllable

types. Instead, syllable models were matched with acous-
tic vectors between given boundaries.

To assess the usefulness of the models for rescoring,
the classification performance of the models given sylla-
ble start and end times was measured. For each test set
syllable, the appropriate strong and weak models were
used with the Viterbi algorithm to find the log-likelihood
of the models accounting for the acoustic vectors. The
best scoring model was chosen as the correct classifica-
tion.

The different model sets tested and their performance
on 500 of the test set utterances are shown in Table 2.
Although all the different feature sets were tried for the
last two model sets in the table, only the best results are
shown.

Features | Num. | Reg. | %Err.S | %Err.W
Loudness 8 All 21 21
Spectral 8 All 24 25
All 8 All 15 17
Final 8 All 12 15
Final 2 All 22 29
Final 8 Vowel 24 29

Table 2. Different model sets tested and their performance
on 500 test set utterances. Model sets differed with respect
to the feature set, number of models (Num.) and region
modelled (Reg.). Percentage strong (S) and weak (W) errors
in classification are shown.

Although a good classification was possible with just
3 features (energy and its derivatives), the best perfor-
mance was achieved with a combined feature set of energy,
6 MFCCs and first and second derivatives. The improved
performance using 6 MFCCs over 12 was probably be-
cause the larger number of spectral features (useful for
acoustic-phonetic decoding) have a high degree of vari-
ance through the broad nature of the data classes.

The best model set was the one with models for the dif-
ferent syllable structures modelling the entire syllable as
opposed to just the vowel segment. Much better perfor-
mance was seen than when just two models were employed
due to the reduction of the variances of all parameters.

4. ADDING STRESS MODELS

The strong-weak model set was extended to try and ex-
ploit the additional distinctions between stressed-strong
and unstressed syllables. The work involved adding a
measure of pitch to the feature set and finding syllable
candidates to train the stressed models.

Pitch was represented by normalised fundamental fre-
quency (f0) values. These values were computed for ev-
ery 10ms of each utterance. As a first step, the absolute
fundamental frequency (F'0) declination contour over the
voiced portions of the utterance was approximated by car-
rying out a linear regression analysis. The mean voiced
FO value, F0O, was also found. Normalisation was then
carried out by,

Fo - Fo
- -7 1
o (1)

where FO is the absolute F'0 produced by a high quality
pitch tracker [6], FO is the expected value from the dec-

lination line and FO the mean value in the utterance. In
this way the normalisation took account of speaker dif-
ferences and the F'0 contour declination that is known to
occur over the duration of statements.

Although it is a straightforward task to determine
which syllables are likely to be strong or weak, the pre-
diction of sentence level stress is not easy.
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Ideally, for model training, hand labelled stress tran-
scriptions would be available. However, for TIMIT this
is not the case and is not realistic for any large task.
Although, automatic prominence marking has been con-
sidered in [7] using parsing and additional prosodic in-
formation, in this work, a simple and robust approach to
marking stress syllable candidates was devised.

The approach looked for strong syllables which had
were likely to be stressed based on f0 and log energy
values. In each training utterance, half of the strong syl-
lables were marked as likely stress-strong. These syllables
had the highest pitch and energy values in the utterance.

The extended model set consisted of 12 HMMs: four
models for weak syllables and eight for strong syllables
(4 strong and 4 trained on the stress candidates found by
the above algorithm). For each syllable, the appropriate
weak, strong and stressed-strong models were matched
against the acoustic vectors and the syllable was classi-
fied by the model achieving the best log-likelihood score.
In assessing classification performance, a strong syllable
was scored as correctly classified if either the strong or
stressed-strong models achieved the highest log-likelihood
of the three models considered.

These new models improved strong-weak classification:
91% of strong syllables and 88% of weak ones were cor-
rectly classified. The average score difference between the
correct and incorrect models was also increased.

