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Abstract

A modular method for incorporating context-dependent phone classes in the CUED connection-
ist-HMM hybrid speech recognition system is introduced. The current CUED connectionist-HMM
hybrid system performs well on large vocabulary speech recognition tasks. Although the recurrent
framework does model acoustic context internally (mainly in the hidden state vector), the targets
are currently context independent. It is proposed that by including phonetic-context dependent
targets to the recurrent network, improved modelling would be possible, as is seen in equivalent
monophone and triphone HMM systems.

This report discusses the methods necessary to introduce context-dependent outputs into the
hybrid system. It focusses on two main issues: Which context classes should be modelled and which
would be best for the recurrent framework, and given a set of context classes which mechanism
should be employed to model them. A decision-tree based approach was used to cluster the
different context classes of a phone. The final training strategy involved a modular solution,
whereby single-layer networks were trained on the state-vector to discriminate between the different
context classes, given the phone class.

Some initial experiments show an average reduction of around 16% in word error rate on some
ARPA Wall Street Journal tasks. The new context-dependent system still has far fewer parameters
than any equivalent HMM system, and due to improved modelling decoding speed is over twice
as fast as the context-independent system.



Contents

1 Introduction
1.1 A Simple Overview of the ABBOT System. . . . . .. ... ... ... ... .....
1.1.1 The Recurrent Neural Network . . . . . . ... .. ... ... ... .....
1.1.2 Hybrid Utterance Decoding . . . . . . . ... ... ... ... ... ...
1.2 Using Phonetic Context To Reduce Word Error Rates . . . . . .. ... ... ...

2 Clustering Context Classes
2.1 An Introduction to Growing Decision Trees . . . . . . . . ... .. ... ... ...
2.2 Decision Tree Based Approach to Clustering Context Classes . . . . . ... .. ..
2.3 Using the Context Trees . . . . . . . . . . . .

3 Previous Work on Context-Dependent Hybrid HMM-Connectionist Systems
3.1 Context-Dependent Modelling by MLP at SRI . . . . ... ... ... ... ....
3.2 Context-Dependent Modelling by MLP at ICST . . . . . .. ... ... ... ....
3.3 Context-Dependent SNN and HME . . . . . . . .. ... ... ... ...

4 Context-Dependent Training and System Description
4.1 Architecture Issues . . . . . . .. ..o
4.2 Input Representation for Training Context . . . . . . . . . ... .. ... ... ...
4.3 Training on the State Vector . . . . . .. .. .. .. o oo
4.4 Comparison With Previous Work . . . . . . . .. .. ... ... ... .. ..., .
4.5 Summary of Full Training Scheme . . . . . . .. ... ... .. ..

5 Phonetic Context-Dependent Decoding
6 Evaluation of the Context-Dependent System

7 Conclusions
7.1 Summary . . . . . ..
7.2 DISCUSSION . . . . . . . . e e

A Example Question Set for Tree Clustering

-~ -~ S ot ot N O N = =

O WO W o e WP

13

15
15
15

19



1 Introduction

The ABBOT hybrid connectionist-HMM system performed competitively with many conventional
hidden Markov models (HMM) systems at the recent ARPA evaluations. This hybrid framework is
attractive because it performs fast sentence decoding and is compact, having far fewer parameters
than conventional HMM systems. A simple overview of the ABBOT system follows in Section 1.1.

State-of-the-art HMM systems employ some form of modelling of phones-in-context to account
for the acoustic variability of a phone given its context. This modelling of phones in their par-
ticular phonetic contexts vastly improves their performance over equivalent context-independent
HMM systems (see Section 1.2). Although the recurrent neural network (RNN) does model acous-
tic context internally, it does not model phonetic context; the target outputs are only context
independent.

It is proposed that the ABBOT connectionist-HMM hybrid system could have improved phonetic
modelling by providing context-dependent output targets. This report describes :-

e a context-class selection strategy,
e training issues involved in building such a context-dependent system,
e a full context-dependent modular architecture description,

e cvaluation on several ARPA Wall Street Journal test sets.

1.1 A Simple Overview of the ABBOT System.

Connectionist systems have been successfully used in the area of speech recognition. The time-
delay neural network (TDNN) has been reported to perform well on phoneme recognition tasks
[21], while the multi-layer perceptron (MLP) and the recurrent neural network have demonstrated
their practical use in the area of large vocabulary speech recognition [18]. The basic framework of
the ABBOT system is similar to the one described in [2], except that a recurrent network is used
for the connectionist component. A more detailed description of the recurrent network for phone
probability estimation is given in [17] [19].

