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Abstract

A punctuation generation system which combines prosodic information with acoustic
and language model information is presented. Experiments have been conducted for
both the reference text transcriptions and speech recogniser outputs. For the ref-
erence transcription, prosodic information of acoustic data is shown to be more
useful than language model information. Several straightforward modifications of a
conventional speech recogniser allow the system to produce punctuation and speech
recognition hypotheses simultaneously. The multiple hypotheses produced by the
automatic speech recogniser are then re-scored using prosodic information. When
the prosodic information is incorporated, the F-measure (defined as harmonic mean
of recall and precision) can be improved. This speech recognition system includ-
ing punctuation gives a small reduction in word error rate on the 1-best speech
recognition output including punctuation. An alternative approach for generating
punctuation from the un-punctuated 1-best speech recognition output is also pro-
posed. The results from these two alternative schemes are compared.

Key words: Punctuation generation, Speech recognition, Prosody, Classification
And Regression Tree (CART), N-best rescoring

Email address: {jhk23,pcw}@eng.cam.ac.uk (Ji-Hwan Kim and Philip C.
Woodland).

Preprint submitted to Elsevier Science 2 January 2001



1 Introduction

Even with no speech recognition errors, automatically transcribed speech is
much harder to read than human generated transcriptions due to the lack of
punctuation, capitalisation and number formatting. The format of standard
recogniser output is known as Standard Normalised Orthographical Represen-
tation (SNOR) (NIST, 1998) and consists of only single-case letters without
punctuation marks or numbers. The readability of speech recognition output
would be greatly enhanced by generating proper punctuation. When speech
dictation is performed, the dictation system can rely on the speakers to say
“full stop” or “comma” whenever they are necessary in the dictated text i.e.
“verbalised punctuation”. However, when speakers are not aware that their
speech is automatically transcribed, e.g. broadcast news and conversational
speech over the telephone, verbalised punctuation is not present. When the
input text comes from speech, the task of punctuation generation becomes
more difficult because of corruptions of the input text caused by speech recog-
nition errors.

The objective of this paper is to devise an automatic method of punctuation
generation from speech input. This paper consists of eight sections. Section 2
introduces previous work in this area. Section 3 presents a combined system
using prosody for punctuation generation and speech recognition. Section 4
describes the experimental setup using broadcast news data and discusses the
evaluation measures used for the systems. Section 5 presents the results of
punctuation generation for the reference text transcriptions. This section also
presents results for applying the same punctuation generation approach to
the output of a 1-best list speech recogniser, where the recogniser output does
not include any punctuation marks. Section 6 gives the results of punctuation
generation combined with speech recognition. Section 7 examines the assump-
tion made when combining punctuation generation with speech recognition,
and also discusses the variation in punctuation between annotators. Finally,
Section 8 concludes this paper.

2 Previous work

An automatic punctuation system, called Cyberpunc, which is based on only
lexical information, was developed in (Beeferman et al., 1998). That system
produced only commas, under the assumption that sentence boundaries are
pre-determined. A post-processing step added commas to each punctuation-
free sentence by applying an extended Language Model (LM) which accounts
for punctuation.



A method of speech recognition with punctuation generation based on acous-
tic and lexical information was proposed and examined using read speech from
three speakers in (Chen, 1999). When punctuation generation is performed si-
multaneously with speech recognition, it is important to assign acoustic “pro-
nunciations” to each punctuation mark. Punctuation marks were treated as
words in the speech recogniser, and acoustic baseforms of silence, breath, and
other non-speech sounds were assigned to punctuation marks in the pronun-
ciation dictionary.

Since many full stops and question marks are located at the end of a sen-
tence, it is very important in punctuation generation to recognise sentence
boundaries correctly. A sentence boundary recogniser using lexical informa-
tion and pause duration was developed in (Gotoh & Renals, 2000). A sentence
boundary recognition test was then developed to find the sequence of sentence
boundary classes (either a “last-word” class or a “not-last-word” class) from
words in speech recognition output by combining probabilities from a language
model and from a pause duration model.

It is generally difficult to disambiguate the meaning of punctuation marks
located at the ends of sentences. For example, a full stop can be used for an
abbreviation, a decimal point, an end of sentence marker, or an abbreviation at
the end of a sentence. A trainable system for the classification of punctuation
mark types was presented in (Palmer & Hearst, 1997). In that system, parts-
of-speech for words surrounding punctuation marks were estimated, and then
the punctuation marks were classified into the different types.

It is known that there is a strong correspondence between discourse struc-
ture and prosodic information (Shriberg et al., 1998). A comparison between
syntactic and prosodic phrasing was presented in (Fach, 1999). In his study,
syntactic structures were generated by Abney’s chunk parser (Abney, 1995)
and prosodic structures were given by ToBI (Silverman et al., 1992) label files.
This work showed that at least 65% of syntactic boundaries are coded in the
prosodic boundaries for read speech.

