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Abstract

The work in this thesis concerns Named Entity (NE) recognition from speech and its use in the

generation of enhanced speech recognition output with automatic punctuation and automatic

capitalisation. A method for the automatic generation of rules is proposed for NE recognition.

Punctuation marks are generated using context and prosody information. Capitalisation is pro-

duced based on the results of NE recognition and punctuation generation.

Previous work regarding the NE task is mainly categorised by hand crafted rule-based systems

and stochastic systems. By contrast, in this thesis, an automatic rule generating method, which

uses the Brill rule inference approach, is proposed. The performance of the rule-based NE recog-

niser is compared with that of the BBN’s commercial implementation called IdentiFinder. When

only the sequences of words are available, both systems show almost equal performance as is

also the case with additional information such as punctuation, capitalisation and name lists. In

cases where input texts are corrupted by speech recognition errors, the performances of both

systems are degraded by almost the same level. Although the rule-based approach is different

from the widely used stochastic method, these results show that automatic rule inference is a

viable alternative to the stochastic approach to NE recognition, while retaining the advantages

of a rule-based approach.

A punctuation generation system which incorporates prosodic information along with acoustic

and language model information is presented. Experiments are conducted for both the reference

transcriptions and speech recogniser outputs. For reference transcription, prosodic information

is shown to be more useful than language model information. A few straightforward modifica-

tions of a conventional speech recogniser allow the system to produce punctuation and speech

recognition hypotheses simultaneously. The multiple hypotheses are produced by the automat-

ic speech recogniser and are re-scored by prosodic information. When prosodic information

is incorporated, the F-measure can be improved and small reductions in word error rate are

obtained at the same time. An alternative approach for generating punctuation marks from the

1-best speech recogniser output which does not have any punctuation marks is also proposed. Its

results are compared with those from the combined punctuation generation and speech recog-

nition system.

Two different systems are proposed for the task of capitalisation generation. The first system is a

slightly modified speech recogniser. In this system, every word in its vocabulary is duplicated: it

is given once in a decapitalised form and again in a capitalised form. In addition, the language
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model is re-trained on mixed case texts. The other system is based on NE recognition and punc-

tuation generation, since most capitalised words are first words in sentences or NE words. Both

systems are compared first on the condition that every procedure is fully automated. The system

based on NE recognition and punctuation generation shows better results in word error rate, in

F-measure and in SER than the system modified from the speech recogniser. This is because the

latter system has distortion of the LM, a sparser LM, and loss of half scores. The performance of

the system based on NE recognition and punctuation generation is investigated by including one

or more of the following: reference word sequences, reference NE classes and reference punctu-

ation marks. The results show that this system is robust to NE recognition errors. Although most

punctuation generation errors cause errors in this capitalisation generation system, the number

of errors caused in capitalisation generation does not exceed the number of errors in punctua-

tion generation. In addition, the results demonstrate that the effect of NE recognition errors is

independent of the effect of punctuation generation errors for capitalisation generation.
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Notation

� A word
�

A word sequence
�

The word feature of a word
� The capitalisation type of a word
�

The Named Entity (NE) class of a word
�

The NE boundary information of a word

If the word is combined with its previous word into a single NE word,
���	�

and if not,
����


� The part-of-speech (POS) tag of a word
 A punctuation mark
�

A punctuation mark sequence
� The prosody feature set for a word
�

A prosody feature set sequence
� The scale factor for a prosodic feature model when combined with a language model
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Chapter 1

Introduction

Considerable progress has been made in speech recognition technology over the last few decades.

Recently, interest in speech recognition research has shifted from read speech data to speech da-

ta found in the real world such as broadcast news and conversational speech over the telephone.

This shift opens up many applications such as information extraction systems.

Information extraction systems analyse unrestricted text in order to extract specific types of

information. When searching for information of specific interest in non-textual data, such as

video or audio recordings, it would be extremely useful to devise some method of automatically

deriving some textual tokens from the non-textual data which would then be used to represent

the content, especially when the collection is relatively large, or new items are added frequently.

These reasons have motivated the speech and computational linguistics communities to attempt

to perform shallow understanding of speech beyond simply its transcription. This requires a

range of techniques, including the ability to identify Named Entities (NE) - the who, where,

when and how much in a sentence.

The current state-of-art technologies of speech recognition focus on producing the exact se-

quence of pronounced words. The readability of speech recognition output would be greatly

enhanced by generating proper punctuation and capitalisation, because standard transcriptions

of speech lack most capitalisation and punctuation. In addition, the generated punctuation and

capitalisation give further clues for the NE recognition.

The work in this thesis concerns Named Entity (NE) recognition from speech and its application

to the generation of enhanced speech recognition output including automatic punctuation and

automatic capitalisation. In this introduction, first, the task of Named Entity recognition is

defined, and the need for the enhancement of speech recognition output described. Then, the

key issues of the tasks - especially when input comes from speech - are explained. The final

section outlines the scope of the remainder of this thesis.
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1.1 Named Entity recognition and speech recognition output en-

hancement

The NE task requires the recognition of named entities (names of locations, persons and organi-

sations), temporal expressions (dates and times) and numerical expressions (monetary amounts

and percentages) [10]. The task is to identify all instances of the three types of expression in

each text in the test set, to sub-categorise the expressions, and to produce a single, unambiguous

output for any relevant string in the text. An example is given in Figure 1.11.

Mr � ENAMEX TYPE=“PERSON” � Mandelson � /ENAMEX � had made clear

for the first time that all the new institutions, including the various cross-

border bodies created � TIMEX TYPE=“DATE” � yesterday � /TIMEX � un-

der the � ENAMEX TYPE=“ORGANIZATION” � North South Ministerial Coun-

cil � /ENAMEX � , would all be wound up unless devolution was matched by

� ENAMEX TYPE=“ORGANIZATION” � IRA � /ENAMEX � decommissioning.

Figure 1.1 Example of NE recognition output file

When speech dictation is performed, the dictation system can rely on the speakers to say “capi-

talise the current word” or “full stop” whenever they are necessary in the dictated text. However,

when speakers are not aware that their speech is being automatically transcribed as in speech

data found in real world (i.e. broadcast news and conversational speech over the telephone),

verbalised punctuation and capitalisation are not present. Automatic punctuation and capi-

talisation generation will greatly enhance the readability of transcriptions, because standard

transcriptions of speech lack most capitalisation and punctuation.

Mixed case+punctuation marks+figures: One new security assessment

listed the IRA as possessing at least 1,000 rifles, 500 handguns, 50 heavy

machine guns and 2,600 kgs of Semtex high explosive.

SNOR: ONE NEW SECURITY ASSESSMENT LISTED THE IRA AS POSSESS-

ING AT LEAST ONE THOUSAND RIFLES FIVE HUNDRED HANDGUNS FIFTY

HEAVY MACHINE GUNS AND TWO THOUSAND AND SIX HUNDRED KILO

GRAMS OF SEMTEX HIGH EXPLOSIVE

Figure 1.2 Lack of capitalisation and punctuation in speech recogniser output. Speech recogniser output

is conventionally written in the format of SNOR (Standard Normalised Orthographical Representation)

1Each NE is surrounded by its appropriate tags. 8 possible NE classes and their starting and end tags are listed in

Table 3.4
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As illustrated in Figure 1.2, even with no speech recognition errors, automatically transcribed

speech is much harder to read due to the lack of punctuation, capitalisation and number for-

matting. The format of standard recogniser output, as shown in the lower part of Table 1.2, is

known as Standard Normalised Orthographical Representation (SNOR) [1] and consists of only

upper-case letters without punctuation marks or numbers.

The tasks of NE recognition and of enhanced speech recognition output generation are substan-

tially related to each other, because most capitalised words apart from first words in sentences

are NEs. NE recognition experiments, which compare the effects of the input condition of be-

tween mixed cases and SNOR, showed that the performance deteriorates when the capitalisation

and punctuation information are missing [58]. This missing information makes certain decisions

regarding proper names more difficult.

1.2 Key issues of the tasks

Although these tasks seem clear, the correct answer is not apparent in some cases due to the

ambiguity in natural language. For NE recognition, ambiguous examples are discussed in [58]

as follows:

� When is the Wall Street Journal an artifact, and when is it an organisation?

� When is the White House an organisation, and when is it a location?

� Are branch offices of a bank an organisation?

� Should yesterday and last Tuesday be labelled dates?

� Is mid-morning a time?

The system must produce a single, unambiguous output for any relevant string in the text. In

order to encourage consistency and reduce ambiguity regarding NE recognition, guidelines have

been defined in [31].

For punctuation generation, word sequences provide information about the possible locations

and types of punctuation marks, but this are not sufficient. The following example, mentioned

in [29], shows how different the meaning can be according to the punctuation even if the word

sequence apart from punctuation is the same:

� Woman! Without her, man is nothing.

� Woman without her man, is nothing.
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Many commercial implementations of automatic capitalisation generation are provided with

word processors. In these implementations, grammar and spelling checkers of word processors

generate suggestions about capitalisation. A typical example is one of the most popular word

processors, Microsoft Word. A simple experiment was conducted using Microsoft Word 2000

for an ambiguous word, ‘bill’ (which can be used as a person’s name as well as a statement

of account). The phrase “President Bill Clinton says” was typed in de-capitalised form into

Microsoft Word 2000, and only suggestions regarding capitalisations were accepted. The result

was “President bill Clinton says”. This example shows that capitalisation generation requires a

process of dis-ambiguation of ambiguous words.

When the input text comes from speech, the NE and the speech recognition output enhancement

tasks become more difficult because of corruptions in input text caused by speech recognition

errors. Details are given in the following section.

1.2.1 Difficulties when using speech input

Training patterns for NE recognition, punctuation generation and capitalisation generation are

designed to account for the variety of syntactic and semantic structures. Thus, patterns with

several required elements are quite sensitive to errors in the input text. If any of the required

elements are missing in the input, or if an extra token intervenes between the elements in the

input, then the input will no longer match the pattern. An example text corrupted by speech

recognition errors is shown in Figure 1.3. The example speech recognition output is taken from

the output of the SRI’s speech recognition system for the test data of 1998 NIST Hub-4 broadcast

news benchmark test [1].

THE GUARDIANS OF THE ELECTRONIC STOCK MARKET THE NASDAQ WHO’VE BEEN

BURNED BY PAST ETHICS QUESTIONS ARE MOVING TO HEAD OFF THE MARKET FRAUD BY

TOUGHENING THE RULES FOR COMPANIES BUT ONE OF THE LISTED ON THE EXCHANGE

MARKET PLACE IS FULL BORE OFFER FOR ITS PART OF THE PROPOSALS PENNY STOCK

ALL THE ELIMINATE THE STAFF

which is a transcription of

THE GUARDIANS OF THE ELECTRONIC STOCK MARKET NASDAQ WHO’VE BEEN BURNED

BY PAST ETHICS QUESTIONS ARE MOVING TO HEAD OFF MARKET FRAUD BY TOUGHEN-

ING THE RULES FOR COMPANIES THAT WANT TO BE LISTED ON THE EXCHANGE MARKET-

PLACE’S PHILIP BOROFF REPORTS AS PART OF THE PROPOSALS PENNY STOCKS WILL BE

ELIMINATED FROM NASDAQ

Figure 1.3 Corruption in input text caused by speech recognition error. The speech recognition output is

produced by the SRI system of [1].
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An experiment regarding the effect of corruption caused by speech recognition errors was con-

ducted for NE recognition in [58]. According to this experiment, NE recognition performance

is sensitive to speech recognition performance, and the performance degrades linearly with in-

creasing word error rate. An analysis of the errors made with speech recognition input showed

that the dominant error was with missing names; the second most prominent error was with

spurious names.

Speech disfluencies such as filled pauses and repetitions are prevalent in spontaneous speech.

They are the characteristics which distinguish spontaneous speech from planned or read speech.

Unlike the corruption of input which is mentioned in the previous section, these kinds of error

do not come from speech recogniser errors but from the disfluencies themselves. In these cases

of disfluency, any missing elements or extra intervening tokens can cause mismatches between

trained patterns and input speech. Speech disfluencies can be classified based on how the actual

utterance must be modified to obtain the intended fluent utterance. The classes can be char-

acterised by the type of editing required. Their classifications are as follows, where errors are

marked by an asterisk following the disfluency.

� Filled pauses

e.g. CAMBRIDGE UH * UNIVERSITY

� Repetitions

JOHNSON * JOHNSON WAS HERE

� Repairs

JOHNSON * JACKSON LIKED IT

In the filled pause case, instead of recognising “CAMBRIDGE UNIVERSITY” as an organisation,

“CAMBRIDGE” will be tagged as a location. In the second example, there is confusion as to

whether the organisation “JOHNSON & JOHNSON” is intended, or whether the speaker acciden-

tally repeats the name. A similar problem occurs with the third example.
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1.3 Scope of the thesis

The work in this thesis concerns NE recognition from speech and its use in the generation of en-

hanced speech recognition output with automatic punctuation and automatic capitalisation. An

automatic rule generating method is proposed for NE recognition. Punctuation marks are gen-

erated using context and prosody information. Capitalisation is produced based on the results

of NE recognition and punctuation generation.

1.3.1 Named Entity (NE) recognition

In this thesis, NE recognition uses the Hub-4 IE-NE Task Definition Version 4.8 [33] as defined

for the 1998 NIST Hub-4 Information Extraction (Named Entity) Broadcast News Benchmark

Test Evaluation [1]. According to this definition, the NE task requires the recognition of the

following NE classes:

� Named Entity: PERSON, ORGANIZATION, LOCATION

� Time expressions: DATE, TIME

� Numerical expressions: MONEY, PERCENT

Previous work regarding the NE task are mainly categorised by hand crafted rule-based systems

and stochastic systems. In Chapter 4, an automatic rule generating method, which uses the

Brill rule inference approach, is proposed. The performance of the rule-based Named Entity

recogniser is compared with that of BBN’s commercial implementation called IdentiFinder.

When only the sequences of words are available, both systems show almost equal performance

as is also the case with additional information such as punctuation, capitalisation and name lists.

In cases where input texts are corrupted by speech recognition errors, the performance of both

systems are degraded by almost the same level. Although the rule-based approach is different

from the widely used stochastic method, these results show that automatic rule inference is a

viable alternative to the stochastic approach to NE recognition, while retaining the advantages

of a rule-based approach.

1.3.2 Generation of punctuation

Among the many kinds of punctuation marks, this thesis is restricted to the examination of full

stops, commas and question marks only. This is because there is sufficient occurrence of these

punctuation marks in training corpora to obtain reliable patterns and parameters.
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A punctuation generator which incorporates prosodic information along with acoustic and lan-

guage model information is presented in Chapter 5. Experiments are conducted for both the

reference transcriptions and speech recogniser outputs. For the reference transcriptions, prosod-

ic information is shown to be more useful than language model information.

A few straightforward modifications of a conventional speech recogniser allow the system to

produce punctuation and speech recognition hypotheses simultaneously. The multiple hypothe-

ses are produced by the automatic speech recogniser and are re-scored by prosodic information.