1.1.1 The Recurrent Neural Network

A recurrent network in Figure 1 is used as the acoustic model within the HMM framework. At
each 16ms time frame, the input acoustic vector is mapped to an output vector y(¢). Two forms
of spectral input representation that have been found to be effective are :-

e MEL+ — a 20 channel mel-scaled filter bank with voicing, pitch and power parameters
e PLP — 12th order cepstral coefficients derived from perceptual linear prediction plus energy.

The output vector represents an estimate of the posterior probability of each of the phone
classes

yi(t) = Pr(gi (1) [uy™?) (1)

where g;(t) is phone class 7 at time ¢, and u} = {u(1),...,u(¢)} is the input from time 1 to ¢. Left
(past) acoustic context is modelled internally in a 256 dimensional state vector x(t), which can
be envisaged as “storing” the information that has been presented at the input. Right (future)
acoustic context is given by delaying the posterior probability estimation until four frames of
input has been seen by the network. The network is trained using a modified version of error
back-propagation through time [17].
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Figure 1: The recurrent neural network for phone probability estimation

1.1.2 Hybrid Utterance Decoding

Decoding with the hybrid connectionist-HMM approach is equivalent to conventional HMM de-
coding, with the difference being that the RNN provides the modelling of the observations. Like
typical HMM systems, there exists a mapping between a state sequence @) on a discrete, first-order
Markov chain and the word sequence. This allows expression of the recognition process as finding
the maximum a posteriori (MAP) state sequence of length T,

T
Q = argglaXH Pr(gi(t)lgi(t = 1))p(u(t)le:(t))- (2)

t=1

The decoding criterion specified above requires the computation of the likelihood of the acoustic
data given a phone (state) sequence, p(u(t)|g;(t)). Using Bayes’ theorem,

plalne (o) = T O)pn() )

where p(u(t)) is the same for all phones, and hence drops out of the decoding process. Hence the
network outputs are mapped to scaled likelihoods by,

vi()
t)]qi(t)) ~ 4
Pt (1) = g s (1
where Pr(g;) is estimated from the training data. Rewriting equation 2 in terms of the network
outputs therefore yields,
T

Q = amgmax][PrtaOlate~ ) gc) o)

The decoding can be seen as a Markov process, determined in a hierarchical fashion, such that
the language model (trigram, bigram or word pair) is a Markov process on the words, and the
words are a Markov process on the phones (strings of phone models form words in the lexicon).
Decoding uses the NOwAY decoder to compute the utterance model that was most likely to have



generated the observed speech signal. Details of this decoder, and its operation can be found in
[8]. Figure 2 shows the full system, with all its components, from the input speech waveform, to
the decoded utterance. This is a simple representation of current systems.

Speech waveform Preprocessor Recurrent net Markov model Word string
Mel scale FFT \ ' '
Power u(t) y(t) > @ @ "Show me ..."
Pitch J y
Voicing ' '
\
X(t) x(t+1) @ 0
C Time s
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Figure 2: The full ABBOT Hybrid System

1.2 Using Phonetic Context To Reduce Word Error Rates

It is well established that particular phones vary acoustically when they occur in different phonetic
contexts. For example a vowel may become nasalized when following a nasal sound. Context-
dependent modelling of phones is powerful because it models the most important co-articulatory
effects, and is therefore more sensitive than context-independent modelling. This is primarily
achieved in HMM technology by modelling phonetic context. The short-term contextual influence
of co-articulation is handled by creating a model for all sufficiently differing phonetic contexts with
enough acoustic evidence. It produces models with sharper probability functions. This approach
vastly improves HMM recognition accuracy over equivalent context-independent systems, and can
be seen in HMM systems [15] and [22], and is summarised in Table 1.

System CI % Word Error | CD % Word Error | % Reduction in WER

SPHINX 15.6 6.7 57.1

HTK 11.3 5.7 49.6

Table 1: Word Error Rates on DARPA Resource Management Feb89 Task, for the SPHINX System
and the HTK system. Both systems use a word-pair grammar. Results for the HTK system are
for the two-mixture monophones, and the two-mixture tied-state triphones, and are not the best
systems available, but are included for CD and CI comparison only.