A method using intonation to reduce Word Error Rate (WER) in speech
recognition for spontaneous dialogue was described in (Taylor et al., 1998).
In their research, a separate intonation model for each Dialogue Act (DA or
classification whether an utterance is a statement, question, agreement and
etc.) was applied to give a set of likelihoods for an utterance being one or
another type of DA. Then a separate language model for each DA was applied
to find the most likely DA sequence and the new speech recognition result.

In order to use prosodic information in discourse structure analysis including
automatic punctuation, great attention has to be paid to the computational
method for obtaining prosodic feature values, how to build a prosodic feature



model, and how to combine a prosodic feature model with models for other
information sources.

A combination methodology with a language model and a prosodic feature
model was discussed in (Shriberg et al., 1998). In their work, the combination
methodology was applied to DA classification. A Classification And Regres-
sion Tree (CART) (Breiman et al., 1983) was used to construct a prosodic fea-
ture model. In order to make the computation tractable, an assumption was
introduced that the prosodic features were independent of the word once condi-
tioned on the DA (a similar assumption was introduced in (Taylor et al., 1998)).

3 Automatic punctuation generation

In this section, a method for automatic punctuation generation is described
for both the reference transcriptions and the transcriptions generated by au-
tomatic speech recognition. When automatic punctuation generation is per-
formed with the reference texts, the sequence of words is already given. There-
fore, the experiments are aimed at generating punctuation marks between
words.

The broadcast news reference transcriptions contain information marking each
speaker turn, mainly for purposes of language modelling. Speaker turns are
marked by <s> and </s> symbols. As the speaker turn marks aid finding the
location of punctuation marks, it is unrealistic to include this information at
the input for punctuation generation. For this reason, the speaker turn marks
were removed from the training and test data.

When automatic punctuation generation is performed simultaneously with
speech recognition, the approximate speaker turn marks are generated by the
recogniser segmentation. Speaker turn marks are therefore not removed in this
case, because the recogniser is part of the automatic punctuation generation
system.

3.1 Automatic punctuation generation for reference transcriptions

Let Y be the punctuation mark sequence, W be the word sequence and R be
the corresponding discourse structure and prosodic feature sequence, including
pause and fundamental frequency. The automatic punctuation system aims to
find the maximum a posteriori Y, Yy ap, given W and R.

Yiap = argy, max P(Y|W, R) (1)
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Let y; be the ith punctuation mark and r; be the 7th prosodic feature. Applying
the 1st order Markov assumption yields

p(¥ilry, - mn) = p(yilri) (8)

Also let y; be conditionally independent i.e.

P01, vl R) = [T p(3:|B) )

=1

Then P(Y|R) becomes
P(Y|R) = [T p(uilr:) (10)
i=1

The probabilities in Equation 10 can be obtained, for instance, from the ter-
minal nodes of classification trees (the classification tree will be described in
Section 4.1). P(Y|W) in Equation 6 can be obtained from a statistical lan-
guage model. P(Y) can be obtained from training data counts.



Among the many kinds of punctuation marks, this study is restricted to the
examination of full stops, commas, and question marks, because there are
sufficient occurrences of these punctuation marks in the training data to be
able to generate models and in the test data to measure the results accurately.

For a string of n words wy, ..., w,, which does not have punctuation marks, the
end of each word is a possible candidate for punctuation. Considering the three
types of punctuation marks and No-Punctuation (NP), there are 4" possible
hypotheses for the punctuation of the input wy, ..., w,. The search for the best
hypothesis can be achieved with the Viterbi search algorithm. Using this algo-
rithm, the required time for the search for the best hypothesis is reduced to be
linear in the length of input n. Figure 1 shows a sample Viterbi search process
for the generation of punctuation for an example reference transcription. The
bold line in Figure 1 depicts the best hypothesis. For this hypothesis, commas
are generated at the end of the words “pensioners” and “savers”. Details of
the Viterbi search algorithm are given in (Rabiner & Juang, 1993).

[Figure 1]

Figure 2 illustrates the overall procedure of punctuation generation for ref-
erence transcriptions. The raw speech signal is time-aligned with the corre-
sponding reference transcription. During this alignment process, the estimated
start time and the end time of each word are found. Prosodic features are gen-
erated at the end of each word, and the probabilities P(Y|R) are obtained
from the prosodic feature model. P(Y'|W), the probability of the sequence of
words and the possible punctuation marks, are calculated from a statistical
language model. The best hypothesis with punctuation marks is generated
using the Viterbi search algorithm.

[Figure 2]

3.2  Automatic punctuation generation combined with speech recognition

In the previous section, a punctuation generation method for the reference
transcriptions was presented. It uses prosodic information along with acoustic
and language model information. In this section, a speech recogniser which pro-
duces punctuation marks and speech recognition hypotheses simultaneously
is described. This speech recogniser produces multiple hypotheses and then
these hypotheses are re-scored by a prosodic model. In this speech recogniser,
punctuation marks are treated as words in the language model and dictionary.