When prosodic information is incorporated, the F-measure can be improved and small reduc-

tions in word error rate are obtained at the same time. An alternative approach for generating

punctuation marks from the 1-best speech recogniser output which does not have any punctu-

ation mark is proposed. Its results are compared with those from the combined punctuation

generation and speech recognition system.

1.3.3 Generation of capitalisation

In this thesis, capitalisation types of words are classified into three categories as shown in Ta-

ble 1.1. Although there are some exceptions which do not fall into one of these three categories

(e.g. McWethy, O’Brien, LeBowe), most of these exceptional words are surnames, and can be

classified as Fst Cap in Table 1.1. The details of the data preparation for capitalisation experi-

ments are described in Chapter 3.

Capitalisation type Description

No Cap Every character of a word is de-capitalised

All Cap All characters of a word are capitalised

Fst Cap Only first character of a word is capitalised

Table 1.1 Categories of capitalisation types of words

An automatic means of capitalisation is presented that uses the results of speech recognition,

punctuation generation and NE recognition in Chapter 6. Experiments are conducted for both

the reference transcriptions and speech recogniser outputs. Experimental results using reference

transcriptions show that this automatic capitalisation method is robust to NE recognition errors

and punctuation generation errors. In addition, automatic capitalisation results for speech recog-

nition output show that this automatic capitalisation method is also robust to speech recognition

errors.
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1.4 Organisation of the thesis

The objective of this thesis is to devise automatic methods of NE recognition, punctuation gen-

eration and capitalisation generation from speech input. This thesis consists of seven chapters.

Chapter 2 introduces previous work in this area. Chapter 3 describes the corpora used in the

experiments and explains pre-processing steps used for these corpora. Also, this chapter dis-

cusses evaluation measures for the systems. Chapter 4 describes a rule-based NE recogniser.

Chapter 5 presents a combined system using prosody for punctuation generation and speech

recognition. Chapter 6 examines an automatic means of generating capitalisation using the NE

recogniser and the punctuation generator. Finally, Chapter 7 concludes this thesis and proposes

future work.
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Chapter 2

Previous work

In this chapter, previous work related to NE recognition from spoken data and speech recogni-

tion output enhancement is described. Since both are relatively new areas, there are no books

or journals devoted to them at this time. In Section 2.1, previous work on NE recognition is

described and categorised. In Section 2.2, previous studies related to speech recognition output

enhancement, mainly automatic punctuation and automatic capitalisation, are examined.

2.1 Named Entity (NE) recognition

The best source of information relating to NE recognition system descriptions is the Message

Understanding Conference (MUC) Proceedings [32, 83] and the 1999 DARPA Broadcast News

Workshop Proceedings [73]. These Proceedings contain the results of the performance evalua-

tions as well as system descriptions for each participating system in the evaluation. The eval-

uations of MUC used domain specific text data. For MUC systems, since the domain is limited

and capitalisation information helpful for detecting NEs is available, many participating systems

of MUC were based on hand crafted rules. Some rule-based NE recognition systems developed

for MUC-7 are described in [24, 30, 44, 90]. As the 1998 NIST Hub-4 evaluation used broad-

cast news data, each participant in this evaluation was required to handle various domains in

broadcast news and to cope with input which does not have capitalisation information. Focus-

ing on the 1999 DARPA Broadcast News Workshop proceedings, which contain the results of the

most recent evaluation i.e. the 1998 NIST Hub-4 Information Extraction (Named Entity) Broad-

cast News Benchmark Test Evaluation, the general procedures used are described and previous

studies are categorised. Then, each of these categories is explained.

NE recognition systems are generally categorised according to whether they are stochastic (typ-

ically HMM-based) or rule-based [56]. In the stochastic method, linguistic information is cap-

tured indirectly through large tables of statistics. However, in many instances, a stochastic

system encounters difficulties in estimating probabilities from sparse training data. In contrast

to the stochastic method, the rule-based method encodes linguistic information directly in a set

of simple rules.
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The advantages of the rule-based method over the stochastic method include its smaller storage

requirements, absence of need for less-descriptive models as in back-off [54], and its easy ex-

tension using expert linguistic knowledge due to its conceptually reasonable rules. However, a

disadvantage of previous rule-based systems is that rules need to be manually constructed [56].

Manually constructed rule-based systems show reasonable performance for normal texts because

many NEs have helpful capitalisation information. However, if the input is derived from speech,

capitalisation information is no longer available and it is much harder to obtain the necessary

linguistic information using manually constructed rules.

In the 1998 NIST Hub-4 Information Extraction (Named Entity) Broadcast News Benchmark

Test Evaluation, four sites (BBN, MITRE, SPRACH and SRI) participated and submitted their

results (SPRACH implemented two systems) [1]. In this evaluation, the test data were annotated

according to the Hub-4 IE-NE Task Definition Version 4.8 [33]. Table 2.1 shows the types of

system as well as their performance.

Site Type F-measure SER(
�

)

BBN Stochastic 0.91 15.7

MITRE Stochastic 0.88 20.3

SPRACH-R Rule-based 0.71 46.1

SPRACH-S Stochastic 0.83 29.1

SRI Rule-based 0.90 16.3

Table 2.1 1998 Hub-4 NE evaluation results [1]

The BBN system is a HMM-based system known as IdentiFinder [66]. Details of stochastic NE

recognition systems are described in Section 2.1.1, focusing on IdentiFinder, one of the most suc-

cessful stochastic NE recognition systems. The MITRE system is another stochastic model which

is similar to BBN’s IdentiFinder [71]. More complete and recent descriptions of the MITRE

system are given in [72]. The MITRE system uses a state topology designed for explicit mod-

elling of variable-length phrases and class-based statistical language model smoothing. SPRACH

submitted two systems: SPRACH-S [46, 78] and SPRACH-R [78]. SPRACH-S is a HMM-based

system, whereas SPRACH-R is a rule based system. A standard � -gram based formulation is

used in SPRACH-S. SPRACH-R uses a modified version of the NE recognition component of the

Sheffield LaSIE-II system [45, 52]. Its basic approach relies on finite state matching against

words stored in lists, part-of-speech tagging and phrasal grammar for the NE classes. Lastly, SRI

employed TextPro which is based on the technology of the SRI FASTUS system [21]. The general

processes performed by previous rule-based systems are described in Section 2.1.2. Details of

finite-state cascade rule-based systems are described in Section 2.1.2.1, focusing on the FASTUS

system.
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2.1.1 Stochastic system

Hidden Markov models (HMMs) for NE recognition were adopted due to the success in speech

recognition and have also been applied to parsing and part-of-speech tagging [34, 40]. HMMs

are discussed in a number of books and tutorial papers [74, 75, 91]. In this section, details of

stochastic NE recognition systems are described, focusing on IdentiFinder [23, 58, 67].

These methods regard the states of the HMM as classes of NEs. Transition probabilities are prob-

abilities of an NE class given the previous NE class, and emission probabilities are probabilities of

a word given an NE class. The probability of a particular NE class sequence given a sentence is a

product of the transition and emission probabilities involved. Just as the stochastic approach to

speech recognition attempts to maximise the probability of a sequence of words given a certain

speech signal, the NE recogniser attempts to find the most likely sequence of NE classes given a

sequence of words. Figure 2.1 shows a pictorial representation of an HMM in NE recognition.

Sentence end

Organization

other NE classes

non NE

PersonSentence start

Figure 2.1 Pictorial representation of stochastic NE recogniser

Formally, we must find the most likely sequence of NE classes
������������� ���

given a sequence of words
� � ��������� � � :

�
	���
� � � ��������� � ��� � � ��������� � ��� (2.1)

Applying Bayes’ rule, this can be written as:

�
	�� �� ������������� ��� ��� 
� � ����������� � � � ������������� ��� �

� � ����������� � � � (2.2)
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The a priori probability of the word sequence, the denominator in equation 2.2, is constant for

any given sentence. Since we are interested in finding the
� ����������� ���

that gives the maximum

value in equation 2.2, the denominator in all these cases does not affect the answer. Thus, the

problem reduces to finding the sequence
� ����������� ���

which maximises the following expression,

�
	�� �� � � ��������� � � ��� 
� � � ��������� � � � � � ��������� � � � � �
	�� 
� � � ��������� � � � � � ��������� � � � (2.3)

There are still no effective methods for calculating the probability of these long sequences ac-

curately, as it would require far too much data. But the probabilities can be approximated by

probabilities that are simpler to collect, by making some independence assumptions. The prob-

ability of the sequence of NE classes can be approximated by a series of probabilities based on

a limited number of previous NE classes. The most common assumptions use either one or two

previous NE classes. The bigram model, using only one previous NE class, looks at pairs of NE

classes and uses the conditional probability that an NE class
� � will follow an NE class

� ��� � , writ-

ten as 
� � � � � ��� � � . The trigram model uses the conditional probability of one NE class given two

preceding NE classes, that is, �� � � � � ����� � � ��� � � .
The second probability in equation 2.3, 
� � ����������� � � � � ����������� � � � , can be approximated by assuming

that a word appears in an NE class independent of the words in the preceding or succeeding NE

classes. It is approximated by the product of the probability that each word occurs in its indicated

NE class.


� � � ��������� � ��� � � ��������� � � ��� 	
��
 �� � 
� � � � � � � (2.4)

If we assume the use of bigrams, the problem changes into one of finding the sequence
� � ��������� � �

which maximises the value as follows:

�
	�� 	
��
 �� � �� � � � � � � � 
� � � � � ��� � � (2.5)

Using trigrams, the problem changes into

�
	�� 	
��
 �� � �� � � � � � ��� 
� � � � � ����� � ��� � � (2.6)
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Next, the most likely sequence of NE classes for a sequence of words has to be assigned. The

key insight is that because of the Markov assumption, there is no need to process all the possible

sequences: the assignment can be done using the Viterbi algorithm.

Due to the limited amount of training data, many of the possible bigrams will not be observed,

and therefore these probabilities must be estimated using a less powerful back-off model with a

suitable smoothing mechanism [18].

In many instances, a language model encounters difficulties in the estimation of probabilities

from sparse training data. In the absence of further information, it seems reasonable to assume

that all unseen events have equal probabilities i.e. that they are uniformly distributed. How-

ever, in language modelling, further information is often available in less-descriptive language

models. For example, when using trigrams, bigrams can also be considered. This procedure of

re-estimating the unseen probability using a less-descriptive model is called back-off [54].

When applying stochastic methods to NE recognition, particular importance must be given to the

effect of the words which are encountered in the test data but have not been seen in the training

data. For example, when using bigrams, there are three ways unknown words can appear: as

current words, as previous words, or as both. One method of improvement is to build a separate

unknown word model which contains statistics of unknown words. Usually, part of the training

data is held out for estimating the unknown word model. For the training data which is not

held out, a vocabulary list is developed. Held-out data is then analysed with the vocabulary list.

Then, statistics for the occurrence of unknown words are obtained by considering the words

which appear in held-out training data but not in the vocabulary list.
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2.1.2 Rule-based system

In stochastic methods for NE recognition, linguistic information is only captured indirectly

through large tables of statistics. Therefore, the stochastic methods need a large amount of

training data in order to capture linguistic information. In the rule-based methods, linguistic

information is encoded directly in a set of simple rules, in contrast to the many thousands of

probabilities learned by the stochastic method. Therefore, an advantage of the rule-based sys-

tem over the stochastic system is that significantly less storage is needed for pattern action rules

than for an HMM-based system’s probability matrix. Generally, compactness is an advantage

for the rule-based system. Another general advantage is speed. Unlike stochastic systems, most

rule-based systems are deterministic [92].

In NE recognition, the temporal and numeric expressions have a fairly structured appearance

which can be captured by means of grammatical rules. However, person’s names, organisation

names and location names are more complex and more context dependent.

Rule-based NE recognition systems presented in [7, 8, 11, 12], in general, perform initial phras-

ing and apply hand-crafted phrase-finding rules. In this section, the general processes performed

by previous rule-based systems are described with examples. Finite cascade rule-based systems

are explained in the following sub-section, focusing on the FASTUS system.

In preprocessing, a set of initial phrasing functions is applied to all of the sentences to be anal-

ysed. This process is driven by word lists and part-of-speech information. Initial phrasing pro-

duces a number of phrase structures, many of which have the initial null labelling (none), while

some have been assigned an initial label (e.g. number). This is done both by matching the input

against pre-stored lists of proper names, date forms, currency names, etc. and by matching agai-

nst lists of common nouns that act as reliable indicators or signalling words for classes of NE. An

example of a set of initial phrasing functions is:

� Organisation names

� Person names

� Location names: names of major cities in the world as well as province/state and country

names.

� Time expressions: phrases like ‘first quarter of’

� Signalling words

– Titles: e.g. ‘President’, ‘Mr.’

– Company Designator: e.g. ‘Co.’, ‘Ltd’, ‘PLC’

– Currency units: e.g. ‘dollars’, ‘pounds’

– Location: e.g. ‘Gulf’, ‘Mountain’
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– Organisation: e.g. ‘Agency’, ‘Ministry’ for governmental institution, ‘Airline’, ‘Associa-

tion’ for companies.

Once the preprocessing has taken place, proper phrase identification proceeds. This is driven

by a sequence of phrase-finding rules. Each rule in the sequence is applied in turn against all

of the phrases in all of the sentences under analysis. The action can either change the label of

the satisfying phrase, expand its boundaries, or create new phrases. After the � th rule has been

applied in this way against every phrase in all of the sentences, the ���
�
th rule is then applied

in the same way, until all the rules have been applied. Here are some examples of the named

organisation grammar rule:

(Organisation Name) � (Organisation Name) (Organisation signalling word)

e.g. HMV headquarters

(Organisation Name) � (Country Name) (Content word)* (Organisation signalling word)

e.g. U.S. embassy

(Organisation Name) � (Person Name) (Content word)* (Organisation signalling word)

e.g. Lee’s foundation

(Organisation Name) � (Location Name) (Content word)* (Organisation signalling word)

e.g. U.S. Defence Department

The rule (Organisation Name) � (Names) & (Names) means that if a proper name (Names) is

followed by ‘&’ and another proper name, then it is an organisation name. An example of this

is “Ammirati & Puris”, which matches this pattern and is therefore classified as an organisation.

Rules for monetary and time expressions have been collected by analysing actual expressions in

the training texts such as:

(Money expression) � (Country name)* (Number) (Money unit)

e.g. U.S. five dollars

(Money expression) � (Number) (Word)* (Country name) (Money unit)

e.g. five new Taiwan dollars, three thousand Korean Won

Rule-based systems, trained on a corpus, were developed for the MITRE system in MUC-6 [15]

and for the LTG system in MUC-7 [64]. In [15], the MITRE system for MUC-6 used Brill’s rule

inference approach [26], but the details of how this approach were applied to the NE recognition

task were not given. The LTG system for MUC-7 used probabilistic partial matching, in addition

to grammars and name list look-up [64, 65]. An unsupervised algorithm using parsing results

for NE recognition was described in [38], in which NE rules are generated using a parser and 7

simple seed rules.
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2.1.2.1 Finite-state cascade based system

The idea of using cascaded finite state machines was pursued for POS tagging and partial parsing

in [17, 42]. A finite state cascade consists of a sequence of strata, each stratum being defined by

a set of regular expression patterns for recognising phrases.