A comparison of other HMM systems (all with phonetic context models, and some with cross-
word phonetic models) with the ABBOT system at the 1994 ARPA North American Business News
evaluation [13] can be seen in Table 2.

The ABBOT system, although competitive, fairs less well than many of the context-dependent
HMM systems. Given the improvement seen in HMMs in moving from context-independent to



Site % Word
Error

CU-HTK 10.5
IBM 11.1
BBN 11.9
Limsi 12.1
SRI 12.2
AT&T 13.0
BU-BBN 13.0
NYU-BBN 13.0
Dragon 13.2
Philips 13.4
CMU 13.7
ABBOT 14.1
MIT-LL 19.0
CRIM 20.2
KU 22.8

Table 2: Adjudicated Word Error Rates on the ARPA November 1994 H1 C1 (1994) standard 20k
trigram Language Model Evaluation.

context-dependent systems, and the fact that the ABBOT system is context-independent (although
it models acoustic context internally)!, it was postulated that a reduction in word error rate was
possible by modelling phonetic context at the output targets of the RNN.

The rest of this report investigates the options available, the methodologies used and prelimi-
nary results of modelling phonetic context in a recurrent neural network framework.

IHMMs also model acoustic context by using delta and acceleration parameters.



2 Clustering Context Classes

One of the new problems faced by having a context-dependent system is to decide which context
classes are to be included in the CD system. One choice available is a clustered triphone system,
with a minimum number of frames per triphone. However this presents two problems: This
method doesn’t necessarily pick the best context classes for discrimination purposes and with large
vocabulary speech recognition it is likely that context classes in testing do not occur in the training
data. A proposed method for overcoming this problem is a decision-tree based approach to cluster
the new context classes. This is extremely appealing because this guarantees a full coverage of all
phones in any context, and the context classes are chosen using the acoustic evidence available.
The tree clustering framework also allows for the building of a small number of context-dependent
phones, keeping any new context-dependent connectionist system architecture compact. There
are two stages to decision-trees: firstly how they are grown and secondly once grown, how they
are used.

2.1 An Introduction to Growing Decision Trees

This approach to clustering contexts is quite common, and hence only a brief description will be
given. The approach taken here is based on [3], [23] and [11]. Basically, each terminal in the tree
has some data associated with it. A particular question is asked at a terminal node which would
initially split the data into two child nodes (one for an answer of yes, and one for an answer of
no). The goodness of split scoring criterion is then calculated for this preliminary split. All the
questions are asked at all the terminals node making preliminary splits, and the terminal with the
best splitting score is split, while the question asked to achieve this best splitting score is stored
at the terminal that is split. The splitting continues until the best overall goodness of split score
falls below some threshold. The goodness of split scoring criterion used is very much dependent
on the representation of the data.

2.2 Decision Tree Based Approach to Clustering Context Classes

The following will outline the procedures taken to cluster class contexts. The acoustic data is in
the form of a processed speech waveform (MEL+) which is assumed to be multivariate Gaussian,
each channel having a mean of zero and a variance of one. Each channel of the preprocessed
acoustic data is treated as independent. Since the data is assumed to be Gaussian, the node
splitting criterion is based on log likelihood. The procedure is as follows:-

Rotate data — Diagonalise the acoustic data for each monophone class ¢, by rotating by the
eigenvectors of the covariance matrix ;.

UTs,U = A

By having “diagonalised data” computational requirements are signicantly reduced. No
further rotations are performed.

Initialise trees — Initialise a tree for each monophone by putting all the rotated acoustic data
in the root node.

Question set — The question set contains different phonetic groups ranging from Vowel, to Glide,
to particular phones like /ax/ or /tcl/ etc. These can be asked in left or right context. For
example, is the left context Class-Fricative?. Phonetic groups were chosen using [14] [16].
Examples of these can be seen in appendix A.

Grow trees — For each terminal in the tree calculate the diagonal covariance of the acoustic data
associated with the node. Apply the tree growing algorithm as described in the previous
section, using equation 6 as the goodness of split scoring criterion. Growing is stopped either
when all split scores at each terminal for every possible question falls below the threshold,



or when a certain number of terminals have been created. (This enables a further control
on the total number of context classes created.)