The correlation between punctuation and pauses for read speech was inves-
tigated in (Chen, 1999). These experiments showed that pauses closely cor-
respond to punctuation marks. The correlation between pause lengths and sen-



tence boundary marks was studied for broadcast news data in (Gotoh & Renals, 2000).
In that study, it was observed that the longer the pause duration, the greater

the chance of a sentence boundary existing. Although some instances of punc-
tuation do not occur at pauses, it is convenient to assume that the acoustic
pronunciation of punctuation is silence. In this paper, the pronunciation of
punctuation marks is registered as silence in the pronunciation dictionary.

The effectiveness of this assumption will be examined in Section 7.1.

A prosodic feature model to predict punctuation can be built in the form of a
classification tree. Probabilities from the prosodic feature model can then be
incorporated by re-scoring multiple hypotheses each of which includes putative
punctuation marks. The probability combination process can proceed as shown
in Section 3.1.

Figure 3 illustrates the overall procedure in the generation of punctuation,
when combined with speech recognition. Using language models and acoustic
models, N-best hypotheses of speech recognition are produced from the raw
speech signal. These N-best hypotheses contain punctuation marks. As these
hypotheses contain the start time and the end time of every word contained
in them, prosodic features are generated at the end of each word. Then the
probability of prosodic features are measured from the prosodic feature model.
The N-best hypotheses are re-scored using this probability of prosodic features,
and the best hypothesis which includes punctuation marks is generated.

[Figure 3]

4 Experimental setup and evaluation measures

Two different sets of data, the Broadcast News (BN) text corpus and the
second 100-hour of Hub-4 BN training data set,®are available as training
data for the experiments conducted in this paper. The BN text corpus (named
BNText92 97 in this paper) comprises a 184 million word BN text from the
period of 1992-1997 inclusive.? The 100-hour BN acoustic training data set
released for the 1998 Hub-4 evaluation (named BNAcoustic98) consists of
acoustic data and its transcription.

The test data from the NIST 1998 Hub-4 broadcast news benchmark tests are
used as test data for the evaluation of the proposed system. This test data
is named Test BNAcoustic98. Test BN Acoustic98 comprises 3 hours of acoustic
data and the transcription. Table 1 summarises the BN training and test data.

[Table 1]



4-gram LMs were produced by interpolating LMs trained on BNText92_97 and
BNAcoustic98, using a perplexity minimisation method. As this LM is used by
the speech recogniser, the transcriptions of BNText92_97 and BN Acoustic98
are converted into single-case retaining punctuation marks to produce LM
probabilities for punctuation marks. However, only BNAcoustic98 is used for
the implementation of a prosodic feature model, because acoustic data are not
available for BNText92_97.

Evaluation of a system involves scoring the automatically annotated hypoth-
esis text against a hand annotated reference text. Scoring of a text input is
relatively simple because it compares punctuation marks in the reference text
to those in the hypothesis text, and counts the number of matched punctuation
marks.

However, when the input comes from speech, because of recogniser deletion,
insertion and substitution errors, a straightforward comparison is no longer
possible (Grishman & Sundheim, 1995). Instead, the reference and hypothe-
sis texts must first be automatically aligned. This is a complex process and
involves attempting to determine which part of recogniser output corresponds
to which part of the transcript.

Once the alignment is completed, correct/incorrect decisions for all the punc-
tuation marks can be made. We define the symbols as C' for the number of
correct punctuation marks, S for the number of substitution errors, D for the
number of deletion errors, I for the number of insertion errors, NV for the num-
ber of punctuation marks in reference, and M for the number of punctuation
marks in hypothesis. From the above definitions, it is clear that N = C+S+D
and M =C+ S+ 1.

Two important metrics for assessing the performance of an information ex-
traction system are recall and precision. These terms are borrowed from the
information retrieval community. Recall (R) refers to how much of the in-
formation that should have been extracted was actually correctly extracted.
Precision (P) refers to the reliability of the information extracted. These quan-
tities are defined as:

P number of correct punctuation marks ~ C (1)
"~ number of punctuation marks in hypothesis M
and
number of correct punctuation marks C
R= P == (12)

number of punctuation marks in reference N

Although theoretically independent, in practice recall and precision tend to



operate in trade-off relationships. When you try to increase recall, you often
lose precision. When you optimise precision, you do so at the cost of recall.

The F-measure (Makhoul et al., 1999) is the uniformly weighted harmonic
mean of precision and recall:

RP 20
(R+P)/2 N+M

(13)

Another evaluation metric called Slot Error Rate (SER) was defined in (Makhoul et al., 1999)
as follows:

number of punctuation generation errors S+ D +1

SER = (14)

number of punctuation marks in reference C + S + D

The difference between SER and (1 — F)) is the weight given to D and I. The
value of (1 — F) is calculated as:

g N+M-2C_ S+ (D+D)/2_ S+(D+1)/2
W=F)=—N3r = (N+M)/2 ~ C+S+(D+1)/2

(15)

4.1 Classification tree setup

Many easily computable prosodic features were investigated for Dialog Act
(DA) classification in (Shriberg et al., 1998), for automatic topic segmentation
in (Stolcke et al., 1999), and for information extraction in (Hakkani-Tur et al., 1999).