Consider that a stratum has the patterns A � ab*, B � ac*. Patterns are translated by standard

techniques into finite state automata. The union of all automata at a given stratum yields a

single automaton. This can be done by adding arcs that output A and B, leading to new final

states that have no outgoing arcs.

Adding � -transitions from the new final states back to the initial state, we can make an automa-

ton that can recognise patterns A and B repeatedly. Figure 2.2 shows such an automaton. Using

� -Closure, this model can be changed into a nondeterministic finite automaton [92].

q 1q

2q

3q

0

{A}ε

ε

ε

ε

a

b

c

{B}

Figure 2.2 Finite state automaton accepting A � ab*, B � ac* repeatedly

For example, running this automaton against the input abbac produces (as one alternative) the

state sequence and output shown in Figure 2.3. Multiple strata can be cascaded by using the

output of a stratum as the input of the next stratum. Figure 2.4 shows the results from the two

strata after adding a second stratum with pattern
�
����� .
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Figure 2.3 Results at stratum 1
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Figure 2.4 Results at stratum 2
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FASTUS (Finite State Automaton Text Understanding System) is a system for information extrac-

tion [19, 20]. In FASTUS, sentences are processed by a cascaded, nondeterministic finite-state

automaton. The output of each stratum becomes the input to the next stratum. Each stratum

produces some new linguistic structure, and discards some information that is irrelevant to the

information extraction task. Since the automaton is nondeterministic and may produce more

than one alternative, these alternatives should be compared and the best analysis selected for

processing at the subsequent higher level.

FASTUS consists of five levels; preprocessor, phrase parser, phrase combiner, domain pattern

recogniser and merger. The first to the third levels (the preprocessor, the phrase parser and the

phrase combiner) are relevant to the NE task. The two remaining levels (the domain pattern

recogniser and merger), however, produce higher level natural language processing structures,

and so are not mentioned in this section. The following describes the processing stage for NE

recognition in FASTUS.

1. Preprocessor:

Names and other fixed form expressions are recognised in this stage. Complex words are

recognised such as multi-words (e.g. New Taiwan Dollars) and some company names

(e.g. Bridge Sports Co.). The names of people and locations, dates, times, and other basic

entities are also recognised at this level.

2. Phrase parser:

In this stage, sentences are segmented into noun groups (the part of the noun phrase

consisting of determiner, prenominal modifiers and head noun), verb groups (auxiliaries,

intervening adverb, and main verb), and particles (single lexical items, including conjunc-

tions, prepositions and relative pronouns).

3. Phrase combiner:

In this stage, complex noun groups are recognised on the basis of syntactic information.

Certain prepositional phrases are attached to their noun groups, and conjunctions of noun

groups are combined. This includes the attachment of “of” and “for” prepositional phrases

to their head noun groups. Also, in this stage, noun groups are combined with appositives,

genitives, and prepositions to provide further information about the entity (e.g. John

Smith, President and CEO of Foobarco). Furthermore, adjacent location noun groups are

merged (e.g. Palo Alto, California).
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2.2 Speech recognition output enhancement

In this section, previous studies related to speech recognition output enhancement are examined.

As standard transcriptions of speech lack most capitalisation and punctuation, the previous stud-

ies are described for the area of automatic punctuation generation and automatic capitalisation

generation.

2.2.1 Automatic punctuation generation

Automatic punctuation from speech is a crucial step in making the transition from speech recog-

nition to speech understanding. Also, automatic punctuation can greatly improve the readability

of speech recognition output. The occurrences of each punctuation mark were counted in [22]

for the 42 million token Wall Street Journal corpus. This study reported that about 10.5
�

of

tokens are punctuation marks. More details are shown in Table 2.2.

Punctuation mark Relative occurrence

, 4.658
�

. 4.174
�

“ ” 1.398
�

( ) 0.211
�

? 0.039
�

! 0.005
�

Table 2.2 Statistics for punctuation marks in Wall Street Journal corpus [22]

2.2.1.1 Punctuation generation system using only lexical information

An automatic punctuation system, called Cyberpunc, which is based on only lexical informa-

tion, was developed in [22]. Their system only produced commas, under the assumption

that sentence boundaries are pre-determined. A post-processing step added commas to each

punctuation-free sentence by applying an extended language model which accounts for punctu-

ation. For a sentence which consists of � words, there are ���
�

possible positions of commas.

Among
�
� � �

possible hypotheses containing words and commas, the best hypothesis was gen-

erated using Viterbi decoding. They claimed that this idea can be applied to the re-scoring of

speech recognition lattices in general, but it was tested for a reference text (2317 reference sen-

tences of the Penn Treebank corpus [61]) after the stripping of all punctuation marks. About

66
�

of commas in the reference were correctly restored, and about 76
�

of total generated

commas in the hypothesis were correctly produced.
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2.2.1.2 Punctuation generation system using acoustic and lexical information for read

speech

A method of speech recognition with punctuation generation based on acoustic and lexical in-

formation was proposed in [29]. When punctuation generation is performed simultaneously

with speech recognition, it is important to assign acoustic pronunciations to each punctuation

mark. Punctuation marks were treated as words, and acoustic baseforms of silence, breath, and

other non-speech sounds were assigned to punctuation marks in the pronunciation dictionary.

A preliminary experiment was conducted for read speech. This preliminary experiment showed

that only 6.5
�

of punctuation marks are not related to pauses and 75.6
�

of pauses are relat-

ed to punctuation marks. Based on this result that pauses are closely related to punctuation in

read speech, a speech recognition and automatic punctuation experiment was performed for 330

word business letters. Each letter was read aloud by 3 speakers. This experiment was carried out

to determine how well pauses match with punctuation marks (not for punctuation recognition),

using an acoustic model trained on speech from 1,800 speakers and using a language model

trained on 250 million words.

2.2.1.3 Sentence boundary recogniser using lexical information and pause duration

Since many full stops and question marks are located at the end of a sentence, it is very impor-

tant in punctuation generation to recognise sentence boundaries correctly. A sentence boundary

recogniser using lexical information and pause duration was developed in [47]. In their work,

a sentence boundary class for a word was assigned according to whether a sentence break was

attached to the end of a word. Therefore, each word was assigned to either a “last-word” class

or a “not-last-word” class. A sentence boundary recognition test was then developed to find

the sequence of sentence boundary classes of words in speech recognition output by combin-

ing probabilities from a language model and from a pause duration model. In this work, the

language model estimates the joint probability of the current word and sentence boundary class

conditioned on the previous words and classes. The pause duration model can be combined with

the language model based on two assumptions: first, that the previous pause duration does not

affect the current word, the current sentence boundary class or the current pause duration and

secondly, that current pause duration is independent of previous words and sentence boundary

classes. A sentence boundary recognition experiment was conducted for 16 hours of broadcast

news data using acoustic and duration models trained on 300 hours of acoustic data and using

a language model trained on a 9 million words. The Word Error Rate (WER) was measured as

26.3
�

for the test data. This study found that a pause duration model when used alone performs

better than a language model, and that the result can be improved by combining these two in-

formation sources. About 62
�

of sentence boundaries in reference were restored correctly, and

about 80
�

of total generated sentence boundaries in the hypothesis were correctly produced.
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2.2.1.4 Combination methodology with a language model and a prosodic feature model

It is known that there is a strong correspondence between discourse structure and prosodic

information [80]. A comparison between syntactic and prosodic phrasing was presented in [43].

In his study, syntactic structures were generated by Abney’s chunk parser [16] and prosodic

structures were given by ToBI ([81]) label files. This work showed that at least 65
�

of syntactic

boundaries are coded in the prosodic boundaries for read speech.

A combination methodology of intonation and dialogue context to reduce WER in speech recog-

nition for spontaneous dialogue was described in [85]. In their research, a separate intonation

model for each Dialogue Act (DA or classification whether an utterance is a statement, question,

agreement and etc.) was applied to give a set of likelihoods for an utterance being one or anoth-

er type of DA. Then a separate language model for each DA was applied to find the most likely

DA sequence and the new speech recognition result.

In order to use prosodic information in discourse structure analysis including automatic punctu-

ation, great attention has to be paid to how to obtain prosodic features computationally, how to

build a prosodic feature model, and how to combine a prosodic feature model with models for

other information sources.

A combination methodology with a language model and a prosodic feature model was discussed

in [80]. In this work, the combination methodology was applied to the DA classification. For

the prosodic feature model construction, 58 computable prosodic features were used. All of

these features were related to duration, F0, pause, energy or speaking rate. A Classification

And Regression Tree (CART) [25] was used to construct a prosodic feature model. In order to

make the computation tractable, an assumption was introduced that the prosodic features were

independent of the word once conditioned on the DA (a similar assumption was introduced

in [85]). Experiments were performed for a 29,000 word length part of the Switchboard corpus.

Experiments showed that performance was improved over that of the language model alone

by integrating the prosodic model with the language model. The importance of each prosodic

feature was measured by “feature usage”, which is proportional to the number of times a feature

was queried. According to this measure, features used higher in the tree had greater usage

values than those lower in the tree. The measure “feature usage” was normalised to add up to

1.0 for each tree. In their study, duration related features were used in more than half of the

queries for DA classification.

A prosodic feature model based on CART was also applied to topic segmentation in [51]. In that

paper, the identification of intonational phrase boundaries using a set of acoustic features was

performed using CART.
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2.2.2 Automatic capitalisation generation

Another important aspect of speech recognition output enhancement is automatic capitalisa-

tion because capitalisation information also does not exist in speech input. The importance of

NE recognition in automatic capitalisation was mentioned in [48]. In that study of NE tagged

language models, it was stated that automatic capitalisation can possibly be achieved by pro-

gramming the speech recognition decoder to produce lowercase characters apart from the capi-

talisation of the detected NEs. However, this is not enough for automatic capitalisation because

capitalised words can normally be categorised into two groups: first words in sentences and

NE words. Furthermore, some NE words are not capitalised and some non NE words are capi-

talised. In addition, in some capitalised words, all characters are capitalised. Therefore, systems

of automatic capitalisation have to rely on NE recognition, automatic punctuation, and the cap-

italisation look-up table.

An approach to the disambiguation of capitalised words was presented in [63]. The capitalised

words which were located at positions where capitalisation was expected (e.g. the first word in

a sentence) may be proper names or just capitalised forms of common words. The main strategy

of this approach was to scan the whole of the document in order to find the unambiguous usages

of words.

Table 2.3 shows the statistics of 3 hours of test data from the NIST 1998 Hub-4 broadcast news

benchmark test. In this database, 15.26
�

of total words are capitalised. As the average number

of words in a sentence is 16.87, 5.23
�

of total words are first words in sentences. 80.45
�

of

NE words are capitalised. Among non NE words which are not first words in sentences, 2.32
�

of words are capitalised.

Type Number of occurrences

Words (any type) 31,595

Capitalised words 4,822

NE words 3,149

De-capitalised NE words 615

Capitalised non-NE words 606

(not first word in sentence)

Single letter initial words (NE) 543

Single letter initial words (non-NE) 78

Sentences 1,873

Table 2.3 Number of occurrences of different word capitalisations in the NIST 1998 Hub-4 broadcast

news test data
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2.2.2.1 Grammar and spelling checker in Microsoft Word

Many commercial implementations of automatic capitalisation are provided with word proces-

sors. In these implementations, the grammar and spelling checkers of word processors generate

suggestions about capitalisation. A typical example is one of the most popular word processors,

Microsoft Word. The details of its implementation was described in a U.S. patent [77]. In this

implementation, whether the current word is at the start of a sentence was determined by a

sentence capitalisation state machine. A word was defined as the text characters and any adja-

cent punctuation. The sentence capitalisation state machine used the characters of the current

word for the transition between its possible states. For example, if it passes a sentence ending

punctuation character, the capitalisation state machine changed its state to the end punctuation

state. By passing the characters of words to the capitalisation state machine, the auto correct

function could determine if a particular word is at the end of a sentence, and if so, the auto cor-

rect function could determine that the next word needs to begin with an upper case letter. The

capitalisation of words which are not the first words in sentences could be found by dictionary

look-up. When a word was entered in all lower case, the capitalisation was applied for the word

to have the greatest consistency in matching the capitalisation.

When input comes from speech, automatic capitalisation becomes more difficult because sen-

tence boundary information and capitalisation information are not available in natural speech.

For example, a broadcast news transcription system cannot rely on the speakers to say “capitalise

the current word” or “full stop” whenever they are necessary in the transcribed text. Reliable

results for automatic capitalisation can be obtained for speech input by using the results of NE

recognition in conjunction with automatic punctuation. As both NE recognition and automatic

punctuation are relatively new areas, it is currently difficult to find papers related to automatic

capitalisation for speech input.
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2.3 Summary

This chapter has described work in the field of NE recognition, automatic punctuation and auto-

matic capitalisation. NE recognition systems are generally categorised according to whether they

are stochastic or rule-based. The advantages of the rule-based NE recognition system over the

stochastic method include the fact that there is no need for less-descriptive models as in back-off

due to its conceptually reasonable rules. However, the rule-based system has disadvantages in

portability if its rules are manually constructed.

Automatic punctuation is a relatively new research area. Previous work reported very promising

results, but they are limited in the use of information sources, experimental assumptions and the

domain of test data. Other related work highlights the possibility of performance improvements

in automatic punctuation through the combination of prosodic features with other information

sources.

Many commercial implementations of automatic capitalisation are provided with word proces-

sors. These implementations are based on sentence boundary detection and dictionary look-up.

However, dictionary look-up is not enough for dis-ambiguation of words which can be used in

both the de-capitalised and the capitalised forms. In addition, sentence boundary information

does not exist if input comes from speech.

This survey suggests that reliable results of automatic capitalisation may be obtained for speech

input by using the results of NE recognition in conjunction with automatic punctuation.
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Chapter 3

Corpora and evaluation measures

This chapter begins with descriptions of the use of corpora and preprocessing used in language

model construction, Named Entity recognition, punctuation generation and capitalisation gen-

eration. It goes on to describe the scoring metrics and the scoring program used in this thesis.

3.1 Experimental data preparation

Language models, NE recognisers, punctuation generation systems and capitalisation generation

systems derive their parameters and patterns from a large text corpus and a large amount of

acoustic training data. Two different sets of data, the Broadcast News (BN) text corpus and the

100-hour Hub-4 BN data set, are available as training data for the experiments conducted in this

thesis. The BN text corpus (named BNtext92 97 in this thesis) comprises a 184 million word

BN text over the period of 1992-1997 inclusive1. Another set of training data, the 100-hour

BN acoustic training data set released for the 1998 Hub-4 evaluation (named DB98) consists of

acoustic data and its detailed transcription.