Split Criterion — The goodness of split scoring criterion is based on the gain in log Likelihood
due to the data being split, and simplifies to

AL = nplog |E,| — (ne1 log |Ee1| + nez log |Eea) (6)

where X, refers to the diagonal covariance of the rotated acoustic data at the parent node,
Y1 and X5 refers to the diagonal covariance of the rotated acoustic for the children, and n
is the number of examples at a node.

2.3 Using the Context Trees

An example of a context-clustered tree is shown in Figure 3. Once built the terminal nodes of
the tree are labelled. These labels represent the new context-classes of the monophone. These
context-dependent labels now make up the context-dependent phone set. The trees were used to
relabel the training data and the word lexicon. This was done by going to the phone-in-context’s
(i.e. the central phone) tree, looking at the immediate left and right context of the phone-in-
context, and proceeding down the tree, answering the question at each node until a terminal node
is reached. The central phone is then relabelled with the new label stored at the terminal node
that the phone-in-context reached.

Root node for phone ao

Is right context r ?

right liquid ?

left non-coronal ?

left glide ?
aol ao?2 ao3

ao4 ao5

Figure 3: An example tree grown for phone class /ao/.



3 Previous Work on Context-Dependent Hybrid HMM-
Connectionist Systems

This section briefly describes some of the previous work undertaken to incorporate phonetic context
into a connectionist framework. Three systems are described:

o context-dependent modelling by MLP at SRI
e context-dependent modelling by MLP at ICSI

o the context-dependent segmental neural network (SNN) and hierarchical mixtures of experts,

3.1 Context-Dependent Modelling by MLP at SRI

One representation of the context-dependent phonetic modelling requires the computation of
p(U¢|Ct, Q), the probability density of the acoustic data U given the phone class Q in the
context class C, at time ¢. This approach is adopted by [6], whereby context-specific networks
are trained. This means that networks are trained to discriminate between phone classes given
a context, i.e. estimating p(Q|Ct, Ug). This scheme makes use of a sharing of parameters for
faster training times. Every context network performs a simpler classification task than in the
CI case, because in a given context, the acoustic correlates of different phones have much less
overlap in their class boundaries. However, this format also requires the training of a CI MLP to
discriminate between different context class boundaries.

3.2 Context-Dependent Modelling by MLP at ICSI

Another approach to phonetic context-dependent modelling with MLPs was proposed in [1]. Tt was
based on factoring the conditional probability of a phone-in-context given the data in terms of the
phone given the data, and its context given the data and the phone. This implementation requires
only one MLP estimator for each of left and right context are required. However, the left phonetic
context MLP requires extra binary inputs of current state and right phonetic context, while the
right phonetic context MLP requires extra binary inputs of current state. This is not a problem
during the supervised training stage. However, during recognition a “contextual contribution”
calculation is required.

3.3 Context-Dependent SNN and HME

The work presented in [24] augments the BYBLOS HMM System, using left-context Segmental
Neural Networks (SNN). The HMM system is used to generate a segmentation for each N-best
hypothesis, and the SNN used to generate a score for the hypothesis. The context-dependent
training follows along similar lines as [6]. In training the left-context SNNs, the input is separated
into 53 classes determined by the identity of the preceeding phoneme. Each left context SNN can
then be trained in a similar manner to the CI SNN, but only on the subset of the training data
that corresponds to the SNNs context. In the rescoring process, each segment score is obtained
by combining the output of the CI SNN with the corresponding output of the SNN that models
the left-context of the segment, in a fashion similar to the way context HMMs are combined with
CD HMMs in the BYBLOS system. This method reflects a modular solution to building context-
dependent connectionist systems. However, it does require the N-best scheme for the segmentation
process.

Further work in [25] applied this context-dependent training process to one-level hierarchical
mixtures of experts.



4 Context-Dependent Training and System Description

This section will describe the issues involved in training context-dependent classes in the recurrent
neural network framework. A full system description of the modular approach taken, which 1is
similar in many respects to [6], [4] and utilises the factorisation seen in [1]. The major issues of
concern are fast training, simple architecture implementation, and a framework that allows use of
the standard NOwAY decoder.

4.1 Architecture Issues

Context-dependent phonetic modelling requires the computation of p(U;|CDy;), the probability
density of the acoustic vector U, given the context-dependent phone class CD, at time ¢. Using
Bayes’ theorem as in equation 3

Pr(CD.|U:)p(U:)

P(Ut|CDt) = Pr(CDt) ) (7)

where CD; € {C;, Q;}, ie CD;, is phone Q; in the context of C;. One possible implementation
of equation 7 is to train a recurrent neural network with N context-dependent phone targets.
However, this is impractical because of the training time involved. (On the ARPA WSJ SI84
training corpus, the CI RNN with only 54 target outputs takes approximately five days to train
on the RAP (Ring Array Processor) [12] .)