The prosodic features that were found to be most useful for these areas were
applied in this paper. By considering the automatic punctuation generation
task and the contribution of each prosodic feature for DA classification, a set
of 10 prosodic features were investigated for punctuation generation. Table 2
lists these 10 features.

[Table 2]

The end of each word is a possible candidate for punctuation, and so all
prosodic features are measured at the end of a word. The window length is set
at 0.2 seconds. The left window is the window before the word end, and the
right window is just after the word end. “Good” F0 values are those greater
than the minimum F0 (50Hz) and less than the maximum FO0 (400Hz).

A prosodic feature model is constructed using Classification And Regression
Tree (CART) (Breiman et al., 1983). Prosodic features for the classification



tree generation are measured from BNAcoustic98. The cross validation method
is used in a CART generation.

The overall contribution of different features can be measured by ‘feature
usage’, which is the proportion of the number of times a feature is queried
by the test data and can be measured by ‘feature appearance’, which is the
number of times a feature is used as a classifying feature in non-terminal
nodes. The degree of overall contribution of each feature is shown in Table 2.

The ‘feature usage’ of Pau_Len and Eng Ratio is about 78%. This measure
accounts for the position of the feature in the tree. The higher the feature is
used in the tree, the greater the feature usage is.

5 Results: Post-processing approach for punctuation generation

In order to generate punctuation marks for the reference transcription, three
different systems were developed: a language model only system (LMOnly), a
prosodic model only system (CARTOnly), and the combination of these two
systems (LM+CART). LMOnly was trained on 185M words of transcriptions
(BNText92_97 and BNAcoustic98). As these transcriptions contain punctua-
tion marks, the language models trained on these transcriptions can predict
the locations and types of punctuation marks based on word sequences which
do not contain punctuation marks. 4-gram LMs were used in LMOnly. CAR-
TOnly was generated on the 10 prosodic features described in Table 2 from a
100 hour broadcast news (BNAcoustic98).

Using the scale factor (a)) which is the weighting given to the prosodic feature
model, the relative importance of the prosodic feature model and the language
model can be controlled. The scale factor is included into the combination of
these two models as follows:

a x logP(R|Y) + logP (Y |W) (16)

In this section, the performance of these three systems are compared for punc-
tuation generation for the reference transcriptions. The language model only
system (LMOnly) gives an F-measure of 0.5717 and an SER, of 72.25%. When
LMOnly generates punctuation for the reference transcription, its precision
(0.5966) is a little higher than its recall (0.5488). Surprisingly, the prosodic fea-
ture model alone (CARTOnly) outperforms LMOnly by 0.0521 in F-measure
and by 0.54% in SER. For CARTOnly, the recall (0.7414) is much higher than
the precision (0.5383). These results show that CARTOnly produces a rela-
tively high number of punctuation marks, while the accuracy of the generated
punctuation is relatively poor.

10



As recall is much higher than precision for CARTOnly and precision is slightly
higher than recall for LMOnly, the two information sources, one from lexical
information and the other from prosodic feature information, are expected to
be complementary. By combining these two models, the results are greatly im-
proved. The combined system (LM+CART) produces an F-measure of 0.7830
with an SER of 32.30%, a precision of 0.7638 and a recall of 0.8031. These
results are obtained when the scale factor («) of 2.0 is applied. The F-measure
attains a maximum at a scale factor of 2.0. The SER attains a minimum at
a scale factor of 1.8. The results of automatic punctuation generation for the
reference transcript are summarised in Table 3.

[Table 3]

The performance of LM+CART varies as the scale factor changes. Figure 4
describes how F-measure, precision, recall and SER change with the scale fac-
tor. The greater the scale factor for the prosodic feature model, the greater
the recall because recall is much higher than precision for CARTOnly. Preci-
sion has a maximum value at a scale factor of 1.8. The F-measure attains a
maximum of 0.7830 at a scale factor of 2.0. The SER attains a minimum of
32.12% at a scale factor of 1.8.

If the concept of scale factor is not introduced for this experiment, the proba-
bilities from the language model and those from the prosodic feature model are
combined 1:1. When a scale factor of 1.0 is applied, the F-measure is 0.7668
and the SER is 34.16%. By the introduction of a scale factor, the F-measure is
improved by 0.0162 (2.11% relative) and the SER by 2.04% (5.97% relative).

[Figure 4]

The automatic punctuation generation method can be applied to the 1-best
output of a speech recogniser. The 1-best output is first time aligned. Based
on the time alignment information, prosodic features were generated. As in
the approach applied for the punctuation generation of reference transcripts
in Section 3.1, the best sequence of punctuation marks for this 1-best output
is found using the prosodic feature model and an LM trained on texts which
contain punctuation marks.