Broadcast News provides a good test-bed for speech recognition, because it requires systems to

handle a wide range of speakers, a large vocabulary, and various domains. Three hours of test

data from the NIST 1998 Hub-4 broadcast news benchmark tests are used as test data for the

evaluation of the proposed systems. This test data is named TDB98. TDB98 comprises 3 hours

of acoustic data and the transcription. Table 3.1 summarises the training and test data.

Name Description #Words Purpose Acoustic data

BNtext92 97 1992 97 BN texts 184M Training data Not available

DB98 100 hrs of Hub-4 data (1998) 774K Training data Available

TDB98 1998 benchmark test data 32K Test data Available

Table 3.1 Experimental data descriptions

1The 1992-1996 part is provided by the LDC and the 1997 part is provided by the Primary Source Media.
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The BN transcriptions are used to capture the sequence of spoken words. They may also include

annotations which associate speaker, signal and recording conditions. In DB98 and TDB98, the

sequence of words is enclosed by corresponding tags which identify the location of the speech

within the speech signal using start and end time tags. Also, NE words are enclosed by NE tags

in DB98 and TDB98. An example of the data is shown in Table 3.2.

� Turn startTime=“4052.108937” endTime=“4064.492000” spkrtype=“male” di-

alect= “native” speaker=“Craig Wintom” mode=“planned” fidelity=“high” �

More snow is falling this morning in northern � b enamex TYPE=“LOCATION” �

Ohio � e enamex � and other parts of the � b enamex TYPE=“LOCATION” � Great

Lakes � e enamex � region,

� time sec=“4057.162187” �

tens of thousands of homes remain without electricity.

� time sec=“4060.432187” �

From member station � b enamex TYPE=“ORGANIZATION” � W C P N

� e enamex � in � b enamex TYPE=“LOCATION” � Cleveland � e enamex � ,

� b enamex TYPE=“PERSON” � Joe Smith � e enamex � reports.

� /Turn �

Table 3.2 Example data file

As different data source uses different tags, headings, and punctuation mark definition, prepro-

cessing steps are necessary to ensure compatibility with other data. In addition, it is necessary

to keep compatibility with the vocabulary of the speech recogniser, because NE recognition,

punctuation generation and capitalisation generation will be carried out on speech recognition

output. The following steps are applied to training and test data:

� Headings: Headings are removed from transcriptions, because in general they are not

grammatically correct.

� Tags: Tags are discarded, but NE start tags and NE end tags are treated differently from

other tags to keep NE information.

� Punctuation: Punctuation marks are written as special words (e.g. ,COMMA) in some parts

of the data and they are attached to the previous word in the other part. As punctuation

marks are used by language models, punctuation marks are separated from the previous

word and are written as special words.

� Genitive: Genitive forms such as ’s and ’ are separated from their previous words by NE

tags when the previous words are transcribed as NE words. For example, “Mr. � b enamex

TYPE=”PERSON” � Clinton � e enamex � ’s past”. During an NE recognition, every genitive

word is separated and dealt with as a separate word. After NE recognition finishes, these
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genitive words are attached to their previous words and the NE class of the previous words

are maintained.

� Abbreviation: A period is attached to its previous word in some parts of the data, but

an underscore is attached instead (e.g. C N N) in other parts of the data. In order to

keep consistency with the vocabulary of the speech recogniser, underscores are replaced

by periods and abbreviated words are separated.

� De-hyphenation: Hyphenated words are separated to reduce the Out-Of-Vocabulary (OOV)

rate since many hyphenated pairs may not appear in the vocabulary of the speech recog-

niser while the constituent words do appear.

� Noises: Noise markers such as “
�
LAUGH”, “

�
BREATH” and “

�
LIPSMACK” are removed.

Training data are used for three different tasks: NE recognition, automatic punctuation gener-

ation and automatic capitalisation generation. As described in Section 1.3, these three tasks

require the development of an NE recogniser, a Language Model (LM) which includes punctua-

tion marks, a prosodic feature model, and a capitalisation generator.

Each set of training data has different characteristics and information. In addition, acoustic data

is not available for BNtext92 97 while it is available for DB98. Regarding the development of

an NE recogniser, only the transcription of DB98 was used as training data because BNtext92 97

does not contain NE tags. Both BNtext92 97 and DB98 can be used for the LM development. As

this LM is used within the speech recogniser, the transcriptions of BNtext92 97 and DB98 are

converted into single-case retaining punctuation marks to produce LM probabilities for punctu-

ation marks. However, only DB98 is used for the implementation of a prosodic feature model,

because acoustic data are not available for BNtext92 97.

Although both BNtext92 97 and DB98 are case-sensitive, the consistency of capitalisation is poor

in BNtext92 97. Sometimes, all characters of a sentence are capitalised in BNtext92 97, but it

is impossible to remove these words in the preprocessing steps because they are not contained

by tags. For this reason, only the transcription of DB98 is used as the training data for the

capitalisation process.

Developed system (or model) BNtext92 97 DB98

NE recognition Not used Used

LM (punctuation inclusive) Used Used

Prosodic feature model Not used Used

Capitalisation generation Not used Used

Table 3.3 Usage of training data for each system development
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Table 3.3 summarises the training data used for the system developments of NE recognition, LM,

prosodic feature model, and capitalisation generation. The statistics of the data for each devel-

opment, and the necessary preparations for them, will be presented in the following sections.

3.1.1 Data preparation for the development of NE recognition system

NE tags were annotated for DB98. This data is available from the LDC (LDC98E11 [3]). The

DB98 is used as training data for the development of an NE recognition system in this thesis. The

DB98 is provided in the Universal Transcription Format (UTF) format: documentation with more

information on the annotation is available in [13]. Each NE in the training data and the output

produced by NE recognition systems, should be surrounded by its appropriate tags. Table 3.4

lists the 8 possible NE classes used in this task and their starting and end tags.

NE class Starting tag End tag

ORGANIZATION � b enamex TYPE=“ORGANIZATION” � � e enamex �

PERSON � b enamex TYPE=“PERSON” � � e enamex �

LOCATION � b enamex TYPE=“LOCATION” � � e enamex �

DATE � b timex TYPE=“DATE” � � e timex �

TIME � b timex TYPE=“TIME” � � e timex �

MONEY � b numex TYPE=“MONEY” � � e numex �

PERCENT � b numex TYPE=“PERCENT” � � e numex �

non-NE Nothing Nothing

Table 3.4 Possible NE classes and their surrounding tags

In the NIST 1998 Hub-4 broadcast news benchmark test, MITRE and SAIC provided 3 hours of

test data. It contains 1,765 tagged entities. The ENAMEX tag is the dominant entity type and

represents 88
�

of all tagged entities in the test data whereas both the TIMEX and the NUMEX

entities represent only 6
�

of the entities in the test data [73]. Because the test data adopts

the same annotation as DB98, and because it is easy to compare performance to other systems

which participated in the NIST 1998 benchmark test, the 3 hour test data is used as test data for

NE recognition experiments in this thesis. Tables 3.5 and 3.6 show the statistics of the training

and test data for the development of the NE recognition system.
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Name Usage Number of words Vocabulary size

DB98 Training data 773,893 28,344

TDB98 Test data 31,595 5,429

Table 3.5 Statistics of data in the development of NE recognition system

Number of tagged entities Number of tagged words

NE class DB98 TDB98 DB98 TDB98

ORGANIZATION 9,033 415 21,215 953

PERSON 13,427 436 20,833 717

LOCATION 12,139 714 16,556 934

MONEY 1,162 79 3,951 275

PERCENT 643 25 1,666 89

DATE 2,766 80 5,151 137

TIME 275 16 858 44

Total 39,445 1,765 70,230 3,149

Table 3.6 Statistics of NE classes in the development of NE recognition system

3.1.2 Data preparation for the development of LM

An LM was developed to obtain the LM probabilities of hypothesis which includes punctuation

marks. In this thesis, the HTK BN transcription system is used in the generation of punctua-

tion marks. More details about the development of the HTK BN transcription system are given

in [89].

Punctuation marks are retained in both BNtext92 97 and DB98. A trigram and a 4-gram LM

were developed on these data to produce hypotheses which contain punctuation marks and

to expand the generated hypotheses. As the HTK BN transcription system produces single-

case speech recognition outputs, the transcriptions of BNtext92 97 and DB98 are converted

into single-case. Among the many kinds of punctuation marks, this thesis is restricted to the

examination of full stops, commas, and questions marks, because there are sufficient occurrences

of these punctuation marks in the training and test corpora.
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When automatic punctuation is simultaneously performed with speech recognition, it is im-

portant to assign acoustic pronunciations to each punctuation mark. The correlation between

punctuation and pauses was investigated in [29]. These experiments showed that pauses closely

correspond to punctuation marks. The correlation between pause lengths and sentence bound-

ary marks was studied for broadcast news data in [47]. In that study, it was observed that the

longer the pause duration, the greater the chance of a sentence boundary existing. Although

some instances of punctuation do not occur at pauses, it is convenient to assume that the acou-

stic pronunciation of punctuation is silence. Full stops, commas, and questions marks are in-

cluded in the 108K size vocabulary of the HTK BN transcription system and their pronunciation

is given as silence in the pronunciation dictionary. Table 3.7 shows the statistics of the training

and test data for the development of LM.

Number of occurrences

Name Words Commas Full stops Question marks

BNtext92 97 184M 11.7M 10.9M 1.3M

DB98 774K 30,063 42,609 2,470

TDB98 32K 1,491 1,653 101

Table 3.7 Statistics of data for the development of LM

3.1.3 Data preparation for the development of prosodic feature model

Many easily computable prosodic features were investigated for Dialog Act (DA) classification

in [80]. In their study, 58 computable prosodic features were used for the prosodic feature model

construction. All of these features were related to duration, F0, pause, energy or speaking rate. A

Classification And Regression Tree (CART) [25] was used to construct a prosodic feature model.

In this thesis, a set of 10 prosodic features is investigated for punctuation generation through a

consideration of the automatic punctuation task and the contribution of each prosodic feature

for DA classification. The end of each word is a possible candidate for punctuation, and so all

prosodic features are measured at the end of a word. The window length is set at 0.2 secs.

The left window is the window to the left of the word end, and the right window to the right.

Good F0 values are those greater than the minimum F0 (50Hz) and less than the maximum F0

(400Hz). Table 3.8 explains these features.
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Name Description

Pau Len Pause length at the end of a word

Dur fr Pau Duration from the previous pause

Avg F0 L Mean of good F0s in left window

Avg F0 R Mean of good F0s in right window

Avg F0 Ratio Avg F0 R/Avg F0 L

Cnt F0 L No. of good F0s in left window

Cnt F0 R No. of good F0s in right window

Eng L RMS energy in left window

Eng R RMS energy in right window

Eng Ratio Eng R/Eng L

Table 3.8 Description of the prosodic feature set used for the development of prosodic feature model

(Window length = 0.2 sec, 50Hz � good F0 � 400Hz)

As speech signals are available for DB98 and TDB98, a time-alignment process can be per-

formed between the raw speech signals and transcriptions. After obtaining the alignment results,

prosodic features are extracted at the end of each word.

3.1.4 Data preparation for the development of capitalisation generation system

Automatic capitalisation generation requires case-sensitive transcriptions as its training data.

Both BNtext92 97 and DB98 are case-sensitive, but consistency in capitalisation is not main-

tained for the whole of BNtext92 97. Sometimes, all characters of a sentence are capitalised in

BNtext92 97. However, it is impossible to remove these words in the preprocessing steps, since

these words are not contained by tags. For this reason, only DB98 is used as the training data in

this study for the development of the capitalisation generation system.

As DB98 and TDB98 were transcribed for the speech recognition task, there are many errors in

the transcription of capitalisation information. In TDB98, 97 words which are the first words

in sentences are not capitalised. In addition, 14 words after commas are capitalised. These

errors were corrected manually. Consistency of capitalisation were not kept between the same

words in similar contexts for 79 cases. These cases were also manually corrected. This manual

adjustment process is carried out throughout TDB98. Fragments and backchannels (e.g. uhhuh)

are adjusted, if adjustments were necessary. As the number of words in DB98 is more than

700,000, this manual adjustment is not performed for DB98.

Capitalisation types are categorised as to whether all of the characters in a word are capitalised

or de-capitalised, or whether only the first character of a word is capitalised. Details of these

categories are described in Table 3.9. Capitalised length-one words such as initials in B. B. C. are

categorised as All Cap. In DB98 and TDB98, there are 437 (0.05
�

of total words in DB98) and
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Type Description

No Cap Every character is de-capitalised

All Cap All characters are capitalised

Fst Cap Only first character is capitalised

Table 3.9 Possible capitalisation type

26 exceptional cases respectively which are not categorised as any of the categories in Table 3.9.

Most of these are surnames. For example, McWethy, MacLaine, O’Brien, LeBowe and JonBenet.

All of these exceptional cases were checked manually. From this investigation, it was concluded

that there is no exceptional case which cannot be treated as Fst Cap. All of these exceptional

cases were therefore classified as Fst Cap. Table 3.10 shows the number of occurrences for each

type of word based on the position of words in a sentence. Table 3.11 shows the statistics of

data for the development of the capitalisation generation system.

Word type � FW � non FW

NE class Capitalisation type DB98 TDB98 DB98 TDB98

NE No Cap 16 0 12,110 615

NE All Cap 536 20 10,535 577

NE Fst Cap 3,529 143 43,459 1,790

non NE No Cap 1,587 24 638,477 26,134

non NE All Cap 2,842 83 6,887 141

non NE Fst Cap 37,659 1,603 16,256 465

Table 3.10 Number of occurrences of different types of capitalisation for each type of words (FW: a first

word in a sentence, non FW: not a first word in a sentence)

Number of occurrences

Type DB98 TDB98

Words (any type) 773,893 31,595

Capitalised words 121,703 4,822

NE words 70,230 3,149

Single letter initial words (NE) 10,200 543

Single letter initial words (non-NE) 2,099 78

Sentences 46,169 1,873

Table 3.11 Statistics of data for the development of the capitalisation generation system
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3.2 Evaluation measures

Evaluation of a system involves scoring the automatically annotated hypothesis text against a

hand annotated reference text. Scoring of a text input is relatively simple because it compares

expressions in the reference to those in the hypothesis text and counts the number of expressions

which match in terms of type and boundary.

However, when the input comes from speech, because of recogniser deletion, insertion and sub-

stitution errors, a straightforward comparison is no longer possible [49]. Instead, the reference

and hypothesis texts must first be automatically aligned. This is a complex process and involves

attempting to determine which part of recogniser output corresponds to which part of the tran-

script.

Once the alignment is completed, correct/incorrect decisions for all the slots can be made. De-

fine the following symbols:

�
= number of correct slots

�
= number of substitution errors

�
= number of deletion errors

�
= number of insertion errors

�
= number of slots in reference

�
= number of slots in hypothesis

From the above definitions, it is clear that:

N = C + S + D

M = C + S + I

Two important metrics for assessing the performance of an information extraction system are

recall and precision. These terms are borrowed from the information retrieval community. Recall

(
�

) refers to how much of the information that should have been extracted was actually correctly

extracted. Precision (  ) refers to the reliability of the information extracted. These quantities

are defined as:

 � number of correct slots

number of slots in hypothesis

�
�

� (3.1)

and

� � number of correct slots

number of slots in reference

�
�

� (3.2)
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Although theoretically independent, in practice recall and precision tend to operate in trade-off

relationships. When you try to increase recall, you often lose precision. When you optimise

precision, you do so at the cost of recall.

