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Abstract

In this paper, we investigate the problem of optimal sequential learning, viewed as a
problem of estimating an underlying function sequentially rather than estimating a set of
parameters of the neural network.

Firstly, we arrive at a sub-optimal solution to the sequential estimate which can be
mapped by a growing Gaussian radial basis function (GaRBF') network. This network adds
hidden units for each observation. The function space approach in which the estimates are
represented as vectors in a function space, is used in developing a growth criteria to limit
its growth. A simplification of the criterion leads to two joint criteria on the distance of the
present pattern and the existing unit centres in the input space and on the approximation
error of the network for the given observation to be satisfied together. This network is
similar to the resource allocating network (RAN) [12] and hence RAN can be interpreted
from a function space approach to sequential learning.

Secondly, we present an enhancement to the RAN. The RAN either allocates a new
unit based on the novelty of an observation or adapt the network parameters by the LMS
algorithm. The function space interpretation of the RAN lends itself to an enhancement
of the RAN in which the extended Kalman filter (EKF) algorithm is used in place of the
LMS algorithm. The performance of the RAN and the enhanced network are compared in
the experimental tasks of function approximation and time-series prediction demonstrating
the superior performance of the enhanced network with fewer number of hidden units. The
approach adopted here has led us towards the minimal network required for a sequential
learning problem.
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1 Introduction

Artificial neural networks (ANNs) provide an input — output mapping and hence their
output can be written as a function of the inputs and of the parameters or weights in the
network. Learning in neural networks amount to the approximation of an underlying func-
tion which in turn reduces to the estimation of the parameters (or weights) that is optimal
in some sense such as least squared approximation error. The conventional approaches to
sequential learning view the problem in the parameter space, ie. as estimation of a set of
parameters. Such an approach requires the complexity or size of the ANN to be specified
a priori. We have adopted an alternative approach of estimating a function, in which we
view the problem in a function space (infinite dimensional space of square integrable real
functions) where different complexity ANN mappings can be represented. As we shall see
later, the real advantage is demonstrated by the development of a growing network from
this approach.

The function estimation approach to sequential learning, in which the task is to es-
timate an underlying function sequentially, led to the development of the principle of
F-Projection [5], [6], [9]. The principle is used in deriving a sequential estimate that is
mapped by a Gaussian radial basis function (GaRBF) network that adds a hidden unit
for each observation. This method of estimation may be looked upon as a sequential
method of kernel based nonparametric estimation such as the Parzen window density es-
timation [3]. It differs from the statistical approach adopted by White [15] who specifies
the rate of growth of the number of hidden units in the ANN based only on the number
of observations.

We also demonstrate how the function space approach, where the function estimates
are analysed in the space of all square integrable functions, leads to a criterion to limit the
growth of the network. The resulting network is a GaRBF network that adds a hidden
unit subject to the present observation satisfying some growth criteria. It is equivalent to
the resource allocating network (RAN) [12] but for the manner in which it is derived.

Platt [12] describes the RAN as a single hidden layer network of locally tuned hidden
units whose responses are linearly combined to form an output response. It is essentially a
GaRBF network. However, the RAN starts with no hidden units and grows by allocating
hidden units based on the ‘novelty’ of an observation. Since the novelty of each observation
is tested, it is ideally suited for sequential learning problems such as on-line prediction and
control. The objective behind its development is to gradually approach the appropriate
complexity of the network that is sufficient to provide an approximation to an underlying
mapping that is consistent with the observations being received. The RAN may be viewed
as an extension of the restricted Coulomb energy (RCE) model [14] of classification to
solving the function interpolation problem.

When the novelty or the growth criterion is not satisfied, the existing RAN parameters
are adapted by the LMS algorithm. While the growth criterion and the allocation of a new
hidden unit can be explained from the function space approach, the adaptation by LMS
seem to be a weak step in an otherwise optimal procedure. The RAN can be enhanced by
adopting the function space approach in the adaptation stage as well. The enhancement
we suggest is to use the extended Kalman filter (EKF) algorithm in place of the LMS
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algorithm. The performances of the RAN and the enhanced RAN are compared in two
experiments.