The HTK system for Broadcast News (BN) transcription (Woodland, 2002)
running under 10 times real time (10xRT) (Odell et al., 1999) was used for the
task of speech recognition. The first step of the system is a segmentation stage
which converts the continuous input stream into segments with the aim of each
segment containing data from a single speaker and a single audio type. Each
segment is labelled as being either a wide-band or narrow-bandwidth signal.

The actual recogniser runs in two passes which both use cross-word triphone
decision-tree state clustered HMMs with Gaussian mixture output distribu-

11



tions and a N-gram language model. The first pass uses gender-independent
(but bandwidth-specific) HMMs with a 60k trigram language model to get
an initial transcription for each segment. This transcription is used to de-
termine the gender label for the speaker in each segment by alignment with
gender-dependent HMMs. Sets of segments with the same gender/bandwidth
labels are clustered for unsupervised Maximum Likelihood Linear Regression
(MLLR) (Leggetter & Woodland, 1995) adaptation. The MLLR transforms
for each set of clustered segments are computed using the initial transcrip-
tions of the segments and the gender-dependent HMMs used for the second
pass. The adapted HMMs along with a 4-gram language model is used in the
second stage of decoding and produces the final output.®

Implementation details of the HTK BN transcription system (with few con-

straints on computing power) were given in (Woodland et al., 1998; Woodland et al., 1999),
and those of the HTK 10xRT BN transcription system were described in (Odell et al., 1999).
In order to speed up the full system, the 10xRT system uses simpler acoustic

models and a simplified decoding strategy.

Using the HTK 10xRT system, speech recognition is performed first for TestBN Acoustic98.
The WER of the speech recogniser is measured as 16.7%. The difference be-

tween the reported performance in (Pallett et al., 1999) and the performance

measured in this paper is 0.6%. The system used in this paper differs from

the HTK 10xRT system used in the 1998 Hub-4 BN benchmark test in four

aspects: the absence of a category-based language model (Niesler et al., 1998),

the amount of language model training data, the difference in vocabulary size,

and the absence of a procedure to obtain more precise word start and end time
information. The HTK 10xRT BN transcription system reported 16.1% overall

WER for the NIST 1998 Hub-4 BN benchmark test (Pallett et al., 1999).

The system which generates punctuation marks from the 1-best output of the
10xRT system is named as LM+CART_ASR1Best. The trends of F-measure
and SER of LM+CART_ASR1Best are similar to the automatic punctuation
generation system for the reference transcription (LM+CART). The SER of
LM+CART_ASR1Best reaches a minimum at o = 1.93 and its F-measure a
maximum at a = 2.10. The results of LM+CART_ASR1Best are measured at
a = 2.10. Table 4 shows the results of LM+CART_ASR1Best.

[Table 4]
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6 Results: Integration of punctuation generation within a speech
recognition system

In the previous section, punctuation generation results were shown for the
reference transcriptions. In this section, experimental results for punctuation
generated as part of the speech recognition output are discussed.

Table 5 shows speech recognition results of the HTK 10xRT BN system under
3 different conditions for TestBNAcoustic98. In the first condition, punctu-
ation is not included in the training or test data. The WER of the speech
recogniser under this condition is measured at 16.71%. In the second condi-
tion, punctuation marks are included in the reference transcriptions and the
recogniser output. The WER of the speech recogniser under this condition
is increased to 22.73%. This degradation is caused by two factors: additional
errors from other words due to the introduction of punctuation marks into the
vocabulary, and errors in mis-recognising the punctuation marks themselves.

In order to check which factor contributes more to the degradation, punctua-
tion marks are generated and these marks are then removed from the references
and the hypotheses in the third condition. In this condition, the WER of the
speech recogniser is measured at 17.04%. Comparing the difference in WER
under the first and third conditions and the difference in WER, under the
second and third conditions, the degradation in WER after including punc-
tuation marks mainly comes from errors in mis-recognising the punctuation
marks themselves.

[Table 5]

The second condition is used as the baseline condition for our automatic punc-
tuation generation system with speech recognition. The punctuation genera-
tion system with this condition is named as ASR+LMPunc. Using ASR+LMPunc,
ASRA+LMPunc_H100 generates 100 hypotheses and re-scores these hypotheses
on a segment basis using the prosodic feature model. After re-scoring, the best
hypotheses for each segment are combined in ASR+LMPunc_H100. The per-
formance of ASR+LMPunc_H100 varies as the scale factor for the prosodic
model changes. Figure 5 describes how both the WER and the WER after
punctuation is removed from reference and hypothesis (WER') change with
the scale factor. WER is minimised with a scale factor of 0.71, and WER' is
minimised with a scale factor of 0.79.

[Figure 5]

Although the amount of improvement in terms of WER is small, it is very
important that these results show that there is a possibility of performance
improvement in speech recognition using prosodic feature information. ® The

13



prosodic feature model used in this paper is focused only on the classification
of punctuation marks. Therefore, the punctuation types of the words which
do not have punctuation marks at the end of these words are categorised as
a single group: No-Punctuation (NP). In spite of this simple categorisation
for the punctuation type of words which do not have punctuation marks, the
WER after punctuation is removed also decreases.