The F-measure [60] is the uniformly weighted harmonic mean of precision and recall:

� �
� 

� � �  ��� �
�

� �
�
�

� (3.3)

Another evaluation metric called Slot Error Rate (SER) was defined in [60] as follows:

SER
� number of slot errors

number of slots in reference

�
�
�

�
�

�

� (3.4)

The difference between SER and � �
�

� �
is the weight given to each type of error. � �

�
� �

is

calculated as:

� �
�

� � � �
�

�
�
� �

�
�

�
�

�
� � �

�
� ��� �

� �
�

� ��� � (3.5)

In � �
�

� �
, deletion and insertion errors are de-weighted. It was reported in [60] that the SER

is about 50
�

higher than the � �
�

� �
for the best performing system in the MUC-6 test.

In NE recognition, a correct slot is one in which the NE class and both boundaries are correct. A

slot is half correct if the NE class is correct and the string in the slot overlaps with the reference

string. Alternatively, a slot is half correct if the type of the NE class (rather than the NE class)

and both boundaries are correct. The types of NE classes are defined as follows:

� Entity: PERSON, ORGANIZATION, LOCATION

� Time expressions: DATE, TIME

� Numerical expressions: MONEY, PERCENT

The same ideas of precision, recall, F-measure and SER can also be applied to punctuation and

capitalisation generation. In these cases, a slot is half correct if the position of the slot is correct,

but the type of the slot is generated as another type.
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3.2.1 Scoring program

The NE recognition systems are evaluated based on how their output compares with the manual-

ly annotated output. The Message Understanding Conference (MUC) community has worked for

several years with NE recognition for newswire text. However, newswire text assumes no speech

recognition errors in the hypothesis files. Therefore, the need to allow for speech recognition

errors arises. NIST worked with SAIC to develop scoring software for the task, which involved

the creation of a Recognition and Extraction Evaluation Pipeline (REEP) to combine the NIST

transcription filtering and SCLITE scoring software with the MUC scorer [2, 6].

Reference(UTF)

UTF_FILT

CSRFILT

RESULTS

CSRFIILT

UTF_FILT

Hypothesis(UTF)

SCLITE

TALDWRAP

MUC_SCORER

Figure 3.1 Procedures in the scoring pipeline [2]

When the scorer is run, it reads a reference file and a hypothesis file produced by the NE recog-

niser. The scorer aligns words in the reference file with words in the hypothesis file. It then

calculates scores based on how well the entities in the hypothesis file agree with those in the

reference file. In this thesis, version 0.7 of the NIST Hub-4 IE scoring pipeline package [5] is

used. Figure 3.1 shows the procedures in the scoring pipeline.

Although this scoring pipeline was developed for the NE recognition system evaluation only, this

scoring pipeline can be applied for the evaluation of a capitalisation generation system by small

manipulations of the reference and the hypothesis files.2 According to the definition of half

scoring in the evaluation of an NE recognition system, a half score is given when the position of

capitalisation is correct, but the type of capitalisation is recognised as the other type. The same

manipulation tactic can be applied for the evaluation of a punctuation generation system.

2Surround the words whose capitalisation types are All Cap by the “ORGANIZATION” NE class starting and end

tags and enclose the words whose types are Fst Cap by the “PERSON” NE class tags.
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3.3 Summary

In this chapter, the experimental data have been described and the preprocessing which is nec-

essary in order to use this data has been explained. The characteristics of the data have been

presented for each task: the development of an NE recognition system, an LM, a prosodic feature

model, and a capitalisation generation system. The F-measure, SER, precision, and recall have

been described as the evaluation metrics used in this thesis. The NIST Hub-4 IE scoring pipeline

package has been described, which is used as the evaluation program later in this thesis.
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Chapter 4

Rule-based Named Entity (NE) recogni-

tion

In this chapter, a rule-based (transformation-based) NE recognition system is proposed. This

system uses the Brill rule inference approach. The performance of the rule-based system and

IdentiFinder are compared. In the baseline case (no punctuation and no capitalisation), both

systems show almost equal performance.

They also have similar performance in the case of additional information such as punctuation,

capitalisation and name lists. The performance of both systems degrade linearly with the number

of speech recognition errors, and their rates of degradation are almost equal. These results

show that automatic rule inference is a viable alternative to the HMM-based approach to NE

recognition, but it retains the advantages of a rule-based approach.

In Section 4.1, Brill’s transformation-based rule inference approach is introduced. In Section 4.2,

a transformation-based rule-based system which generates rules automatically is presented.

Then, in Section 4.3, experiments and their results are described. Finally, this chapter is sum-

marised in Section 4.4.

4.1 Transformation-based rule inference approach

Unlike the stochastic method, one problem with the traditional rule-based method is that a

large amount of effort is required to write the rules [23]. In addition to being difficult to create

manually, the resulting processing systems are expensive to port to new languages or even to

new domains. It is very difficult to manually encode all of the information necessary to make a

robust system.

A system that automatically extracts linguistic generalisation from a corpus has two strong ad-

vantages. First, the total development time can be greatly reduced. Secondly, a system based

on the analysis of a corpus can avoid over-generalisation because it learns the statistical proper-

ties [26].
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Brill developed a rule based part-of-speech (POS) tagger which acquires rules from corpora [26,

27, 28]. In his work, the learning procedure begins by using an unannotated input text. At each

stage of learning, the learner finds the transformation rules which when applied to the corpus

result in the best improvement in tagging performance. The improvement can be calculated by

comparing the current tags after the rule is applied with the reference tags. This is an important

difference between a stochastic method and a transformation-based method. The stochastic

method attempts to maximise the probability of input1, while the transformation-based method

attempts to minimise the number of errors. After finding this rule, it is stored and applied in

order to change the current tags. This procedure continues until no more transformations can

be found. Figure 4.1 illustrates the learning process.

Initial tags

Reference

Rules

Rule generation

Updated tags

Figure 4.1 Transformation-based error driven learning

In order to define a specific application of the transformation-based method, the following must

be specified:

1. The initial annotator (preprocessing)

2. The rule generation engine which examines each transformation

3. The scoring function for comparing the current tags with the reference and choosing the

best transformation

Tagging accuracy was used as the scoring function in Brill’s research.

1Maximum Likelihood (ML) training is assumed.
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Rules are generated according to their rule templates at each iteration of the rule generation

process. In the implementation of the Brill POS tagger, 21 rule templates were used [28]. The

following rule templates are listed in [28]:

Change POS tag � � at the position � to tag ���� when:

� The preceding (following) word is tagged �

� The preceding (following) word is �

� The word two before (after) is �

� One of the two preceding (following) words is tagged �

� The current word is � and the preceding (following) word is � �

� The current word is � and the preceding (following) word is tagged �

An example of rule generated for POS tagging is:

“Change the tag of a word from VERB to NOUN if the previous word is a DETERMINER”.

Once an ordered list of transformation rules has been learned, new text is annotated by simply

applying each transformation in order to the new text.

Brill’s transformation-based POS tagger was compared to one of the most successful stochastic

POS taggers in [27]. The results of the stochastic POS tagger using the Penn Treebank Tagged

Wall Street Journal Corpus originated in [86]. In order to make reasonable comparisons, Brill’s

POS tagger was examined on the same corpus. In this comparison, the transformation-based

POS tagger achieved better performance, despite the fact that the contextual information was

captured in only 267 simple rules, whilst 10,000 contextual probabilities had been learned by

the stochastic POS tagger.

The idea of the rule-based NE recognition system, which will be described in the following sec-

tion, comes from the Brill POS tagger. Several systems use the Brill POS tagger simply as a

preprocessor for their NE recognition systems [45, 53]. In the implementation of an NE recogni-

tion system, the Brill tagger is actually used for building the NE system; that is, all NE recognition

rules are automatically generated using this idea.



Chapter 4: Rule-based Named Entity (NE) recognition Page 47

4.2 Transformation-based automatic NE rule generation

Figure 4.2 illustrates the procedures in the proposed transformation-based rule-based system

which automatically generates rules. The procedures are mainly divided into two parts; pre-

processing, and automatic rule generation. The preprocessing steps will be explained in Sec-

tion 4.2.1. Then the automatic rule generation steps, the general idea of which originated from

Brill’s POS tagger [26], will be described in Section 4.2.2.

Rule templates

Generated rules

Preprocessing

Calculate improvements from applicable rules

Training data with initial NE labels

Add word features

Look-up name lists

Generate applicable rules

Find the best rule

Update NE labels in training data

Rule-generation

Figure 4.2 Procedures for preprocessing and rule-generation

4.2.1 Preprocessing

In this system, an untagged training data file is passed through the initial NE recogniser. It is

not efficient to store words in memory and on disk as sequences of characters because of their

storage requirements and the irregularity in their word lengths. Every word in the training data

in this system is converted into an index in a corresponding word list in which all words are

listed in their capitalised form. Indices 0, 1 and 2 are reserved for special words: sentence start

(+START+), sentence end (+END+) and unknown word (+UNKNOWN+) respectively. When

genitive “words” such as ’ and ’S are combined with NE words, the recognition system separates

these genitive words from the NE words; For example, � ENAMEX TYPE=“ORGANIZATION” �

NASDAQ � /ENAMEX � ’S. Therefore, when the system makes its word list, every genitive word

is separated and dealt with as a separate word.

The syntactic structure of a sentence is in part indicated by punctuation marks, such as commas

and full-stops. It is assumed in rule generation, that a sequence of words is unstructured across

syntactic boundaries; but obviously this is not true [22, 29]. Therefore, if all punctuation marks

are provided with the transcriptions, then the system’s performance will improve. The system

developed in this thesis separates all punctuation marks from consecutive words, and treats the

punctuation marks as words. Figure 4.3 shows an example conversion of words to indices.
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Figure 4.3 An example of conversion from words to indices in the word list (W: Word; IW: Index of word

in word list)

As some NEs consist of more than one word, it is important in the implementation of an NE

recognition system to keep NE boundary information whether the word is combined with its

surrounding word. For example, although the NE classes of “Tony” and “Blair” are the same,

� ENAMEX TYPE=“PERSON” � Tony � /ENAMEX � � ENAMEX TYPE=“PERSON” � Blair � /ENAMEX �

and

� ENAMEX TYPE=“PERSON” � Tony Blair � /ENAMEX �

are different. In the implementation, storage is allocated for each word to keep the NE boundary

information. Each allocated storage is set to be 0 at the initialisation. Then, if the current word

is combined with the previous word into a single NE word, the value of the storage for the NE

boundary information is changed to 1.

The characteristics of the word itself, called the word features, sometimes give good clues for

NE recognition [23, 87]. For example, capitalisation of the first character of a word, when it

is not the first word of a sentence, shows a higher possibility of being a proper noun NE word.

Table 4.1 shows possible word features. First, deterministic computation is performed to obtain

word features. The first two word features (Fst Cap and All Cap) are determined by whether

the characters in these words are capitalised. The next three features (Not in Ent, Ent in L and

Ent in R) are used to observe the relationships of non-NE words to NE words. These features

can be obtained by consulting a table, which was built when the word list was made.
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The last feature, NUMERIC, comes from the need to distinguish numeric and temporal entities.

These features can be extracted by looking them up in a numeric dictionary, which is constructed

manually. The current system uses a 63 word numeric dictionary. Since the word features are

non-disjoint, one word can have more than one word feature.

Type Descriptions

Fst Cap Words with capitalised first character

except first words of sentences

All Cap Words with all capitalised characters

(such as NASDAQ) and having a word length

greater than 2 letters

Not in Ent Words which are never used inside NEs

Ent in L Words which are Not in Ent and

which have the possibility of having an

entity word on their left side

Ent In R Words which are Not in Ent and

which have the possibility of having an

entity word on their right side

NUMERIC Numeric words in the numeric dictionary

Table 4.1 Word features

A fundamental restriction of the corpus-based approach to name finding is the relatively small

number of names (of people, places, organisations etc.) observed in even a large training cor-

pus [56]. Even with the use of an unknown word model, identification of these entities depends

largely upon the presence of signalling words. An extension to this approach in this system is

the use of lists of location names, first names, well-known surnames, organisations etc. The ad-

vantage of this approach is that many names can be included very quickly: an enormous corpus

would be necessary in order to include the same number of names from normal text.

There is generally predictive initial evidence regarding the class of a desired entity. However, it

would not be desirable to decide an NE solely from its initial evidence. Consider one member of

this list - “Berlin”. Although a great number of occurrences in the test data will have the location

entity, we must not prevent “Berlin Orchestra” from being given the correct organisation entity.

Therefore it is necessary to somehow use these lists to add information during training also. This

approach is adopted in this thesis.

For lists such as first names and locations, no contextual information is available. However, in

the organisation list, names usually consist of multiple words which could be used as context.

In this case, the names routinely contain words such as “of” and “the”, which are entered into

the rules or into the language model as occurring in the organisation entity class. Because of
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the large number of entries in the list, this has the effect of distorting the rules and the language

model such that many occurrences of these words in the test data are mistakenly tagged when

they should not be.

In this system developed here, word features from name lists can be added as word features

at the preprocessing stage. Table 4.2 shows word features derived from name lists. Name lists

for persons, locations and organisations are used. When the rule-based system incorporates this

information, the system prefers the longer element, if more than one name-list’s elements are

overlapped. If the same word appears on more than one name list, then a precedence rule is

applied. The location name list has the highest priority, the person name list has the next, and

the organisation name list has the lowest.

Type Description

In P List Words in the persons’ name list

In L List Words in the locations’ name list

In O List Words in the organisations’ name list

Table 4.2 Word features derived from name lists

Figure 4.4 summarises the results of the preprocessing stage. � � denotes the word at the position

� . In the rule generation process, which will be described in Section 4.2.2, rules are generated by

comparing the NE classes and their boundaries in the current text with those in the reference. In

order to perform this comparison, the NE class of � � is kept as
���� in the reference. The definition

of NE classes was shown in Table 3.4. In addition,
� �� , which indicates whether � � is combined

with � ��� � into a single NE word (i.e. Labour Party), is also stored in the reference. If � � is

combined,
� �� =1 and if not,

� �� =0.

During the preprocessing stage, the initial tags are configured.
� � , which implies the word

feature of � � , is set by the characteristics of � � and by looking-up name lists. Details of word

characteristics were given in Table 4.1 and the used name lists are listed in Table 4.2.