The approach taken by this work is to augment the CI RNN, and discriminate between different
context classes, given a phone class, Pr(C;|Q:, U;), in a similar vein to [1]. Using Bayes’ theorem
again,

Pr(C;|U:, Q:)p(U:|Q:)
Pr(C:[Q) .

Substituting for the context independent probability density function p(U:|Q:) and using the
Bayes’ expression in equation 3, the following expression is obtained for the likelithood of the
acoustic data given the context-dependent phonetic class,

Pr(C¢|Uy, Qt) Pr(Q¢|Us)
Pr(C¢|Q¢) Pr(Q:)

The term p(Uy) is constant for all frames, so this drops out of the decoding process and is ignored
for all further purposes. This format is extremely appealing. Pr(C;|Q;) and Pr(Q:) are estimated
from the training data. The CI RNN estimates Pr(Q;|U;), so all that is needed is an estimate of
Pr(C;|U¢, Q). A possibility is to train a set of context experts or modules for each monophone
class, to augment the existing CI RNN System. The contexts for these modules are given by the
tree clustering routine from the previous section.

P(Ut|Ct, Qt) = (8)

p(U:|Cy, Q:) =

p(Us). )

4.2 Input Representation for Training Context

It is necessary to find a fitting representation of the feature space, simple network architecture
and training algorithm, in order to extract the context classes with a good accuracy and a fast
training time. Another concern is that the scheme chosen fits neatly into the recurrent framework
that currently exists.

In [6] the context-specific networks are trained on a non-overlapping subset of the original
training data. The “training data” used is the hidden layer (of the CI MLP) representation of the
acoustic features. The underlying assumption here is that the hidden layer representation of the
acoustic features is rich enough to allow accurate modelling of the class boundaries in the different
contexts.

The same assumption is made in this report, about the hidden layer, or state vector, of the CI
recurrent network. It is assumed that the CI RNN’s state vector is well trained, and contains all



the contextual information necessary to discriminate between different context classes of a phone.
It is also hypothesised that the state vector splits the acoustic feature space into many different
hyper-planes, and hence a simple network structure such as a single layer perceptron can be used
to discriminate between the context classes in the context modules. This means that the context
module training will be fast.

4.3 Training on the State Vector

From Section 4.1, an estimate of Pr(C;|U;, Q) must be found. An estimate can be made of this
by training a recurrent network to discriminate between contexts ¢; (t) for phone class ¢;(t), such
that

yiti(t) = Pr(e;(t)lai*?, gi(t)) (10)

where y;;(¢) is an estimate of the posterior probability of context class j given phone class .
However, training recurrent neural networks in this format would be expensive and difficult. For
a recurrent format, the network must contain no discontinuities in the frame-by-frame acoustic
input vectors. This implies all recurrent networks for all the phone classes i must be “shown” all
the data. Instead, the assumption is made that since x = f(u), and that the state vector contains
all the important contextual information necessary to train the context experts, that

x(t +4) is a good representation for utl'l'4

Hence a single-layer perceptron is trained on the state vectors corresponding to each monophone g;
classifying into different phonetic context classes. Finally the likelihood estimates for the phonetic
context class j for phone class ¢ used by the Noway decoder is given by,

Pr(g;(t) |ut1+4) Pr(c;(t)|x(t +4),qi(t))
Pr(c;(t)|qi(t)) Pr(gi(t))
vi ()i (1)
Pr(c;(t)]ai(t)) Pr(q:(¢))

p(u(t)le;(t),¢:(t))

(11)

4.4 Comparison With Previous Work

This approach is similar in many respects to the work highlighted in section 3. Differences and
similarities are outlined below:

o this modular approach is applied in the recurrent neural network framework,

o this approach clusters the context classes and results in a system with far fewer parameters
to estimate (allowing training on a workstation rather than a transputer like the RAP). Also
the approach taken in [24] requires an N-Best HMM framework to generate the segmentations
for the segmental neural network (SNN) classifier or for a modified hierarchical mixture of
experts [25],

o while this approach does require a series of additional networks (or modules), no additional
binary inputs (for the current phone state, and left or right context) are necessary. This
means that extra processing during the recognition stage to estimate these inputs is required,
as found in [1],

e the context modules calculate the context of a phone class given the data, rather than a
phone class given the context and the data (conditioning on the context rather than the
phone) as in [6], [4], which means that new networks must trained to estimate the broad left
context given the data, and the broad right context given the data. This is not a requirement
in the work presented here.