[Figure 6]
[Figure 7]

Figure 6 shows the variation of F-measure and SER according to scale factor.
Figure 7 shows that of precision and recall. The bigger the scale factor for the
prosodic feature model, the bigger the recall and the smaller the precision.
The value of the F-measure attains its maximum of 0.4400 when the scale
factor is 1.93. SER attains its minimum of 83.13% at the scale factor of 0.79.

If re-scoring with prosodic feature model is not performed, the F-measure of
the system is 0.3687, and the SER of the system is 85.02%. By the introduction
of re-scoring with the prosodic feature model, the F-measure is improved by
0.0713 (19.34% relative) and the SER by 1.89% (2.22% relative).

Table 6 summarises these results. As the punctuation generation is combined
with speech recognition, it is worth checking the result of punctuation genera-
tion when the best speech recognition performance is achieved. The precision,
recall and F-measure are measured as 0.6072, 0.3319, and 0.4292 respectively
at the scale factor of 0.79 when WER' attains its minimum. At this scale fac-
tor, SER attains its minimum value of 83.13% too. These results show that
the result of punctuation generation can be improved by re-scoring multiple
hypotheses using a prosodic feature model while also improving speech recog-
nition WER, with respect to the results obtained from the baseline speech
recognition system which generates punctuation marks with 1-best speech
recognition output.

[Table 6]

The results of ASR+LMPunc_H100 are compared with those of LM+CART_ASR1Best.
As LM+CART_ASR1Best uses the 1-best output of the speech recogniser
without punctuation marks, WER’ of LM+CART_ASR1Best is not affected

by degradation due to the inclusion of punctuation marks into the vocabulary.
LM+CART_ASR1Best shows better performance in terms of F-measure and

WER/, but poorer in terms of WER and SER. If precision is more important

than recall, ASR+LMPunc_H100 is the better system, but if recall is more
important than precision, LM+CART_ASR1Best is shown to be better.

The values of precision vary around 0.60 while the values of recall vary around
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0.30. Comparing these results to the results of punctuation generation for the
reference transcription shown in Section 5, the precision is satisfactory, but
the recall is too low. This suggests that an insufficient number of punctuation
marks are generated in the hypotheses. As stated previously, in this paper,
the pronunciation of punctuation mark is assumed to be silence. This is only
a rough approximation. This assumption will be analysed in Section 7.1.

The style of punctuation varies between writers. For example, there is a differ-
ence between British and American punctuation of lists: A, B, C, and D versus
A, B, C and D (the sentence in Figure 1 is an example of this difference). The
inherent uncertainty in punctuation will be discussed in Section 7.2.

7 Discussion

The pronunciation of punctuation marks was assumed to be that of silence.
In Section 7.1, the effectiveness of this assumption is examined. In addition,
Section 7.2 discusses the variation between different annotators for annotating
punctuation marks.

7.1 The effectiveness of the assumption for punctuation mark pronunciation

The reference word sequence of TestBNAcoustic98 was time aligned with its
acoustic data. This word sequence does not contain any punctuation mark.
Then, the duration of the models ‘sp’ and ‘sil’ “ were measured at the end of
each word. Table 7 shows the ratio of the presence of silence for each punc-
tuation mark type. About 90% of full stops and question marks are related
to silence, but pauses do not exist at about 40% of commas. In addition,
pauses are measured at the end of about 15% of words where no punctuation
is located.

[Table 7]

7.2 The variation of punctuation between annotators

The use of punctuation is documented in manuals and in hand-books such as
in (University of Chicago, 1993; Shaw, 1993). However, the style of punctua-
tion varies between writers and between type of text (Chen, 1999). In addi-
tion, punctuation marks are used to change the meaning of sentences. In this
section, the punctuation variation between annotators is measured.
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The first 1000 words of Test BN Acoustic98 were used for this experiment. As
capitalisation information gives cues to the location of sentence boundaries,
these 1000 words were de-capitalised. Three native speakers of British En-
glish were asked to add punctuation marks between the test words wherever
punctuation is necessary. Only commas, full stops and question marks were
permitted as punctuation marks. These three annotators worked on the de-
capitalised written text only. They did not listen to the spoken text. Although
this experiment was performed with a small amount of text and a small num-
ber of annotators, it gives some idea as to the variation in punctuation between
different annotators for the domain of broadcast news. Table 8 summarises the
experimental conditions. Table 9 gives an example of the variation of punctu-
ation between annotators.

[Table 8]
[Table 9]

In the reference transcription of Test BN Acoustic98, there are 43 commas and
54 full stops between the first 1000 words of Test BN Acoustic98. Table 10 shows
the differences between the punctuation in the provided reference transcription
and each annotator’s transcription. These differences are measured in terms
of precision, recall, F-measure and SER. On average, the F-measure for the
three annotators was measured as 0.7199.