The applicable rules are generated based on the values of � � , � � , � � , and
� � to reduce the differ-

ence between
� � and

� � in the current text and
���� and

� �� in reference. The initial value of
� � is

configured as non-NE, and that of
� � is set to 0. Details of the generation of applicable rules will

be explained in Section 4.2.2.
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Figure 4.4 Pictorial representation of the preprocessing stage in the transformation-based automatic NE

rule generation

4.2.2 Rule-generation and testing

After these preprocessing steps are completed, automatic rule-generation starts with the assign-

ment of the NE class to every word with a non-NE tag. Once the training data file has been

passed through the initial NE recogniser, its assigned NE classes and NE boundaries are com-

pared to the true NE classes and NE boundaries, and errors are then counted. For all words

whose NE classes and NE boundaries are incorrect, the rules to recognise these NE classes and

NE boundaries correctly are generated and stored, and then applied, and the resulting number

of improvements on the whole training data calculated. The rules are generated according to

their appropriate rule templates.

Table 4.3 shows the 53 rule templates used in this system. Rule templates consist of pairs of

characters and a subscript. � ,
�

,
�

denotes that templates are related to words, word features

and NE classes respectively.
�

indicates whether the word is combined with the previous word

into a single NE word (if combined,
�
=1 and if not,

�
=0). Subscripts show the relative distance

from the current word; that is 0 means the current word, -1 means the previous word and 1

means the next word. Rule templates have one more slot at the end. This indicates the number

of the NE class of the change after the rule is activated. The definition of NE classes was shown

in Table 3.4.
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Stage No. Rule+Range

0 ��� � � [0 0], ��� � � � [-1 0], ��� � � [0 1]

1 � � � � [0 1], � � � � � [-1 0], � � � � [0 1]
� � � � � [-1 0], � � � � [0 1], � � � � � [-1 0]
� � ��� [0 1],

� � � � � [-1 0], � � � � � [-1 0]
� � � � [0 1]

2 ����� � � � ��� [-2 0], ����� � � � [0 2], ����� � � � � [-1 1]
� � � � [0 1], � � � � � [-1 0], � � � � [0 1]
� � � � � [-1 0], � � � � � � [0 2], � � � � � � � [-1 1]
� � � � � � [0 2]

3 ��� � � � � [0 0], ��� � � � � � � [0 0]

4 � � � � � � � � � � [0 0], � � � � � � ��� [0 0]

5 � � � � [0 0]

6 � � � � � � � [-1 0], � � � � ��� [0 1]

7 � � � � ��� � � � � [0 0], � � � � � � [0 0], � � � � � [0 0]
� � � � [0 0]

8 � � � � � � � � [-1 0], � � � � � � [0 1], � � � � � � � [-1 0]
� � � � � � [0 1]

9 � � � � � � � � [0 0], � � � � � � [0 0], � � � � � � � [0 0]
� � � � � � [0 0]

10 ��� � � � � � � � [-1 1], ��� � � � � � � � [-1 1], ��� � � � � [0 0]
� � � � � � ��� [0 0], � � � � � � [0 0], � � � � � � ��� [0 0]

11 � � � � � [0 0], � � � � [0 0], � � � � � � ��� [0 0]
� � � � � � [0 0], � � � � � � � [0 0]

Table 4.3 Developed rule templates ( � :words;
�

:word features; � :NE classes). Subscripts define the

distance from the current word and bracketed numbers indicate the range of rule application [start-offset

from current word, end-offset from current word].

Each rule template has its own range of application where the conditions of the rule are met.

For example, consider a generated rule ‘if � � = DOLLARS and
� � � = NUMERIC then change NE

class to MONEY’. This is for the rule template ���
� � � with range [-1 0]. This means that if the

current word is ‘DOLLARS’ and the feature of the previous word is ‘NUMERIC’ then change the

NE classes of the previous and current words into ‘MONEY’. Then combine the previous word

and the current word into a single NE word such as � NUMEX TYPE=“MONEY” � five dollars

� /NUMEX � .

The improvement for each possible rule is updated each time a rule is generated. If all 53 rule

templates are used at the same time, the computational load for this update is too heavy. In

order to reduce this computational load, rule templates are grouped into 12 sets and the stages

of the rule generation process are split up based on the sets of rule templates. From all the
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Rule Template

If the current word is ‘DOLLARS’ and the feature of the

previous word is ‘NUMERIC’, then change the NE classes � � � � � [-1 0]

of the current and previous words to ‘MONEY’

If the current word is ‘NINETEEN’ and the feature of the

current word is ‘NUMERIC’, then change the NE class of � � � � [0 0]

the current word to ‘DATE’

If the current word is ‘PERCENT’ and the feature of the

previous word is ‘NUMERIC’, then change the NE class � � � � � [-1 0]

of the current and previous words to ‘PERCENT’

If the current word is ‘DOLLAR’ and the feature of the

previous word is ‘NUMERIC’, then change the NE classes � � � � � [-1 0]

of the current and previous words to ‘MONEY’

If the current word is ‘CLINTON’ and the first character of

the current word is capitalised, then change the NE class � � � � [0 0]

of the current word to ‘PERSON’

If the current word is ‘HOUSE’ and the first character of

the current word is capitalised, then change the NE class � � � � [0 0]

of the current word to ‘ORGANIZATION’

Table 4.4 The six rules and their rule templates which give greatest improvements at the start of training

possible rules at each stage, the rule which causes the greatest improvement is applied to the

current training data and the training data file is updated. If there are any changes in NE classes

or NE boundaries which affect any of the other rules, then the improvements from those other

rules are also updated. In this system, the improvement is defined as the number of words which

obtain their correct NE class or NE boundary after the rule is applied. These steps are repeated

until no further changes can be made to the rules so as to reduce the number of errors between

the current NE classes and NE boundaries for the training data and the true NE classes and NE

boundaries. Table 4.4 shows the 6 rules which give greatest improvements when the training

procedure starts.

In testing, the rules are applied to the input text one-by-one according to a given order. If the

conditions for a rule are met, then the rule is triggered and the NE classes of the words are

changed if necessary.

Particular importance must be given to the effect of words encountered in the test data which

have not been seen in the training data. One way of improving the situation is to build separate

rules for unknown words. The training data are divided into two groups. If words in one group

are not seen in the other group, these words are regarded as unknown words. The same rule

generation procedures are then applied.
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Figure 4.5 summarises the procedures of transformation-based automatic NE rule generation.

The complete procedure starts with the initial annotation of the text. Details of this initial

annotation were given in Section 4.2.1. For all words whose NE classes and NE boundaries are

incorrect, rules to recognise these NE classes and NE boundaries correctly are generated. The

rules are generated according to 53 rule templates, which were listed in Table 4.3.

Among all the possible rules, the rule which reduces the errors in NE classes and NE boundaries

in the current text by the greatest number is applied to the current text and which is then

updated. Details of the generation of rules were given in Section 4.2.2. These steps are repeated

until there is no rule which can reduce the differences. Rule are generated one-by-one. Examples

of generated rules were illustrated in Table 4.4.

53 rule templates in Table 4.3

i-1w

Updated text

Update applicable rules and 

their improvements when 
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Rule generation
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Figure 4.5 Pictorial representation of transformation-based automatic NE rule generation
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4.3 Experiments

In order to measure the performance of the rule-based system, it was compared to that of Iden-

tiFinder, BBN’s HMM-based system which gave the best performance among the five systems

that participated in the 1998 Hub-4 broadcast news benchmark tests [1, 73]. Compared to the

results in the benchmark tests, the results of IdentiFinder shown in the following sections differ

slightly, because of differences in the amount of the training data [66] and preprocessing steps

for the texts. Also, there may be a difference in the version of IdentiFinder used.

In the following sections, the results of both systems are examined first in the baseline condition

(with no punctuation, no capitalisation, and no name list). Then the improvement of both

systems from the baseline condition is investigated for the additional textual cues of punctuation

and capitalisation. In addition, the effects of name lists are discussed for both systems. Finally,

degradation of performance is tested for speech recognition errors and the degree of degradation

is compared for both systems.

4.3.1 Experimental results

The 100-hour 1998 Hub-4 BN data set (DB98) is used for the development of the rule-based

system and IdentiFinder. These systems are evaluated in terms of F-measure and SER using

the NIST Hub-4 IE scoring pipeline package for the 3 hours of data from the NIST 1998 Hub-

4 BN benchmark tests (TDB98). Further details about the data, the scoring program, and the

evaluation metrics were given in Chapter 3.

The performance of the rule-based system is compared with that of IdentiFinder in the baseline

condition (with no punctuation, no capitalisation, and no name list). For this comparison, the

training and the test data are converted into single-case and un-punctuated texts. Then, both

systems are trained and tested without the use of any name lists. Table 4.5 shows the perfor-

mance of each system for the baseline case. Compared to IdentiFinder, the rule-based system

showed a small improvement of 0.0012 in the F-measure, but showed a small degradation of

0.35
�

in SER.

F-measure SER(
�

)

Condition RBS IDF RBS IDF

Baseline 0.8858 0.8846 20.03 19.68

Table 4.5 Performance of systems for the baseline case using reference text (RBS: Rule-based system;

IDF: IdentiFinder; SER: Slot Error Rate; Baseline: no punctuation, no capitalisation, and no name list)
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4.3.2 Effects of punctuation and capitalisation

Next, the effect of punctuation was measured. Both systems use punctuation marks as separate

“words”. In order to measure how much improvement in performance is caused by the addi-

tion of this punctuation information, both systems were trained on the fully punctuated text.

Punctuation has a positive effect in NE recognition and increased the performance in terms of

F-measure for the rule-based system by 0.0043 and for the IdentiFinder system by 0.0074. In

terms of SER, these positive effects are measured as 0.93
�

and 1.29
�

for the rule-based system

and IdentiFinder respectively.

The effect of capitalisation is also measured. Capitalisation information is also used as fea-

tures in both system. In order to measure how much the inclusion of capitalisation information

contributes to performance, both systems are trained on the mixed case text without punctua-

tion marks. Capitalisation information is shown to be helpful for NE recognition. In terms of

F-measure, it contributes 0.0146 for the rule-based system and 0.0154 for the IdentiFinder sys-

tem. In terms of SER, it contributes 3.48
�

and 3.08
�

for the rule-based system and IdentiFinder

respectively.

Table 4.6 shows these results. The conditions of ‘Baseline+Punctuation’ are punctuation, no

capitalisation and no name lists. The conditions of ‘Baseline+Capitalisation’ are capitalisation,

no name lists and no punctuation. The addition of capitalisation information improves the

performance of a system more than the addition of punctuation information.

F-measure SER(
�

)

Condition RBS IDF RBS IDF

Baseline+Capitalisation 0.9004 0.9000 16.55 16.60

Baseline+Punctuation 0.8901 0.8920 19.10 18.39

Baseline 0.8858 0.8846 20.03 19.68

Table 4.6 Effects of punctuation and capitalisation. (SER: Slot Error Rate; RBS: Rule-based system;

IDF: IdentiFinder; Baseline+Capitalisation: capitalisation, no name list and no punctuation; Base-

line+Punctuation: punctuation, no name list and no capitalisation)

4.3.3 Effects of name lists

In order to investigate the effects of name lists, the rule-based NE recognition system and

IdentiFinder are trained on SNOR data with name lists. Like the rule-based system, IdentiFind-

er can incorporate the NE information from name lists as word features, not as hard-decision

rules [23]. When the rule-based system incorporates this information, the system prefers the

longer element, if more than one name list’s elements are overlapped. If the same word appears

on more than one name list, then a precedence rule is applied. The location name list has the

highest priority, the person name list has the next, and the organisation name list has the lowest.
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The effects of name lists are shown in Table 4.7. The conditions of ‘Baseline+NL’ are with

name lists, but without punctuation or capitalisation. In terms of F-measure, the use of name

lists improves the performance of the rule-based system by 0.0104 and that of IdentiFinder

by 0.0108. In terms of SER, it contributes 2.27
�

and 1.98
�

for the rule-based system and

IdentiFinder respectively.

F-measure SER(
�

)

Condition RBS IDF RBS IDF

Baseline+NL 0.8962 0.8952 17.76 17.70

Baseline 0.8858 0.8846 20.03 19.68

Table 4.7 Effects of name lists. Experiments were done at the baseline condition, but with name lists.

(NL: Name Lists; RBS: Rule-based system; IDF: IdentiFinder; SER: Slot Error Rate)

Table 4.8 summarises the effects of capitalisation, punctuation and name lists on performance.

The mixed case data with punctuation marks are processed to make four different versions:

one with mixed case words and punctuation marks maintained, one with mixed case words but

punctuation marks removed, one with single case words but punctuation marks maintained,

and one with single case words and punctuation marks removed. For each version, both the

rule-based system and IdentiFinder are trained with name lists and without name lists. The 8

different conditions reflecting these possible combinations of training and test conditions are

presented in Table 4.8.

F-measure SER(
�

)

Condition RBS IDF RBS IDF

Baseline+Cap+NL+Punc 0.9134 0.9145 13.98 14.15

Baseline+Cap+NL 0.9105 0.9121 14.72 14.30

Baseline+Cap+Punc 0.9086 0.9087 15.04 15.11

Baseline+Cap 0.9004 0.9000 16.55 16.60

Baseline+NL+Punc 0.9007 0.9010 16.68 16.69

Baseline+NL 0.8962 0.8952 17.76 17.70

Baseline+Punc 0.8901 0.8920 19.10 18.39

Baseline 0.8858 0.8846 20.03 19.68

Table 4.8 Comparison of results (Cap: Capitalisation; NL: Name Lists; Punc: Punctuation; RBS: Rule-

based system; IDF: IdentiFinder; SER: Slot Error Rate)
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Using the additional textual cues (punctuation and capitalisation) and name lists together, the

results are improved substantially: in terms of F-measure by 0.0276 for the rule-based system

and by 0.0299 for IdentiFinder. The amounts of improvement of NE recognition system from

the effects of punctuation, capitalisation and name lists are measured as 0.0043, 0.0146 and

0.0104 in F-measure for the rule-based system respectively and as 0.0074, 0.0154 and 0.0106 in

F-measure for IdentiFinder respectively. The improvements in both systems from adding these

three additional sets of information are slightly less than the sum of individual improvements.

This suggests that there are some NE words which can be corrected by additional textual cues as

well as name lists. Surprisingly, for the case of “Baseline + Cap + Punc”, the amount of actual

improvement in both systems from the baseline condition is greater than the sum of individual

improvements by capitalisation and punctuation. It is believed that there are some NE words

where both mixed case and punctuation are necessary to make both systems answer correctly.

The same conclusion can be drawn when the results are analysed in terms of SER.

In NE recognition, the SER is proportional to the (1.0 - F-measure). The SER is about 60
�

to

70
�

higher than the (1.0 - F-measure) in general. In Table 4.8, the rule-based system showed sli-

ghtly better results in F-measure, but slightly poorer results in SER for the cases of Baseline and

“Baseline+NL”. For the cases of “Baseline+Cap+NL+Punc”, “Baseline+Cap+Punc” and “Base-

line+NL+Punc”, opposite results can be observed. As explained in Section 3.2, the difference

between SER and (1.0 - F-measure) is the weight to the number of each type of error. In (1.0 -

F-measure), deletion and insertion errors are de-weighted.