o the architecture has similarities with mixture of experts [10]. During training, rather than

4.5

making a “soft” split of the data as in the mixture of experts case, the Viterbi segmentation
selects one expert at every exemplar. This means only one expert is responsible for each
example in the data. This assumes that the Viterbi segmentation is a good approximation
to the segmentation/selection process. Hence, each expert is trained on a small subset of
the training data, avoiding the computationally expensive requirement for each expert to
“see” all the data. During decoding, the RNN is treated as a gating network, smoothing the
predictions of the experts, in an analogous manner to a standard mixture of experts gating
net.

Summary of Full Training Scheme

The following lists the procedures used to train a set of new phonetic context models to estimate
Yili(t)-

1.
2.

Build decision trees for all monophones.

Use a Viterbi segmentation to align the monophone labels with the data, and the relabel the
data using the decision trees.

. Run the relabelled training data through a CI RNN, in a feed-forward fashion. Store the

state vectors x(¢+4) (along with their associated context class labels j) for each monophone
class ¢ at time ¢.

Train a single layer perceptron module for each monophone class ¢, using a gradient descent
training strategy on the state vectors for monophone class ¢, to classify into the context
classes j. The outputs of module 7 now represents an estimator for y;;(¢).

10



5 Phonetic Context-Dependent Decoding

Decoding for the phonetic context-dependent system proceeds in much the same way as the
context-independent system. Utterance decoding was achieved using the NOWAY decoder, just
as in the context independent case. However, a few minor differences are described below.

New Pronunciation Lexicon

The decoding used a new pronunciation lexicon. The new lexicon was built using decision trees
to relabel the old context-independent lexicon with the new context-dependent labels. This was
possible because the new system constructed was word internal context-dependent. (Note that
the label word-boundary does exist, but as yet no specific “word-boundary” questions where
asked during the tree construction stage.) This means that there is, as yet, no specific cross-word
phonetic context modelling. Likewise a new HMM model set was built for each new context model.
For more information about the HMM part of the hybrid system see [9].

Generating the New Phonetic Context Posterior Probabilities

The new frame-by-frame phonetic context posterior probabilities are required as input to the
NOWAY decoder. These posterior probabilities were calculated from the numerator of equation 11.
The calculation of the phonetic context posterior probabilities can be visualised as possessing a
kind of hierarchical structure. The modular architecture described can be compared to a tree; the
root node being the recurrent neural network, and the leaves being the expert phonetic context
single layer perceptron modules. This is similar to [5], where a TDNN was used a broad-class
decision module to set of sub-networks of TDNNs.

Figure 4 shows this hierarchical structure in operation. The CI RNN stage operates in its
normal fashion, generating frame-by-frame monophone posterior probabilities. At the same time
the CD modules take the state vector generated by the RNN as input, in order to classify into a
context class. The RNN posterior probability outputs are multiplied by the module outputs to
form context-dependent posterior probability estimates. Thus the recurrent neural network can
be envisaged as a gating network to the phonetic context layer, similar in operation to a mixture
of experts model.

Hence, this structure is a two step classifier, firstly making a decision amongst the phone
classes, and then deciding within a phone class. These modules were designed to extract useful
and complementary information to the existing CI RNN stage, in a computationally inexpensive
format.

Amendments to the NOoway Decoder

No major amendments to the NOWAY decoder were necessary for it to run with more posterior
probability inputs. However, there were pruning issues which were dependent on the phone set size,
but are too detailed for this report. The same pruning parameters used for context-independent
decoding were used for context-dependent decoding.

11
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Figure 4: The phonetic context-dependent RNN modular system.
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6 Evaluation of the Context-Dependent System

The context-independent network was trained on the ARPA Wall Street Journal SI84 Corpus. The
new phonetic context-dependent classes were clustered on the MEL+ representation of the acoustic
data, according to the decision tree algorithm given in Section 2. The split score threshold, the
minimum number of frames at a node and the maximum number of terminal nodes were altered to
result in two context-dependent phone sets: one with 205 phones and the other with 527 phones.
Running the data through the recurrent network in a feed-forward fashion to obtain three million
frames with 256 dimension state vectors took approximately 8 hours (on an HP735 workstation).
Training all the context-dependent networks on all the training data takes between 4-6 hours in
total (on an HP735 workstation).