The organisation of the paper is as follows: The next section provides a brief description
of the preliminary concepts and the notations used in the paper. Section 3 introduces the
function space approach to sequential learning. Section 4 develops the growth criterion
for the network and in section 5, Platt’s description of the RAN is given along with a
discussion on its equivalence to the network derived from the function space approach.
Section 6 contains the description of the enhanced RAN. The experimental results are
given in section 7 followed by conclusion in section 8.

2 Preliminaries and Notations

The ANN learns the mapping from a set of data in the form of input — output observation
pairs (X, Yn ), where x,, is an M-dimensional input vector and y, is an output scalar. The
input lies in a subset D of the space of all real valued M-dimensional vectors RM. The
nt* observation can then be described as:

The observations Z("), n = 1,..., N are assumed to be free of noise and be consistent with
an underlying function fi, viz.,

fe(Xpn) = yn for n=1,...,N (2)

The mapping described by the ANN is denoted by f(x) with a shorthand description
of f. Hence, f : x — y(D — R). The closeness between the ANN mapping and the
underlying function is measured by some distance metric D(f, fi). A common and popular
metric used with ANNs is the L?-norm given by,

DS f) = If = /] (3)

where || - || denotes the L?-norm. The squared L?-norm' is given by,

112 = [ 1560 (4)
xeD

| - | gives the absolute value of its argument. Note that the L%-norm of an M-dimensional
vector a is also denoted by [|a]|.

The L?-norm describes a function space which contains all the square integrable real
valued functions. Since an inner product can also be defined in this space, it is a Hilbert
space, denoted by,

Ho={f:[If] < oo} (5)

'In general a weighting function w(x) is used inside the integral. If the distribution of the past ob-
servations are not known a priori, w(x) is taken to be uniform in D giving the expression in equation

(4).
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The mapping described by an ANN satisfies the above requirement in general and hence
all possible functions an ANN can describe lie in the function space H. The inner product
between two functions f,g € H is given by,

<fg>= [ fx)gexdx (©)
xeD

The concepts from geometry can be applied in a Hilbert space, which leads us to the
notion of angle between the two functions f and g, given by,

Q — -1 < f7g >
o™ T ot | "

When the output of the network is not limited to the interval (0, 1), the hidden — output
layer transformation is linear. Then the single hidden layer ANN linearly combines the
output of the hidden units. Each of the hidden units construct a mapping and hence these
mappings can be viewed as the basis functions ¢, € H, k = 1,..., K, the total number of
hidden units being K. The output is thus represented as,

K
J(x) =Y argr(x) (8)
k=1

In sequential estimation, an estimate is required at each time instant (n). The ANN
mapping after it has learned from the n** observation Z(™ is denoted by f(™. This is
known as the posterior estimate of the underlying function and f(*=1) as the prior.

3 Sequential Function Estimation

The sequential function estimation problem can be stated as follows: Given the prior
estimate f("~1) and the new observation Z("), how do we combine these two information
in obtaining the posterior estimate f(")?

Given only the information above and the assumption that the observations are free
of noise, one approach to sequential estimation is to choose an optimal estimate at each
step. Any improvement over this solution would require additional memory such as the
probability density of the past observations. The step-wise optimal estimate is given by
the principle of F-Projection [6], which states,

) = arg min || f— f(n_l)” s.t. " emn, (9)
fer

where ‘H,, is the set consisting of all the functions in H that satisfy the constraint f(x,) =
Yn. The posterior is a projection of the prior onto the space H,. The principle is an
analogue of the projection algorithm for linear models [4], where the prior parameter
vector is projected onto the constraint hyperplane in the parameter space.

The equality constraint f(x,) = y, can be rewritten as an inner product in the
function space,

< [0, > =yn (10)
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where 8, = §(x — x,) is the impulse function?. The constrained minimisation can be

solved exactly to give,

J = Y 4 ephy, (11)
where e, is the prediction error, given by,
en = yu — [0V (%) (12)
and
hy, = bn (13)
" leall®

This solution amounts to adding a spike at the point x, to f(*~1)(x) such that f(*)(x)
goes through the point (x,,y,). Such a solution discounts the fact that the underlying
function is smooth and an observation has a bearing on its neighbourhood in the input
space D. Smoothness constraints must then be added to obtain a posterior estimate®.