From the results in Table 4.8, it is observed that the performances of both systems are very

similar and that the amount of performance improvements from the baseline based on different

conditions are almost the same. From this observation, it is concluded that both systems have

almost the same ability for NE recognition. An example of NE recognition output produced for

the case of “Baseline+NL+Punc” is shown in Figure 2 in the Appendix.

4.3.4 Effects of speech recognition errors

The trained patterns for NE recognition are designed to account for the variety of syntactic and

semantic structures. Thus, patterns with several required elements are quite sensitive to errors

in the input text: if any of the required elements are missing, or if an extra token intervenes

between the elements, then the pattern will not match the input.

In order to examine the effects of speech recognition errors, experiments are conducted using

the output from 11 different speech recognition systems from the 1998 Hub-4 evaluation. These

outputs are available from [1]. Experiments are performed with no punctuation and no capital-

isation, but still using name lists. The rule-based system and IdentiFinder are trained using the

human transcribed training data.
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Speech recogniser output is provided in “ctm” format [4]. Because sentence boundaries are not

specified in ctm files, an alignment procedure between the reference files and speech recogniser

output ctm files is needed to insert sentence boundaries. This procedure is complicated because

1) in cases where there is a speech recognition error just in front of or just next to a sentence

boundary, there is uncertainty in the exact location of the sentence boundary;

2) fragments, overlapped and unclear parts in the reference are not shown in the ctm file;

3) large mismatches between a reference utf file and a ctm file are found at the locations where

many speech recogniser errors occurred.

An alignment program based on the dynamic programming method was implemented to cope

with these problems.

The performance of the rule-based system and IdentiFinder were evaluated on the output of

the speech recognition systems for the 1998 Hub-4 evaluation. The results are presented in

Table 4.10 and those in F-measure are plotted in Figure 4.6.

Although the points in Figure 4.6 are sparse, it appears that the NE recogniser performance

degrades linearly with increasing Word Error Rate (WER). The line in Figure 4.6 is the line-of-

best-fit for the results of the rule-based system, estimated by the least squares method [41, 62].

This line fits the data very well. For the human generated transcription, this line very slightly

underestimates the result. It appears that both systems lose about 0.0062 points in F-measure

per 1
�

of additional errors. Table 4.9 shows the decrease in F-measure for each percentage

increase in WER.

System F-measure loss

RBS 0.00627

IDF 0.00622

Table 4.9 Decrease in F-measure for each percentage increase in WER, estimated by the least squares

method (RBS: Rule-based system; IDF: IdentiFinder)

The same experiment is conducted for the SER values. The SER increases linearly with increasing

WER. Using the least squares method, the SER of the rule-based system is increased by 1.050
�

per 1
�

of additional WER, and the SER of the IdentiFinder by 1.043
�

. The two systems showed

almost the same ability of labelling NE words correctly in the presence of speech recognition

errors.
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F-measure SER(
�

)

System WER(
�

) RBS IDF RBS IDF

human transcription 0.0 0.8962 0.8952 17.76 17.70

ibm1 13.5 0.8051 0.8018 31.48 31.71

ibm2 13.6 0.8056 0.8003 31.28 32.27

limsi1 13.6 0.8146 0.8088 29.43 30.59

cu-htk1 13.8 0.8169 0.8099 30.46 31.05

ibm3 14.1 0.8012 0.7935 33.34 35.50

dragon1 14.5 0.8053 0.8059 31.33 32.03

bbn1 14.7 0.8096 0.7999 31.30 33.33

philips rwth1 17.6 0.7888 0.7878 34.92 34.69

sprach1 20.8 0.7618 0.7611 41.23 40.30

sri1 21.1 0.7700 0.7649 38.66 39.43

Table 4.10 Effects of speech recogniser errors (WER: Word Error Rate; SER: Slot Error Rate; RBS: Rule-

based system; IDF: IdentiFinder)
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Figure 4.6 Effects of speech recogniser output errors. The line indicates the line-of-best-fit for the rule-

based system’s results
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4.4 Summary

In this chapter, a rule-based system, which generates rules automatically, was devised. Then its

performance was compared with BBN’s commercial stochastic NE recogniser called IdentiFinder.

For the baseline case, both systems show almost equal performance, and are also similar when

additional information such as punctuation, capitalisation and name lists is given. When input

texts are corrupted by speech recognition errors, the performance of both systems are degraded

by almost the same amount. Although the rule-based approach is different from the stochastic

method, which is recognised as one of the most successful methods, the rule-based system shows

the same level of performance.



Chapter 5: Automatic punctuation generation Page 62

Chapter 5

Automatic punctuation generation

In this chapter, a combined system for punctuation generation and speech recognition is de-

scribed. This system incorporates prosodic information with acoustic and language model infor-

mation. Experiments are conducted for both the reference transcriptions and speech recogniser

outputs. For the reference transcription case, prosodic information is shown to be more useful

than language model information. When these information sources are combined, an F-measure

of up to 0.7830 for punctuation generation can be obtained.

A few straightforward modifications of a conventional speech recogniser allow the system to

produce punctuation and speech recognition hypotheses simultaneously. The multiple hypothe-

ses are produced by the automatic speech recogniser and are re-scored by prosodic information.

When prosodic information is incorporated, the F-measure can be improved by 19
�

relative. At

the same time, small reductions in word error rate are obtained.

In Section 5.1, a methodology for automatic punctuation generation is presented. The exper-

iments and results are then discussed in Section 5.2. The errors are analysed in Section 5.3.

Finally, this chapter is concluded in Section 5.4.

5.1 Punctuation generation

In this section, a methodology for automatic punctuation generation is described for both the

reference transcriptions and with speech recognition. When automatic punctuation generation

is performed with the reference texts, the sequences of words are already given. Therefore,

experiments aim at generating punctuation marks between words. As sentence boundary marks

( � s � and � /s � ) provide a lot of information for locating punctuation near to them, it is unreal-

istic to include this information at the input for punctuation generation. Therefore, the sentence

boundary marks are removed from the training and test data.

When automatic punctuation generation is performed simultaneously with speech recognition,

the approximate sentence boundary marks are generated by recogniser segmentation. Sentence

boundary marks are therefore not removed in this case, because the recogniser is part of the

automatic punctuation generation system.
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5.1.1 Automatic punctuation generation for reference transcriptions

Let
�

be the punctuation mark sequence,
�

be the word sequence and
�

be the corresponding

prosodic feature sequence. The automatic punctuation system aims to find the maximum a

posteriori
�

,
�������

, given
�

and
�

.

� ����� � 	��
	�� �
	�� 
� � � � � � �
(5.1)

Now


� � � � � � � � 
� � � � � � �
�� � � � � (5.2)

�

� � � � � � � �� � � ����� � � ��� �� ����� ���


� � � � � (5.3)

�

�� � � � �
�
�

�� � � ��� �� � � ����� ���
�� � �

�
�

�� ��� (5.4)

� 
� � � � � � � 
� � � � �
�� � � � � (5.5)

Since
�

is independent of the evidence �� � � � �
,

�� � � � � � ��� �� � � � � � � 
� � � � �
(5.6)

Assuming that
�

depends only on
�

, and �� � � is uniformly distributed,


� � � � � � � � 
� � � � � � �� � � � � 
� � �

� � � � 
� � � � �


� � � (5.7)

Let  � be the � th punctuation mark and � � be the � th prosodic feature. Apply the 1st order Markov

assumption i.e.

� �  � � � � ��������� � � � � � �  � � � � � (5.8)

and also let  � be conditionally independent i.e.

� �  � ���������  � � � � �
�
	
��
 � � �  �

� � �
(5.9)


� � � � � becomes

�� � � � � �
�
	
��
 � � �  �

� � � � (5.10)
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The probabilities in Equation 5.10 can be obtained, for instance, from the terminal nodes of

classification trees (This process will be described in Section 5.2.1). 
� � � � �
in Equation 5.6

can be obtained from a statistical language model. 
� � � can be obtained from training data

counts.

The systems presented in this thesis generate only full stops, commas, and question marks. For

the length � input �
����������� � � , which does not have punctuation marks, the end of each word

is a possible candidate for punctuation. Considering the three types of punctuation marks and

No-Punctuation (NP), there are �
�

possible hypotheses for the input �
����������� � � . The search for

the best hypothesis can be achieved with the Viterbi search algorithm. Using this algorithm, the

required time for the search for the best hypothesis is reduced to linear to the length of input

� . Figure 5.1 shows a sample Viterbi search process for the generation of punctuation for an

example reference transcription. The bold line in Figure 5.1 depicts the best hypothesis. For this

hypothesis, commas are generated at the end of the words “pensioners” and “savers”. Details of

the Viterbi search algorithm are given in [76].

w?

tax breaks targeted at pensioners savers families and

, ,

w

w,

w.

Figure 5.1 Viterbi search process for the generation of punctuation for an example reference transcrip-

tion. The bold line depicts the best hypothesis. Punctuation marks at the bottom are generated according

to this best hypothesis.

Figure 5.2 illustrates the overall procedure of punctuation generation for the reference tran-

scription. The raw speech signal is time-aligned with the corresponding reference transcription.

During this alignment process, the start time and the end time of each word are produced.

Prosodic features are generated at the end of each word, and the probabilities 
� � � � � are ob-

tained from the prosodic feature model. 
� � � � �
, the probability of the sequence of words

and the possible punctuation marks are calculated from a statistical language model. The best

hypothesis with punctuation marks is generated using the Viterbi search algorithm.
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Speech signal
without <s> and </s>

Test data (text)

Language
model

Training data
(text)

without <s> and </s>

Alignment

Viterbi decoding

Output
with punctuation

Prosodic feature model

Figure 5.2 Overall procedures of punctuation generation for reference transcriptions

5.1.2 Automatic punctuation generation combined with speech recognition

The correlation between punctuation and pauses for read speech was investigated in [29]. These

experiments showed that pauses closely correspond to punctuation marks. The correlation be-

tween pause lengths and sentence boundary marks was studied for broadcast news data in [47].

In their study, it was observed that the longer the pause duration, the greater the chance of a

sentence boundary existing. Although some instances of punctuation do not occur at pauses, it

is convenient to assume that the acoustic pronunciation of punctuation is silence. In this thesis,

the pronunciation of punctuation marks is registered as silence in the pronunciation dictionary.

The effectiveness of this assumption will be examined in Section 5.3.1.

A prosodic feature model to predict punctuation can be built by a classification tree. Proba-

bilities from the prosodic feature model can then be incorporated by the re-scoring of multiple

hypotheses each of which includes putative punctuation marks. The probability combination

process can proceed as shown in Section 5.1.1.
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Figure 5.3 illustrates the overall procedure in the generation of punctuation, when combined

with speech recognition. Using language models and acoustic models, N-best hypotheses of

speech recognition are produced from the raw speech signal. These N-best hypotheses contain

punctuation marks. As these hypotheses contain the start time and the end time of every word

contained in them, prosodic features are generated at the end of each word. Then the probability

of prosodic features are measured from the prosodic feature model. The N-best hypotheses are

re-scored using this probability of prosodic features, and the best hypothesis which includes

punctuation marks is generated.

(text)
Training data

Language
model

Speech signal

Acoustic
model

hypotheses
N-best

Output
with punctuation

with <s> and </s>

Speech

rescoring
N-best

Prosodic feature model

recognition

Figure 5.3 Overall procedures of punctuation generation combined with speech recognition
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5.2 Experiments

As mentioned in Chapter 3, among many kinds of punctuation marks, this study is restricted

to the examination of full stops, commas, and questions marks, because there are sufficient

occurrences of these punctuation marks in the training data to be able to generate models and

in the test data to measure the results accurately.

First, 4-gram LMs are produced by interpolating LMs trained on BNtext92 97 and DB98, using

a perplexity minimisation method. The test data, TDB98, is provided as two separate parts.

When automatic punctuation generation is performed for one part of the test data, the other

part of the test data is used as the development set to estimate the LM mixture ratios. The LM

mixture ratios are estimated using the ‘interpolate’ command in the CMU-Cam Toolkit. Details

of the CMU-Cam Toolkit are given in [35]. Table 5.1 shows LM mixture ratios for each set of

development data. When the whole of the test data was used for development data, the mixture

ratios were estimated to be 0.3219 and 0.6781 for DB98 and BNtext92 97 respectively.

LM mixture ratio

Dev. Data DB98 BNtext92 97

TDB98 1 0.3072 0.6928

TDB98 2 0.3460 0.6540

Table 5.1 LM mixture ratios determined by perplexity minimisation for each set of development data

5.2.1 Classification tree setup

Many easily computable prosodic features were investigated for Dialog Act (DA) classification

in [80], for information extraction in [50], and for automatic topic segmentation in [82].

The prosodic features that were found to be most useful for these areas were applied in this

thesis. By considering the automatic punctuation generation task and the contribution of each

prosodic feature for DA classification, a set of 10 prosodic features were investigated for punctu-

ation generation. Table 5.2 lists these 10 features. The first feature (Pau Len) is a pause feature.

The next feature (Dur fr Pau) is related to duration. Five other features (Avg F0 L, Avg F0 R,

Avg F0 Ratio, Cnt F0 L, and Cnt F0 R) are F0 related features, and the other three features

(Eng L, Eng R, and Eng Ratio) are energy features.

The end of each word is a possible candidate for punctuation, and so all prosodic features are

measured at the end of a word. The window length is set at 0.2 seconds. The left window is the

window to the left of the word end, and the right window, that to the right. “Good” F0 values

are those greater than the minimum F0 (50Hz) and less than the maximum F0 (400Hz).
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Name Description

Pau Len Pause length at the end of a word

Dur fr Pau Duration from the previous pause

Avg F0 L Mean of good F0s in left window

Avg F0 R Mean of good F0s in right window

Avg F0 Ratio Avg F0 R/Avg F0 L

Cnt F0 L No. of good F0s in left window

Cnt F0 R No. of good F0s in right window

Eng L RMS energy in left window

Eng R RMS energy in right window

Eng Ratio Eng R/Eng L

Table 5.2 Description of the prosodic feature set (Window length = 0.2 sec, 50Hz � good F0 � 400Hz)

A prosodic feature model is constructed using the Classification And Regression Tree (CART) [25]

method. Prosodic features for the classification tree generation are measured from DB98 because

it is the only database in the training set with acoustic data.

The CART of the prosodic feature model is constructed based on binary recursive splitting. The

process is binary since parent nodes are split into two child nodes. In addition, this process is

recursive since it can be repeated by treating each child node as a parent node. In order to define

a specific application of CART, the following must be specified:

1. Generation of candidate queries and splitting criteria

2. Decision whether the recursive process is repeated or not

3. Assignment of a class to each terminal node

To split a node into two child nodes, candidate queries such as “Is pause length at the end

of a word less than 0.0150 seconds?” are generated and the best candidate query is selected

according to a splitting criteria. In this thesis, the entropy reduction criteria is used for the

selection of the best candidate query. In the generation of candidate queries, the combination of

features is not allowed in order to reduce the search space, and this makes the interpretation of

queries easier.