5. BASELINE RECOGNISER

The work on syllable classification showed that there were
quantitative differences between the syllable types. The
next step was to try and use these differences to improve
a TIMIT LVCSR recogniser.

The HTK toolkit [9] was used to produce an word-
dependent N-Best recogniser [5]. This system was a state
clustered word-internal triphone system with Gaussian
mixture observation densities. The system was similar
to the one described in [8]. There were 4065 triphones
(1568 distinct states) with 3 Gaussian components per
state (the optimal number). The parameters used in the
system were: 12 Mel frequency coefficients, normalised
log energy and the first and second derivatives of all pa-
rameters, giving a vector size of 39. The lexicon used was
a slightly modified version of the one supplied with the
database and the word-pair grammar was built from all
the prompt material in TIMIT: the perplexity of the test
set was found to be 41.

The same 500 randomly chosen test utterances used for
the syllable classification experiments were employed to
test the recogniser. The baseline performance on this set
is shown in Table 3.

\ % Sentence error | 16.2
\ % Word error 4.4

Table 3. Baseline recogniser performance for the 500 test
set utterances.

For each utterance, the 15 best transcriptions were pro-
duced. Correct transcriptions were found for 93% of ut-
terances. If all of the most accurate transcriptions were
moved to the top of the N-Best lists, the word error rate
of the recogniser would be 2%: this was the upper bound
for improvements to be gained by using the new KSs.

6. PROBLEMS OF INTEGRATED
MODELLING

It is difficult to integrate syllable characteristics with a
front-end recogniser such as the one described above. Ex-
periments were carried out to illustrate some of the prob-
lems.

Actual Syllable

Pattern: S WS W S|wis w

Incorrect W S S W sis S S

Transcription AND NEW LINGUISTS GET TWO ESSAY S

Actual Syllable

Pattern: s w s w s w s w
Correct S W S W S W S W
Transcription MANY LINGUISTSGO TO ESSEX J

Figure 1. An example of scoring N-Best transcriptions with
the strong (S) and weak (W) models. In the example, the
incorrect transcription is scored with models which badly
match the actual syllabic pattern (mismatches shown by
boxes): this transcription scores poorly compared with the
correct transcription.

One approach uses the syllable strength distinction as
an additional context specifier when building context-
dependent phone models: some researchers have achieved
success with this technique. The triphone LVCSR, de-
scribed above, was extended to take account of syllable
strength. This involved first marking all lexically stressed
content-word vowels as strong. A triphone inventory was
then generated using this new lexicon leading to an ad-
ditional 400 HMMs. The system was found to perform
no better than the basic triphone one. Such context-
dependent schemes, in fact, have several drawbacks: they
model the strength differences over the vowel segment
only, when, in fact, the distinction spans over a much
greater region (see Section 3.4. for the effect of reduc-
ing modelling region); the amount of training data re-
quired increases dramatically (a problem in the TIMIT
experiment); and, the parameters which can be used in
the modelling are limited to those which are useful to
acoustic-phonetic decoding.

An alternative scheme is to include additional param-
eters in the feature set used for recogniser. The problem
with this approach is that the prosodic features cannot be
easily or helpfully combined with acoustic-phonetic fea-
tures. For example, a TIMIT phone recogniser using sin-
gle Gaussian monophones was developed with the feature
set consisting of 12 MFCCs, normalised log energy, f0
and first and second derivatives. Phone accuracy using
this system was 45% this represented a 11% increase in
errors relative to a recogniser which did not use f0 in the
feature set.

7. N-BEST RESCORING APPROACH

In earlier work, the N-Best rescoring approach has been
used to enable low-level KSs to be effectively integrated
with a state-of-the-art recogniser ([3],[4]). Using the
scheme enables different regions and parameters to be
used than those that are effective for acoustic-phonetic
decoding.