The smoothness constraint must be imposed on h,, which has the following property:
hn(x7) = 1 and h,(x, + a) = 0 for any ||a|| # 0. Smoothing this impulse like function
subject to the constraint that f(”)(xn) =y, yields the Gaussian RBF ¢,, given by,

6.(x) = exp {—gllx = wa|* (14)

4. Now the properties of ¢,

with u, = x, and o, representing the required smoothness
are: ¢n(x,) =1 and ¢n(x, +a) — 0 as ||a]] — oco. The parameter o, is the spread of the
GaRBF representing its span around x, in the input space. This view is similar to the
method of potential functions [3] where each observation in the input space contributes
to its neighbourhood via the potential of a charge placed on the observation, the span

signifying the region of influence of the charge.

Hence, from the principle of F-Projection and smoothing its solution, we have arrived
at the posterior function estimate f(™) given by,

SO (x) = S (%) + endn(x) (15)

Let us use the GaRBF network to map the function estimate f("1). Assume there are
K hidden units (basis functions) in the network that maps f(»=1) Then the posterior is
given by,

K
F(x) > ardr(x) + endn(x) (16)
k=1

K+1

= ) odr(x) (17)
k=1

2The 6, does not have a finite L?-norm and hence 8, ¢ H. However, a function such as a rectangular
function that approaches the impulse function in the limit can be used.

3In the case of networks with finite number of hidden units, this exact solution cannot be reached. In
fact, the smoothness constraint is implicit in the selection of the basis functions, which in turn ensures that
the posterior estimate obtained from the algorithm based on the principle of F-Projection is sufficiently
smooth [9].

*The maximum curvature given by sup |¢”(x)| = 61—2 where " denotes the second derivative with respect
to x.
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The posterior estimate is mapped by the same GaRBF network with a new hidden unit
added and the parameters associated with it are assigned as follows:

AK+1 = €n (18)
Ug41 = Xp (19)
OK+1 = O0On (20)

OUTPUT

Figure 1: The network architecture of the growing GaRBF network. The dotted lines
show the new links formed by the addition of a hidden unit.

Figure 1 shows the architecture of the network in which a hidden unit is added to map
f) . For the moment, we shall assume that we are given the value of o,,. In the next
secton we shall see how a reasonable value can be assigned.

The network we have arrived at grows with each new observation. The observations
X, are implicitly stored as the centres of the Gaussian hidden units and e, (hence yy,)
are implicit in their coefficients. This estimate is similar in spirit to the Parzen window
density estimation procedure where the number of kernels are the same as the number
of observations and are centred on the input observations [3]. The difficulty with using
this network for estimation is that the network grows indefinitely as the observations are
continually received.

4 A Geometric Growth Criterion

In problems where the data is received sequentially, the network may have approximated
the underlying function to a sufficient accuracy and may go on to add hidden units that
contribute little to the final estimate. Not only does the complexity of the network in-
creases unnecessarily, it adds to the computational burden significantly. Furthermore, if
the data were noisy, good estimation of the network parameters require its number to be
much smaller than the data from which they were estimated. This leads us to the question
of how the network growth must be limited.
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Consider the Hilbert space H. The network solutions are points in this infinite dimen-
sional space. If the network consists of K hidden units (and hence K basis functions),
assuming that the parameters of the basis functions are not adapted, the network solutions
lie in a K-dimensional subspace Hx formed by the K basis functions. Figure 2 gives a
3-dimensional illustration of the network solutions.

f (n)

Figure 2: 3-D illustration of the prior and posterior network solutions in the Hilbert space.

n=1) and the posterior estimate obtained with the existing K

The prior estimate f(
basis functions fin), both lie in Hx. The posterior estimate f(7) (given in equation (15))
is obtained by adding a new basis function ¢,. Note that f,En) is the projection of f(™ onto
Hy and hence is the closest point to f() in Hg. The distance between f(®) and f,E”) is
given by Hf(”) - fin)H This distance represents a measure of how bad our approximation
will be if we do not add a new basis function. Hence, the decision to add a hidden unit
can be based on this distance exceeding a threshold. From the geometry of the network

solutions shown in figure 2, the criterion is stated as:

1,0 — i)

= [enl-l|¢nl[ sin(2) > € (21)

where £ is a threshold and Q is the angle formed by the new basis function ¢, to the
subspace Hy defined by the K basis functions in f(»~1). The norm of the basis function
¢, depends only on the width o,. The angle lies between 0 and 7 and therefore 0 <
sin(Q) < 1. Note that such an approach can also be adopted for block learning problems
in choosing the form of the next basis function to be added.