[Table 10]

Table 11 shows the variations in punctuation between annotators. These vari-
ations were measured in terms of precision, recall, F-measure and SER, re-
garding an annotator’s text as the reference and another annotator’s text as
the hypothesis. On average, the F-measure between annotators was measured
as 0.7113.

[Table 11]

The amount of this variation between annotators is quite substantial. Even
though the acoustic data for the text is provided when the reference text was
transcribed, the single set of punctuation marks provided in the reference text
are certainly not a perfect measure. This variation may partly account for
reported punctuation generation errors.

8 Conclusions

A punctuation generation system which incorporates prosodic information
along with acoustic and language model information has been described. Ex-
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periments were conducted first for the reference transcriptions. In these experi-
ments, prosodic information was shown to be more useful than language model
information. When these information sources are combined, an F-measure of
up to 0.7830 was obtained for adding punctuation to a reference transcription.

This method of punctuation generation can also be applied to the 1-best out-
put of a speech recogniser. The 1-best output is first time aligned. Based on
the time alignment information, prosodic features are generated. As in the ap-
proach applied in the punctuation generation for reference transcriptions, the
best sequence of punctuation marks for this 1-best output is found using the
prosodic feature model and an LM trained on texts which contain punctuation
marks.

As an alternative, a modified conventional speech recogniser was used to pro-
duce punctuation marks and speech recognition hypotheses simultaneously.
Multiple hypotheses from the recogniser were re-scored by the prosodic model.
Rescoring with the prosodic model increased the F-measure by 19% relative
to the 1-best output from the modified speech recogniser. At the same time, a
small reduction in word error rate was obtained over the 1-best output from
the modified speech recogniser.

This modified speech recogniser is based on the assumption that the pronun-
ciation of punctuation marks is silence. Its results were compared with those
from the 1-best output in which punctuation marks were generated by post-
processing the 1-best output of standard speech recogniser. If precision is more
important than recall, then the modified speech recogniser gives the better re-
sults, but if recall is more important than precision, then the method using
the 1-best output of standard speech recogniser is shown to be better.

The variation in punctuation annotation between annotators was investigated.
Although this experiment was performed with only a small amount of text and
three annotators, it gives some indication of the substantial variation between
different annotators for punctuation.
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Footnote

! Similar to the assumption in (Shriberg et al., 1998; Taylor et al., 1998), where
it is assumed that prosodic features are independent of the words once condi-
tioned on the dialogue act, we introduced an assumption that R depends only
on Y. The assumption in (Shriberg et al., 1998) is a simplification to make
the computation tractable. Clearly, the independence assumption in our pa-
per is violated for the energy. However, for practical reasons, we introduce this
independence assumption.

2 A similar assumption was introduced in (Shriberg et al., 1998) as the prob-
ability of a prosodic feature sequence is the same for all dialogue act types. In
addition, the probability of an acoustic observation sequence is assumed to be
independent of the word sequence in speech recognition. It is true that P(R)
is not uniformly distributed, but this assumption is introduced to make the
computation tractable.

3 The actual amount of transcribed acoustic data is 71 hours.

*The 1992-1996 data was provided by the LDC (http://www.ldc.upenn.edu)
and the 1997 data was provided by the Primary Source Media.

®Note that the same form of language model is used whether or not the
training data contains punctuation marks.

6 This difference in WER is not statistically significant.

"These are the models for silence in the HTK BN system.
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tax breaks targeted a pensioners savers families and
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" SUAREIRE w w w,/
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Fig. 1. Viterbi search process for the generation of punctuation for an example ref-
erence transcription. The bold line depicts the best hypothesis. Punctuation marks
at the bottom are generated according to this best hypothesis.
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Fig. 2. Overall procedure for punctuation generation from reference transcriptions
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Training data
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|

P(Y|R) N-—best

rescoring
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Output
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Fig. 3. Overall procedure for punctuation generation combined with speech recog-
nition
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Fig. 5. WER and WER' of ASR+LMPunc H100 with different scale factors
(ASR+LMPunc_H100: Final hypothesis from re-scored 100 hypotheses; WER: Word
Error Rate; WER’: WER after punctuation is removed from a reference and a hy-
pothesis)
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Fig. 6. F-measure and SER of ASR+LMPunc_H100 with different scale factors
(ASR+LMPunc_H100: Final hypothesis from re-scored 100 hypotheses; SER: Slot
Error Rate)
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(ASR+LMPunc_H100: Final hypothesis from re-scored 100 hypotheses)
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Name

Description

#Words Purpose

Acoustic data

BNtext92_97
BNAcoustic98

1992_97 BN texts
100 hrs of Hub-4 data (1998)