For every utterance, the N most likely hypotheses were
found in order of decreasing log-likelihood and each had a
log-likelihood score associated with it. The syllable mod-
els were then used to rescore N-Best transcriptions with
the syllable boundaries being derived from phone tran-
scriptions. The transcription syllable scores were also log-
likelihoods and were combined with the front-end scores
using weights optimised on the training set: the optimi-
sation criterion was word accuracy. The N-Best list was
then reordered on combined score.

For the strong-weak model set rescoring, all transcrip-
tion syllables which belonged to content words and which



Actual Syllable

Pattern: S wislw s w
Incorrect
Transcription TS oW S ﬁW’ TTSTW oW

(s ‘=
MANY LINGUISTSGO  TO ENJOY

Actual Syllable

Pattern: s w@Elw s wIElw
Correct -S--W- S rW”S”W\ S (WL*
Transcription [s] 'S N [s] E

MANY LINGUISTSGO TO ESSEX \/

Figure 2. An example of scoring N-Best transcriptions with
the extended model set. Stressed-strong models are boxed.
Each proposed strong syllable is scored with strong and
stressed-strong models: the best path through the set of
models is shown as a dashed line.

were lexically stressed were scored using a strong syllable
model and for all other syllables the weak model was used.
In carrying out this scoring, the aim was to penalise tran-
scriptions which proposed incorrect syllable types. An
example of the scoring is shown in Figure 1.

The extended model set was applied in the same way
as the strong-weak one except that strong transcription
syllables were scored with two models, the strong but
unstressed model and the strong-stressed one: the high-
est score was used in calculating the overall transcription
score (see Figure 2). In this way, following [2], a loose
stress constraint was enforced, penalising cases where a
weak syllable was proposed and a stressed syllable oc-
curred in the speech.

8. IMPACT ON BASELINE PERFORMANCE

The N-Best recogniser output was rescored with the
strong-weak and extended model sets. The effects on the
baseline performance are presented in Table 4.

Model set | % Word Err. | % Change
Strong-weak 3.7% -16%
Stress 3.4% -23%

Table 4. Effect of rescoring N-Best output with new model
sets. The reduction in word error rates are shown relative to
the baseline reported in Section 5.

Using the new model sets gave reductions in word error
rate. This was possible because of the ways in which in-
correct transcriptions were penalised relative to the cor-
rect or most accurate transcription in the N-Best list.
Incorrect transcriptions scored less well than the correct
ones for two reasons:

e Mismatch on general syllable characteristics.
Transcriptions which proposed strong syllables where
weak ones existed and vice-versa scored poorly. The
extended model set gave a greater decrease in word
error rate because of the additional discrimination
between strong and weak syllables that it provided.

e Mismatch on syllable structures. Transcrip-
tions which had syllabic structural patterns which
were not the actual ones in speech were further pe-
nalised through the use of the syllable structure spe-
cific models. This type of constraint was seen to be
useful in earlier work [3].

As an example, consider the top 2 transcriptions for
the utterance, “The big dog loved to chew on the old rag
doll”:

1 The|bigldogl|loved | to lan |old rag doll
2 The big dog loved to chew on the old rag doll

The first, and incorrect transcription, scored worse than
the second using the extended model set: the weak model
used for “to” did not match well the actual strong syllable
“chew”; and, at a number of points along the transcrip-
tion the proposed syllabic structures conflicted with the
actual ones, e.g., “an” with a structure of VC spanned a
speech segment with the syllables “on the” (VC CV).

When considering the effect of the rescoring on the
recogniser, it has to be remembered that the level of im-
provement possible is dependent on the quality of the
N-Best output in the first instance.

9. CONCLUSION

This paper has shown how three classes of syllable can
be modelled with a small set of HMMs. Ways of apply-
ing these models to improve the output from a recogniser
that uses conventional knowledge sources have been pre-
sented. As with other studies, the work suggests that
LVCSR systems should begin to include such prosodic
KSs as additional constraints. The schemes presented,
here, are applicable to state-of-the-art systems without
being over complex or data-intensive.
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