The distance || f(*) — f,En)H may be evaluated directly, but it is computationally inten-

sive. Hence, the geometric criterion is simplified further as follows:

€, > €min (22)
Q > Qmin (23)

assuming that o, is pre-determined in which case the growth criterion depends only on

e, and €.

These criteria are referred to as the prediction error criterion and the angle criterion
respectively. The prediction error criterion checks for the interpolation of the present
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observation by the network. The angle criterion attempts to assign basis functions that

are nearly orthogonal to all other existing basis functions®.

The angle Q is difficult to evaluate in general and an approximation of the angle
criterion is for the smallest angle between the new basis function and all other existing
basis functions to exceed a threshold. The angle between the two GaRBFs ¢y and ¢, with
the same width o} = 0, = 0¢ is given by (in [5]),

1
-1 2
Q. = cos (exp {—%‘ngn — ug| }) (24)
The angle criterion then reduces to,
sup (bk(xn) < COS2(Qmin) (25)
k

a threshold on the output of the basis functions to the input x,,. This can equivalently be
expressed as,
i%f |x, — ug|| > €, (26)

a threshold on the distance between the input x,, and the nearest GaRBF unit centre uy
with,

€n = UO\/Q log(1/ cos? Qmin) (27)
Even when the widths o, are not equal, a similar criterion can be arrived at [5].

From equation (24) it is clear that the angle can be increased by lowering o,,. However,
lowering o, increases the curvature of ¢, (x) which in turn gives a less smooth posterior
estimate. A good choice for o, then is for it to be as large as possible but satisfy the angle
criterion. From equation (25) this turns out to be,

op = Kl|Xn — up|| (28)
where
u,, = arg min ||x, — ugl| (29)
Ug
is the nearest GaRBF unit centre to x, in D, and
1
K =
V/21og(1/ cos? Qumin)

If Qmin is decreased, allowing more overlap between the two basis functions, « is increased.

(30)

The addition of the basis function centred on the input pattern has an analogy to placing
marbles inside a restricted space such as a cube. The minimum distance criterion ensures
that the marbles are of a particular radius. Irrespective of the distribution of the input
patterns there is a limit on the number of such marbles that can be placed inside a finite
volume cube.

The network now adds a hidden unit only if the prediction error criterion (equation
(22)) and the distance criterion (equation (26)) are both satisfied. These growth criteria
are the same as those for the RAN. What is different is how it is arrived at in this paper,
where a function space approach is adopted.

5No two GaRBFs are completely orthogonal to each other, except in the limit of the widths ox ap-
proaching 0 or co. No single GaRBF with unique parameters is a linear combination of any other GaRBFs,
except in the limit of infinite number of GaRBFs.
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5 The Resource Allocating Network

The resource allocating network (RAN) was developed as a means to overcome the problem
of NP-completeness in learning with fixed size networks [12]. Its motivation was the fact
that by allocating new resources, learning could be achieved in polynomial time. Platt
views the task of the RAN as combining memorization with adaptation [13], in which
memorization is achieved by storing the input — output observation such as in Parzen
window and k-nearest neighbour methods. He improves upon these methods by storing
fewer observations which grow sublinearly and eventually saturate. The RAN finds an
appropriate network (or size) for interpolating the given data, whereas in using a fixed
size network either a smaller network that does not interpolate well or a larger network
that overfits and generalise poorly could be encountered.