The context-dependent modules were cross-validated on the Spoke 5 Development Test Set
to find the optimum number of training epochs for each module. The process of obtaining the
phonetic context-dependent posterior probabilities (using equation 11) is simply given by multi-
plying the context-dependent module posteriors by their associated gating probability (given by
the RNN),

vij () = wilt)y;(t) (12)

where y;; () is the phonetic context-dependent posterior probability of phone class 7 in context
class j. Unfortunately this was found to give only a modest reduction in word error rate. This
could be due to a combination of reasons. Firstly there is likely to be a dynamic range mismatch
between the posteriors of the CI recurrent network and the CD modules. (This can be likened
to the sort of mismatch between frame-by-frame posteriors of acoustic evidence and a statistic
language model). Secondly when obtaining the state vectors for training, this assumes that, there
is a perfect monophone Viterbi segmentation of the labelled data and that there is a perfect gating
network. Hence, equation 12 was amended, such that there would exist an information scaling
between the CI RNN and the CD modules. Note that this is then re-normalised so that the
smoothed estimate of the context-dependent posteriors, Yi; (t), sums to one.
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Figure 5: Word errors on the 1993 Spoke 5 development test set vs. the smoothing factor «, for
the CD205 model set.
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If « is less than one, then this “de-weights” the information content of the context modules
y;ji(t). The value for the smoothing factor o was found empirically on a development set. An
example of how the performance varies with a can be seen in Figure 5.

Test CI CD205 CD527
Sets System System System
% WER | % WER ‘ % Red” | % WER ‘ % Red”
1993 Spoke b dev test 16.0 14.0 12.7 13.6 14.9
1993 Spoke 6 dev test 14.6 12.2 16.3 11.7 19.8
1993 eval test 15.7 14.3 8.4 13.7 12.6
H Parameters ‘ 86800 ‘ 137686 ‘ 220944 H

Table 3: Comparison of the context-independent (CI) system with the context-dependent systems
(CD205 and CD527), for 5000 word, bigram language model tasks.

1995 CI CD

Test System System Red”
Sets % WER | % WER | % WER
US dev test 12.8 11.3 12.2
US eval test 14.3 12.9 9.8
UK dev test 15.6 12.7 18.9
UK eval test 16.5 13.8 16.3

Table 4: Comparison of the context-independent (CI) systems with the context-dependent systems
(CD527US and CD465UK), for 20,000 word tasks. All tests used the 1993 standard trigram
language model. The evaluation WER are official adjudicated results.

Results of the two context-dependent systems that were built, compared with the context-
independent baseline are shown in Table 3, for the bk Spoke 5 and 6 Development Test Sets and
the bk 1993 H2 C1 Evaluation. The CI System is a single MEL+ front-end RNN. The CD Systems
augment this single MEL+ front-end RNN. The phone duration modelling simply used minimum
duration [9]. The results in the table have optimally tuned parameters for both the baseline and
the context-dependent system.

The context-dependent systems were also applied to larger tasks such as the 1995 SQUALE
20,000 word development and evaluation sets [20]. The American English context-dependent
system (CD527) was extended to include a set of modules trained backwards in time (which were
log-merged with the forward context), to augment a four way log-merged context-independent
system [7]. A similar system was built for British English which used 465 context-dependent
phones (CD465). Table 4 shows the improvement gained by using context models. The context-
dependent systems shown achieved the lowest reported word error rate for both languages [20].

As a result of improved phonetic modelling the search space was reduced, resulting in faster
decode speed for the NOWAY decoder, even though there were roughly ten times as many context-
dependent phones compared to the monophones. This is highlighted in Table 5.
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CI CD
Test Utterance Av. Utterance Av. Speedup
Decode Speed (s) | Decode Speed (s)
American English 67 31 2.16
British English 131 48 2.73

Table 5: Comparison of average utterance decode speed of the context-independent (CI) systems
with the context-dependent systems (CD527US and CD465UK), for 20,000 word evaluation tasks.
All tests use a trigram language model. All tests used the same pruning levels.