TestBNAcoustic98 1998 benchmark test data

184M Training data Not available
774K Training data Available

32K Test data

Available

Table 1

Description of broadcast news training and test data

Name Description Feature appearance Feature usage
Pau_Len Pause length at the end of a word 672 0.5799
Dur_fr_Pau Duration from the previous pause 539 0.0230
Avg FO_L Mean of good FOs in left window 342 0.0246
Avg FO_R Mean of good F0s in right window 230 0.0363
Avg FO_Ratio Avg F0_R/Avg FO_L 261 0.0461
Cnt_F0_L No. of good FO0s in left window 204 0.0429
Cnt_FO_R No. of good F0s in right window 230 0.0176
Eng L RMS energy in left window 203 0.0038
Eng R RMS energy in right window 160 0.0252
Eng Ratio Eng R/Eng L 239 0.2006
Table 2

Description of each prosodic feature and its contribution for the CART trained by
BNAcoustic98 and tested by TestBNAcoustic98 (Feature usage: proportion of the
number of times a feature is queried. Feature appearance: the number of times a
feature is used as a classifying feature. Window length = 0.2 sec, 50Hz < good F0

< 400Hz)
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System Precision Recall F-measure SER(%)

LMOnly 0.5966  0.5488 0.5717 72.25
CARTOnly 0.5383  0.7417 0.6238 71.71
LM+CART («=2.0) 0.7638  0.8031 0.7830 32.30

Table 3

Automatic punctuation generation results for reference transcripts (LMOnly: lan-
guage model only; CARTOnly: prosodic feature model only; LM+CART: combina-
tion of LMOnly and CARTOnly; a = scale factor to the prosodic feature model;
SER: Slot Error Rate)

System WER WER' Precision Recall F-measure

SER

LM+CART_ASR1Best («=2.10) 23.08 16.71 0.5329  0.4304 0.4762

88.32

Table 4

Automatic punctuation generation results of LM+CART_ASR1Best (WER: Word
Error Rate (%); WER’: WER after punctuation is removed from a reference and a
hypothesis; SER: Slot Error Rate (%))

Remarks WER
Punctuation excluded 16.71
Punctuation included 22.73

Punctuation marks are generated and then 17.04

removed from reference and hypothesis

Table 5
Speech recognition results of the HTK 10xRT BN system under 3 different condi-
tions (WER = Word Error Rate (%))
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System WER WER’ Precision Recall F-measure

SER

ASR+LMPunc 2273 17.04 0.6425  0.2585 0.3687
ASR+LMPunc H100 (@=0.79) 22.57 16.84 0.6072  0.3319 0.4292
ASR+LMPunc H100 («=1.93) 22.82 16.95 0.5811  0.3541 0.4400

85.02
83.13
84.57

Table 6

Results of automatic punctuation generation with speech recognition
(ASR+LMPunc: Baseline system. No re-scoring; ASR+LMPunc_H100: Final
hypothesis from re-scored 100 hypotheses; WER: Word Error Rate (%); WER':
WER after removing punctuation from a reference and a hypothesis; SER: Slot
Error Rate (%))

Punctuation mark Number of silences(%)
NP 4352/28218 (15.42)

948/1565 (60.58)

1590/1794 (88.63)

? 45/49 (91.84)

Table 7
Number of times silence is present for each punctuation mark type (NP: No-
Punctuation)

Condition Description

Text source  First 1000 words in TestBNAcoustic98
Writing style Single case. No punctuation mark

Annotator Three native British English speakers

Table 8

Experimental conditions for investigating the variation in punctuation mark an-
notation between different annotators. The annotators work on the de-capitalised
written text only. They do not listen to the spoken text.
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Annotator 1: china, another market with big potential, is also having sec-
ond thoughts about culinary competition. with american fast food joints,
china’s domestic food industry recently concluded that in order to become
a great world power, a nation needs to conquer the globe with its own fast

food.

Annotator 2: china, another market with big potential, is also having sec-
ond thoughts about culinary competition with american fast food joints.
china’s domestic food industry recently concluded that, in order to be-
come a great world power, a nation needs to conquer the globe with its

own fast food.

Table 9

Example of the variations in punctuation marks between annotators. The same
sequence of de-capitalised words was given to each annotator.

Source of hypothesis text Precision Recall F-measure SER(%)
Annotator 1 0.7558  0.6701 0.7104 49.48
Annotator 2 0.7158  0.7010 0.7083 47.42
Annotator 3 0.7448 0.7371 0.7409 44.85

Table 10

The difference of putting punctuation marks between the provided reference tran-
scription and each annotator’s transcription. The provided transcription is regarded
as the reference and each annotator’s transcription as the hypothesis. (SER: Slot

Error Rate)

Source of text

Results of variations

Reference Hypothesis | Precision Recall F-measure SER(%)
Annotator 1 Annotator 2 | 0.6421  0.7093 0.6740 60.47
Annotator 1 Annotator 3 | 0.7188  0.8023 0.7582 44.19
Annotator 2 Annotator 3 | 0.6979  0.7053 0.7016 49.47

Table 11

Variations in punctuation between annotators. Results of variations are measured
regarding an annotator’s text as the reference and another annotator’s text as the
hypothesis. (SER: Slot Error Rate)
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