The RAN is a single hidden layer network whose output response to an input pattern
is a linear combination of the hidden unit responses, given by,

K
J(x) = a0+ Y axdr(x) (31)
k=1
where ¢ (x) are the responses of the hidden units to an input x. The coefficients ..., ag,...

are the weights of the hidden to output layer and g is the bias term. The RAN hidden
unit responses are given by,

Si(x) = exp{—gl;i I — uk|]2} (32)

where uy is the unit centre or mean of the Gaussian and oy is the spread of the neigh-
bourhood or width of the Gaussian. The network is essentially a GaRBF network, except
for the term ag. Platt describes the operation of a hidden unit as storing a local region in
the input space — the neighbourhood of ug. Hence, the ug are viewed as stored patterns.
The weights of the hidden — output layer, coefficients ay, define the contribution of each
hidden unit to a particular output.

The network begins with no hidden units. The first observation (xg,y0), where yg
is the target output, is used in intialising the coefficient g = yo. As observations are
received the network grows by storing some of them by adding new hidden units. The
decision to store an observation (x,,y,) depends on its novelty, for which the following
two conditions must be met:

[|%r, — Unr|] > € (33)
€n = Yn — f(xn) > €min (34)

where u,,, is the nearest stored pattern to x, in the input space and ¢, emin are thresholds.
The first criterion says that the input must be far away from stored patterns and the second
criterion says that the error in the network output to that of the target must be significant.
The value e, is chosen to represent the desired accuracy of the network output. The
distance ¢, represents the scale of resolution in the input space.

8



A function estimation approach to sequential learning with neural networks

When a new hidden unit is added to the network, the parameters or weights associated
with this unit are assigned as follows:

Oyl = eq (35)
UK+ = X, (36)
oxs1 = Al = e (31)

where k is an overlap factor which determines the overlap of the responses of the hidden
units in the input space. The value for the width ox; is based on a nearest neighbour
heuristic.

When the observation (x,, y,) does not satisfy the novelty criteria, the LMS algorithm
is used to adapt the network parameters w = [ag,...,ax,ul,..., u%;v]T, given by,

w(® = w1 4 pea, (38)

where 7 is the adaptation step size and a, = V., f(x,,) is the gradient of the function f(x)
with respect to the parameter vector w evaluated at w(*~1), Hence,

T
a, = 17 ¢1(Xn)7 ey ¢IX"(X7L)7 ¢1(Xn)%(xn - ul)Ta ey Qb]{(Xn)%(Xn - uK’)T
1 K
(39)

The RAN begins with €, = €pax, the largest scale of interest, typically the size of the
entire input space of non-zero probability density. The distance ¢, is decayed exponentially
as,

€n = maX{emax7n7 Emin} (40)
where 0 < v < 11is a decay constant. The value for ¢, is decayed until it reaches €yip.

Platt showed that the complexity of the RAN was smaller than that of fixed size
networks in achieving a given degree of approximation [12]. The advantages of the RAN
are that it learns quickly, accurately and forms a compact representation. However, the
growth pattern of the RAN depends critically on v which influences the rate of growth and
o emin Which determines the final size of the network together with enyin. These parameters
have to be chosen a priori and hence the performance of the RAN depends crucially on
their appropriate selection. The effect of using the LMS algorithm for adaptation is likely
to result in slow convergence than if, say, an algorithm that attempts to obtain an optimal
sequential estimate is used.

The RAN is described mathematically as follows:

e The network output f(x) to the input x is given by,

K
f(x) = a0+ ) apdu(x)

k=1

1
exp {—U]%HX — ukHz}

9
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® €, = €max Qo = Yo-
e For each observation (x,,y»),

— €, = maxX{€max7"; €min }
— €n :yn_f(xn)
- If

€n > €min & [|x, — W] > €

* Allocate a new hidden unit with,

Q41 = €n
Ug4+1 = Xp
OK+1 = H”Xn - unrH

— Else

¥ wi(®) = wln=1) 4 nenay,

The description of the RAN, shown above, has mostly been derived from the function
space approach in sections 3 and 4. There are differences however, between this derivation
and the RAN as specified by Platt. Firstly, the term agp does not appear in our solution.
This difference may be neglected in view of the universal approximation properties of the

ANN.