7 Conclusions

7.1 Summary

This report has outlined the construction of a very effective phonetic context-dependent system
for the recurrent neural network framework. The various issues addressed have been:

e How to obtain context-dependent observation probabilities in terms of posterior probabilities
as computed by the RNN and the context modules.

e How to decide upon the phonetic context-dependent classes. Section 2 uses a decision-tree
clustering algorithm for this purpose.

¢ How to apply a simple architecture. This was necessary so that a system could be built
swiftly and “bolted” on top of existing CI RNNs. A modular approach was taken to the
design of such an architecture.

o How to achieve fast and effective training of the context modules. This was done by training
on the state vector which was assumed to contain all the contextual information necessary
for good context-class discrimination. Since the state vector is split into a large number of
hyper-planes, it is assumed that the context classes are linearly separable. Hence, training
was done with a single layer perceptron trained using a gradient descent technique.

7.2 Discussion

The report has discussed a successful way of integrating phonetic context-dependent classes into
the current ABBOT hybrid system. The architecture followed a modular approach which could be
used to augment any current connectionist-HMM hybrid system. Fast training of the context-
dependent modules was achieved. Training on all of the SI84 corpus took between 4 and 6 hours.
Utterance decoding was performed using the standard NowAYy decoder (with some minor modi-
fications). Decoding speed of the context system was over twice as fast as the baseline system
(for 20,000 word tasks). The results in Table 3 and Table 4 suggests that the phonetic context-
dependent modelling can improve performance over the context-independent system, although the
improvement witnessed is not nearly as great as that seen by equivalent HMM systems (Table 1).
This is most likely due to the fact that:

o The internal acoustic context modelling in the recurrent network is better than that of the
CI HMM systems. Hence, the baseline used for improvement already contains significant
context modelling.

e The context modules are not as well trained as they could be. Merging context modules
trained on the state vectors from a forward and a backwards through time RNN; is expected
to give an improvement in performance at the context module level. This expectation is not
without basis. In a standard “forward through time” RNN, the state vector contains left
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context information due to the network’s recurrent nature, and right context information
due to the four frame delay. This contextual state vector information has different dynamics
for the RNN “trained backwards through time”, since the left and right context informa-
tion sources have been reversed. This feature is likely to be well exploited when training
“forwards” and “backwards” context modules.

e There are not as many context dependent classes in this system as there are in conventional
context-dependent HMM systems.

The reduction in error rate is carried across all test sets, different size vocabularies (and language
models) and languages (ie British English). Even though the reduction in error rate is not as large
as that seen in the CD HMM systems, this is still a significant and consistent improvement. This
has also been attained without a dramatic increase in the number of parameters, and still has
orders of magnitude fewer parameters than context-dependent HMM systems.
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A Example Question Set for Tree Clustering

Question Phones in Question Grouping
Class-Stop bddxgkpt
Class-Closure bel del gel kel pel tel
Class-Nasal €n em m n ng
Class-Fric ch dh f jh s sh th v z zh
Class-Liquid elhhhvlrwy
Class-Glide lrwy
Class-Vowel eh ih ao ae aa ah uw uh er ay oy ey iy aw ow ax axr ix
Coronal chddhdxelenjhlnrsshtthzh
Non-Coronal bemfghhhvkmngpvwy
Anterior bddhdxelemenflmpstthvwz
Non-Anterior ch g hh hv jh k ng r sh y zh
Continuant dh dx el em en f hh hv 1 m n ng r s sh th vwy zzh
Non-Continuant bchdgijhkpt
Alveolar ddxenlnrstz
Palato-Alveolar sh zh
Velar g k ng
Vowel-Front ae eh ih 1y
Vowel-Central ah ax axr ix er ow
Vowel-Back aa ao uh uw
Dipthong aw ay ey oy
Vowel-High ih ix iy uh uw
Vowel-Medium ax axr eh er ow
Vowel-Lo aa ae ah ao
Fortis chfkpsshtth
Lenis b d dhdx gjhvzzh
Fricative dh fssh th vz zh
Voiced-Stop bddxg
Unvoiced-Stop kpt
Voiced-Closure bel dcl gel
Unvoiced-Closure | kcl pcl tcl
Labial-Stop bp
Alveolar-Stop ddxt
Specific Phonemes As Question Classes
sil sil
aa aa
zh zh

Table 6: Decision-tree question set for the LIMSI-ICSI phone set
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