Secondly and importantly, the threshold on the distance criterion of the RAN, ¢, is
reduced gradually until it reaches a minimum allowed value. The distance criterion €,
provides a lower bound on the width o,, (from equations (26) and (28)), o,, > ke,. The
lower bound ey on €, then gives,

Ok > K €min (41)

a lower bound on the width of all the basis functions ¢r. This ensures a limit on the
smoothness of the basis functions preventing a noisy fit to the data.

The exponential decaying of the distance criterion allows fewer basis functions with
large widths (smoother basis functions) initially and with increasing number of observa-
tions, more basis functions with smaller widths are allocated to fine tune the approxima-
tion. Since k is fixed, the minimum angle Q,;, also remains unchanged and hence the
near orthogonality condition is maintained. However, the lowering of ¢, is possible only
with the simultaneous lowering of o, achieved by equation (28).

Finally, we have not discussed how to adapt the parameters of the network when
a hidden unit is not added. The RAN adapts the coefficients ap and the hidden unit
centres ux when it decides not to add a hidden unit. The adaptation of the parameters
u; amounts to the rotation of the subspace Hy. The function space interpretation given
to the architecture and the growth criteria of the RAN suggests the use of an algorithm
based on the same approach, the F-Projections algorithm [5], [9]. We shall see in the next
section how this leads to an enhancement of the RAN.

10
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6 An Enhanced RAN

For the sequential learning problem, the principle of F-Projection gives the optimal pos-
terior estimate of an underlying function, given its prior estimate and a new observation
[5]. An extension of the F-Projections algorithm is the recursive nonlinear least squares
(RNLS) algorithm [5], [7] in which the distribution of the previous input patterns is also
recursively estimated. The RNLS estimate is obtained by minimising the cost function

[ O = Pl + g — 1 ) (42)
xeD

where p("~1(x) is the probability distribution of the past (n — 1) input observations.
Solving the above minimisation is numerically intensive, but it can be approximated to
give the well-known extended Kalman filter (EKF)® algorithm [5]. Having shown that
the principle of F-Projection formed the basis for the RAN, the enhancement we suggest
here is to use the EKF algorithm in place of the LMS algorithm. This enhancement,
first proposed in [5] and used in [10], improves the rate of convergence of the RAN and
results in a network with smaller complexity. We shall refer to this enhanced network as
RAN-EKF. A similar approach was (independently) proposed in [1] where they use the
RLS algorithm for the growing multilayer perceptron (or back-propagation) network.

Given a parameter vector w, the EKF algorithm obtains the posterior estimate w(")
from its prior estimate w("~1) and its prior error covariance estimate P,_; as follows (see

[2]):
w() = win=1) 4 ek, (43)

where k,, is the Kalman gain vector given by,
T -1
kn = [Ro+alPysa,]  Pa, (44)

where a, is the gradient vector and R, is the variance of the measurement noise. The
error covariance matrix is updated by,

P, = [I-keal| P,y (45)
I being the identity matrix. Note that we are now adapting the parameters oq,...,0x as
well and hence are included in the parameter vector w.

The rapid convergence of the EKF algorithm may prevent the model from adapting
to future data. To avoid this problem, a random walk model is often used [16] where the
covariance matrix update becomes

P, = [I-kal| Pry + Qol (46)

The parameter ()¢ is a scalar which determines the allowed random step in the direction of
the gradient vector. The error covariance matrix P, is a P X P positive definite symmetric
matrix, where P is the number of parameters being adapted. Whenever a new hidden unit

®For linear stationary models, EKF algorithm is equivalent to the weighted recursive least squares

(RLS) algorithm [2].
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is allocated the dimensionality of P, increases and hence, the new rows and columns must
be initialised. Since P, is an estimate of the error covariance of the parameters, we choose,

(P 0
P (57 ) ("

where Py is an estimate of the uncertainty in the initial values assigned to the parameters,
which in our case is also the variance of the observations x,, and y,. The dimension of the
identity matrix I is equal to the number of new parameters introduced by the addition
of a new hidden unit. The above equation combined with the EKF algorithm is used in

place of the LMS algorithm in the RAN-EKF.

The RAN, with its LMS adaptation is considerably faster to implement than the
relatively more complex (computationally) RAN-EKF. However, the EKF algorithm can
be implemented as a fast transversal filter algorithm [1] to increase the speed and hence
its capability to learn on-line in real-time.

7 Experimental Results

The RAN was developed as a model for solving sequential function interpolation problems.
It is also suitable for off-line (or block) learning, where all the data are available en-bloc and
presented one by one. Two types of problems are presented to the networks. The first is
a synthetic function approximation problem where the data are a randomly sampled data
consistent with an underlying function and presented one by one cyclically. The second
is a problem of on-line prediction of a chaotic time-series where an underlying function
does not exist. The variation of the performance measures are shown with increasing
time in order to illustrate the effect of the evolving networks. The RAN used in these
experiments did not have the ag coefficient and hence differed only in the algorithm used
for adaptation.

The underlying function that needs to be approximated in the first experiment is the
Hermite polynomial (used in [11]),

fulz) =1.1(1 - a:—|—2w2)exp{—%w2} (48)

where z € . A random sampling of the interval [—4,+4] is used in obtaining the 40
input — output data for the training set. The approximation error is calculated from 200
uniformly sampled data in the same interval.

The parameter values used in this experiment are as follows: €pnax = 2.0, €min = 0.2,
v = 0977, emin = 0.02, k = 0.87, n = 0.05, Py = R, = 1.0 and Q¢ = 0.02. The
performance of the different RANs are shown in figure 3. The RAN-EKF is the enhanced
network and RAN-NO is a network that adds hidden units according to the growth criteria
but does not adapt the parameters when a unit is not added.

12
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Figure 3: The performance of the RAN versions on the Hermite function approximation
problem. The circles represent the 40 input — output observations.
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The growth pattern of all three networks were similar in the initial stages, suggesting
that the rate of growth is independent of the adaptation procedure and depends only on
the decay rate of ¢,. In the latter stages though, the faster convergence of the RAN-EKF
prevents further addition of hidden units by reducing the interpolation errors below the
critical value epj,. The approximation error, measured by the root mean squared error
(RMSE) (in figure 1(B)) clearly illustrates the faster convergence achieved by the enhanced
RAN. The final RMSE value of around 0.07 for the RAN was achieved in just 80 iterations
by the RAN-EKF with only 6 hidden units compared to the 18 in the RAN. The enhanced
network not only was least complex, but was also accurate by nearly an order below that
achieved by the RAN. Note also that the performance of RAN-NO was comparable to the
RAN, demonstrating the power behind the appropriate allocation of hidden units. The
approximation shown in figure 3(c) shows that the RAN does not interpolate as smoothly
as the RAN-EKF does, also observed in [5].
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Figure 4: The effect of noise in observations for the approximation problem. The numbers
inside the brackets in the key are the values of e, used.
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The effects of noise were analysed by adding varying levels of Gaussian noise to the
training patterns. The size of the network and the approximation error for different noise
levels for the RAN versions are shown in figure 4. It is apparent from the figure that the
value of e, at the lower ranges such as 0.02 and 0.05, chosen to represent the desired
accuaracy, does not affect the goodness of approximation for any level of noise. At low
levels of noise, a higher threshold en;, results in a smaller size network, the difference
disappearing with increasing levels of noise. The RAN-EKF was able to consistently
form a compact size than RAN while achieving better performance. At high noise levels,
adapting the means uj seemed to not only increase the size of the network but also resulted
in poor approximation, demonstrated by the performance of RAN-NO.

In the second experiment, the chaotic time-series being predicted is the Mackey-Glass
series which is governed by the following differential delay equation:

ds—(t)_ s(t—1)

e —bs(t) + am (49)

with @ = 0.2, b = 0.1 and 7 = 17. A sampled version of the above series is obtained by
integrating the equation, smoothing and sampling it. The training data is obtained from
a series of 5000 samples and the test data of 1000 samples from the same series but into
the future.

The series is predicted v = 50 sample steps ahead using four past samples, namely
SnsSn_6,Sn_12,Sn_18. Hence, the nth input — output data for the network to learn is

Xn = [Sn—uvSn—u—67sn—r/—1275n—y—18]T (50)
Yn = Sn (51)

whereas the step ahead predicted value at time (n) is given by,
Zn4v = f(n)(xn-l—u) (52)

where f() is the network at time (n). The step ahead prediction error is given by,

Entv = Sndv — Zntv (53)

The error in the predicted value of s,4, becomes available to the network only after v
steps. The data is received sequentially and hence requires the storage of all samples from
Sn—y—18 t0 S, and from z, to zp4,.

The usual performance measure given for prediction has been the normalised RMSE
on the test data [12]. For this problem, we have used the normalised RMSE as the approx-
imation performance measure, where the normalisation is with respect to the variance of
the time-series. This measures the error in an underlying mapping that may exist between
x and y or the average prediction error if the network does not adapt to future data. If
such a mapping does not exist, this measure does not represent the prediction performance
since the network continually adapts to incoming data and has the capacity to modify its
mapping appropriately. A suitable measure is the exponentially weighted prediction error
(WPE) which at time (n) can be recursively computed as,

WPE(™ = X WPE™™Y 4 (1 = \)Je, | (54)
for some 0 < A < 1. In the results shown A = 0.95.
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Figure 5: The performance of the RAN versions on the Mackey-Glass time series prediction
problem.
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The parameter values used in this experiment are as follows: emax = 0.7, €min = 0.07,
v = 0.999, emin = 0.05, Kk = 0.87, n = 0.02, Py = R, = 1.0 and ¢¢ = 0.0002. The
performance of the RAN and the enhanced network are shown in figure 5.

The growth pattern of the RAN and the RAN-EKF showed similar patterns to those
observed in the first experiment. The growth rates were initially similar and the RAN-
EKF levelled off quickly in the latter stages. The on-line prediction performance measured
by the WPE shows that the RAN-EKF is consistently better than the RAN. On average,
the WPE for the RAN-EKF was a factor 2 smaller than that of the RAN. The final
value of WPE for RAN and RAN-EKF are 0.035 and 0.024 respectively. The normalised
RMSE which measures the average prediction performance on a test data also shows
the superiority of the RAN-EKF even when its complexity is smaller than that of the
RAN. The final value for the normalised RMSE of 0.056 for RAN-EKF with 56 hidden
units compares well with 0.063 for the RAN and Platt’s results [12] for the RAN of
0.054 achieved with 143 hidden units. However, such a number can be misleading since
it depends on choosing the appropriate time in the oscillatory performance measure as
shown in figure 5. What the results demonstrate is that the enhanced network performed
better in both the WPE and the RMSE, than the RAN with fewer hidden units. Platt
had already shown that the RAN used fewer hidden units than fixed size networks while
achiving better performance [12]. The enhancement suggested here has led us towards the
minimal network that would be required in a sequential learning problem.

8 Conclusion

We have adopted the function estimation approach to optimal sequential learning with
neural networks — a natural framework for approximation with ANN. The sub-optimal
solution that resulted from this approach was shown to be equivalent to that of the RAN.
Thus this work also provides an alternative interpretation to the RAN in contrast to that
of Platt whose description was based on the RAN’s similarity to the Parzen window and
nearest neighbour methods. We showed that the new basis functions (hidden units) are
assigned only if they form a significant angle in the function space to the existing basis
functions. This ensures the efficient use of the basis functions and their allocation only
according to the complexity of the underlying function to be mapped.

We have also proposed an enhancement to the RAN as a result of the function space
interpretation given to its architecture and the growth criteria. This enhanced network
uses the EKF algorithm to adapt the parameters when a hidden unit is not added. The
superior performance of the enhanced network over the RAN was demonstrated in func-
tion approximation and time-series prediction tasks. The resulting network complexity
is smaller while the approximation and prediction accuracy is higher. The initial conver-
gence to the solution was also faster with the enhanced network. Results on a multi-class
classification problem are given in [8] which further reinforces the above conclusion. This
achievement is at the expense of added computational complexity which may be compen-
sated either with systolic array or fast transversal filter implementations. The optimal
sequential learning approach has taken us further towards attaining the minimal network
that would be required for a given problem.
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