Once the best splitting rule is found, the parent node is split and then the same procedure

repeated for each child node. This process continues recursively until no further splitting is

possible. The split is impossible when only one case remains in a particular node or when all the

cases in that node are exactly the same.
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Once a terminal node is generated, it must be assigned a label. One simple rule is used: the class

with the greatest number of occurrences is given as the assignment of the class at a terminal

node.

CART continues splitting until it classifies its training data with 100
�

accuracy. This CART fits

the training data very well, but it does not guarantee the best performance for the test data

because the CART is over-grown for the training data. The performance of a CART can be

improved by pruning using the cross validation method.

In this thesis, the training data is divided into 10 roughly equal size parts. CART takes the first

9 parts of the data, constructs the largest possible tree, and uses the remaining 1/10 of the data

to obtain the pruning variable. This process is called � -cut. The same process is then repeated

on another 9/10 of the data while using a different 1/10 part for the pruning. The process

continues until each part of the data has been used for the decision of the pruning variable.

After measuring 10 different pruning variables, a CART is generated for the whole of the training

data. This CART is then pruned by the geometric mean of the 10 different pruning variables.

Details of the CART generation method are given in [25].

Figure 5.4 depicts up to level-6 of the decision tree generated for the classification of punctuation

marks as No-Punctuation (NP), comma (,), full stop (.) or question mark (?). The generated

tree consists of 6161 nodes (3080 non-terminal nodes and 3081 terminal nodes). An internal

node is depicted as an ellipse, and a terminal node is depicted as a rectangle. Each internal node

explains its best splitting query which reduces the entropy most. If the condition of the query is

met by input prosodic features, this input is moved to the left child node. If the condition is not

met, the input is switched to the right child node.

The probability of the prosodic feature model for the input prosodic features is measured at

a terminal node where the input features stop splitting. By pruning, there are some prosodic

features allocated at this terminal node for each punctuation type. Based on the proportion of

the occurrences of prosodic features for punctuation type to the total number of occurrences,

the probability of prosodic feature model is calculated.

The overall contribution of different features can be measured by ‘feature usage’, which is the

proportion of the number of times a feature is queried by the test data and can be measured by

‘feature appearance’, which is the number of times a feature is used as a classifying feature in

non-terminal nodes. Table 5.3 shows the degree of overall contribution of each feature.
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Figure 5.4 The generated decision tree for the classification of punctuation marks between No-

Punctuation (NP), comma (,), full stop (.) and question mark (?)
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Name Feature appearance Feature usage

Pau Len 672 0.5799

Dur fr Pau 539 0.0230

Avg F0 L 342 0.0246

Avg F0 R 230 0.0363

Avg F0 Ratio 261 0.0461

Cnt F0 L 204 0.0429

Cnt F0 R 230 0.0176

Eng L 203 0.0038

Eng R 160 0.0252

Eng Ratio 239 0.2006

Table 5.3 Contribution of each feature for the CART trained by DB98 and tested by TDB98 (Feature

usage: proportion of the number of times a feature is queried. Feature appearance: the number of times

a feature is used as a classifying feature)

According to the measure ‘feature usage’, Pau Len and Eng Ratio are queried by about 78
�

of

total queries. This measure accounts for the position of the feature in the tree. The higher the

feature is used in the tree, the greater the feature usage is. In the classification tree depicted in

Figure 5.4, the top node queries about Pau Len, and the internal node at level-2 asks a query

regarding Eng Ratio.

Some classification statistics of the test data are shown in Table 5.4 in terms of the number

of terminal nodes classified to each punctuation mark (#terminal) and the relative number of

classifications for each punctuation mark in the training data (relative#).

Punctuation mark #terminal relative#

NP 788 0.9114

, 844 0.0347

. 1192 0.0530

? 257 0.0008

Table 5.4 Classification statistics of the test data (#terminal: number of terminal nodes classified to each

punctuation mark; relative#: relative number of classification to each punctuation mark in the training

data)
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5.2.2 Results: Automatic punctuation generation for reference transcriptions

In order to generate punctuation marks for the reference transcription, three different systems

were developed: a language model only system (S LM), a prosodic model only system (S CART),

and the combination of these two systems (S LM+CART). S LM was trained on 185M words of

transcriptions (BNtext92 97 and DB98). As these transcriptions contain punctuation marks, the

language models trained on these transcriptions can predict the locations and types of punctua-

tion marks based on word sequences which do not contain punctuation marks. 4-gram LMs are

trained for S LM. S CART is generated on the 10 prosodic features described in Table 5.2 from

a 100 hour broadcast news (DB98). More details about the database were given in Chapter 3.

The combination methodology of a prosodic feature model and a language model was explained

in Section 5.1. Using the scale factor ( � ) which is the weighting given to the prosodic feature

model, the relative importance of the prosodic feature model can be controlled. The scale factor

is incorporated into the combination of these two systems i.e.

� ����� 	 
� � � � � � ��� 	 
� � � � �
(5.11)

Table 5.5 summarises these three systems. In this section, the performances of these three

systems are compared for punctuation generation for reference transcriptions.

System Description

S LM Language model only

S CART Prosodic feature model only (by classification tree)

S LM+CART Combination of S LM and S CART

Table 5.5 Description of automatic punctuation generation systems for reference transcripts

The language model only system (S LM) gives an F-measure of 0.5717 and an SER of 72.25
�

.

When S LM generates punctuation for the reference transcription, its precision (0.5966) is a

little higher than its recall (0.5488). Surprisingly, the prosodic feature model alone (S CART)

outperforms S LM by 0.0521 in F-measure and by 0.54
�

in SER. For S CART, recall (0.7414) is

much higher than precision (0.5383). These results show that S CART produces a relatively high

number of punctuation marks, but many of the generated punctuation marks need refinement.
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As recall is much higher than precision for S CART and precision is slightly higher than recall for

S LM, the two information sources, one from lexical information and the other from prosodic

feature information, are expected to be complementary. By combining these two models, the

results are greatly improved. The combined system (S LM+CART) produces an F-measure of

0.7830 with an SER of 32.30
�

, a precision of 0.7638 and a recall of 0.8031. These results are

obtained when the scale factor ( � ) of 2.0 is applied. The F-measure attains a maximum at a

scale factor of 2.0. The SER attains a minimum at a scale factor of 1.8. The results of automatic

punctuation generation for the reference transcript are summarised in Table 5.6.

System Precision Recall F-measure SER(
�

)

S LM 0.5966 0.5488 0.5717 72.25

S CART 0.5383 0.7417 0.6238 71.71

S LM+CART ( � =2.0) 0.7638 0.8031 0.7830 32.30

Table 5.6 Automatic punctuation generation results for reference transcripts ( � = scale factor to the

prosodic feature model; SER: Slot Error Rate)

The performance of S LM+CART varies as the scale factor changes. Figure 5.5 describes how

F-measure, precision, recall and SER change with the scale factor. The greater the scale factor for

the prosodic feature model, the greater the recall because recall is much higher than precision

for S CART. Precision has a maximum value at a scale factor of 1.8. The F-measure attains a

maximum of 0.7830 at a scale factor of 2.0. The SER attains a minimum of 32.12
�

at a scale

factor of 1.8.

If the concept of scale factor is not introduced for this experiment, the probabilities from the

language model and those from the prosodic feature model are combined by 1:1. When a scale

factor of 1.0 is applied, the F-measure is 0.7668 and the SER is 34.16
�

. By the introduction

of a scale factor, the F-measure is improved by 0.0162 (2.11
�

relative) and the SER by 2.04
�

(5.97
�

relative). Table 5.7 shows the results in detail. An example of punctuation generation

output produced by S LM+CART is shown in Figure 3 in the Appendix.
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Figure 5.5 Automatic punctuation generation results of S LM+CART with different scale factors

� Precision Recall F-measure SER(
�

)

0.5 0.7303 0.7050 0.7174 43.26

0.75 0.7507 0.7414 0.7460 37.64

1.0 0.7641 0.7695 0.7668 34.16

1.5 0.7638 0.7916 0.7774 32.75

1.8 0.7660 0.7991 0.7822 32.12

1.9 0.7651 0.8010 0.7826 32.15

2.0 0.7638 0.8031 0.7830 32.30

2.1 0.7610 0.8047 0.7822 32.58

2.2 0.7578 0.8044 0.7804 32.98

2.5 0.7476 0.8067 0.7760 34.05

3.0 0.7390 0.8065 0.7713 35.27

Table 5.7 Automatic punctuation generation results of S LM+CART with different scale factors ( � : scale

factor to the prosodic feature model; SER: Slot Error Rate)



Chapter 5: Automatic punctuation generation Page 75

5.2.3 Results: Automatic punctuation generation combined with speech recogni-

tion

The HTK system [93] for Broadcast News (BN) transcription running under 10 times real time

(10xRT) [69] was used for the task of combining automatic punctuation generation with speech

recognition. The HTK 10xRT broadcast news transcription system is based on the HTK HMM

toolkit. The first step of the system is a segmentation stage which converts the continuous input

stream into segments with the aim of each segment containing data from a single speaker and

a single audio type. Each segment is labelled as being either a wide-band or narrow-bandwidth

signal.

The actual recogniser runs in two passes which both use cross-word triphone decision-tree state

clustered HMMs with Gaussian mixture output distributions and a N-gram language model. The

first pass uses gender-independent (but bandwidth-specific) HMMs with a 60k trigram language

model to get an initial transcription for each segment. This transcription is used to determine the

gender label for the speaker in each segment by alignment with gender-dependent HMMs. Sets

of segments with the same gender/bandwidth labels are clustered for unsupervised Maximum

Likelihood Linear Regression (MLLR) [59] adaptation. The MLLR transforms for each set of

clustered segments are computed using the initial transcriptions of the segments and the gender-

dependent HMMs used for the second pass. The adapted HMMs along with a 4-gram language

model is used in the second stage of decoding and produces the final output.

Implementation details of the HTK BN transcription system (with few constraints on computing

power) were given in [88, 89], and those of the HTK 10xRT BN transcription system were

described in [69]. In order to speed up the full system, the 10xRT system uses simpler acoustic

models and a simplified decoding strategy.

Using the HTK 10xRT system, speech recognition is performed first for TDB98. As punctuation is

not considered at this stage, the test condition is the same as for the NIST 1998 Hub-4 broadcast

news benchmark tests. The Word Error Rate (WER) of the speech recogniser is measured as

16.7
�

.

The HTK 10xRT BN transcription system reported 16.1
�

of overall WER for the NIST 1998

Hub-4 BN benchmark test [70]. The difference between the reported performance in [70] and

the performance measured in this thesis is 0.6
�

. The system used in this thesis differs from

the HTK 10xRT system used in the 1998 Hub-4 BN benchmark test in four aspects: the absence

of a category-based language model [68], the amount of language model training data, the

difference in vocabulary size, and the absence of the procedure to obtain more precise word

start and end time information. This is explained further.
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The HTK 10xRT system used in the 1998 Hub-4 BN benchmark test used a language model

interpolated between a word 4-gram language model and a category based language model.

However, the HTK 10xRT system used in this thesis does not use this category-based language

model.

Another difference is the amount of training data for the construction of language models. Ac-

cording to the description of the HTK system in [69, 89], the size of the training text is about 260

million words. This training text covers BNtext92 97, DB98 and additional texts. There are also

a difference in vocabulary size. The HTK system in [69, 89] used a 60K word size vocabulary,

but the size of the vocabulary in the HTK 10xRT system used in this thesis is 108K.

In order to obtain more precise word start time and word end time information, the HTK 10xRT

system used in the 1998 Hub-4 BN benchmark test removes silence models at the end of words.

This improves the WER because it enhances the accuracy of the alignment process between a

reference and a hypothesis. However, the removal of silence models at the end of words is not

introduced in this thesis because the acoustic pronunciations of punctuation marks are registered

as silence.

Table 5.8 shows speech recognition results under 3 different conditions. When punctuation is

not included in training and test data, the WER of the speech recogniser (S woP) is 16.71
�

.

After including punctuation marks, the WER of the speech recogniser (S Base) is increased to

22.73
�

. This degradation is caused by two factors: additional errors from other words due to

the introduction of punctuation marks into the vocabulary, and errors in mis-recognising the

punctuation marks themselves. In S rmP, punctuation marks are generated by S Base and these

marks are then removed from the reference and the hypothesis. Using the degradation from

S woP to S rmP, the error from other words due to adding punctuation marks to the vocabulary

can be measured at 0.33
�

; the other factor is therefore measured at 5.69
�

.

System WER Remarks

S woP 16.71 Punctuation excluded

S Base 22.73 Punctuation included

S rmP 17.04 Punctuation marks removed from

reference and S Base’s result

Table 5.8 Speech recognition results (WER = Word Error Rate (
�

))

S Base is used as the baseline automatic punctuation generation system with speech recognition.

Using S Base, 100 hypotheses are generated and re-scored on a segment basis using the prosodic

feature model. After re-scoring, the best hypotheses for each segment are combined. Table 5.9

summarises these systems.
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System Description

S Base No re-scoring (baseline. WER = 22.73
�

)

S H100 Final hypothesis from re-scored 100 hypotheses

Table 5.9 Description of automatic punctuation generation systems combined with speech recognition

The performances of S H100 vary with the scale factor to prosodic model changes. Figure 5.6

describes how both the WER and the WER after punctuation is removed from reference and

hypothesis (WER � ) change according to scale factor. WER is minimised with a scale factor of

0.71, and WER � is minimised with a scale factor of 0.79.

Although the amount of improvement in terms of WER is small, it is very important that these

results show the possibility of performance enhancement in speech recognition using prosod-

ic feature information. The prosodic feature model used in this thesis is focused only on the

classification of punctuation marks. Therefore, the words apart from punctuation marks are cat-

egorised as a single group: No-Punctuation (NP). In spite of this simple categorisation for words

which are not punctuation marks, the WER after punctuation is removed is also improved.
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Figure 5.6 WER (Word Error Rate) and WER � (WER after punctuation is removed from a reference and

a hypothesis) of S H100 with different scale factors
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Figure 5.7 shows the variation of F-measure and SER according to scale factor. Figure 5.8 shows

that of precision and recall. The bigger the scale factor for the prosodic feature model, the bigger

the recall and the smaller the precision is. The value of the F-measure attains its maximum of

0.4400 when the scale factor is 1.93. SER attains its minimum of 83.13
�

at the scale factor of

0.79.

If the re-scoring with prosodic feature model is not performed, the F-measure of the system is

0.3687, and the SER of the system is 85.02
�

. By the introduction of re-scoring with the prosodic

feature model, the F-measure is improved by 0.0713 (19.34
�

relative) and the SER by 1.89
�

(2.22
�

relative).

Table 5.10 summarises these results. As the punctuation generation is combined with speech

recognition, it is worth checking the result of punctuation generation when the best speech

recognition performance is achieved. The precision, recall and F-measure are measured as

0.6072, 0.3319, and 0.4292 respectively at the scale factor of 0.79 when WER � attains its mini-

mum. At this scale factor, SER attains its minimum value of 83.13
�

too. These results show that

the result of punctuation generation can be improved by the re-scoring of multiple hypotheses

using a prosodic feature model while also improving speech recognition WER.

System WER WER � Precision Recall F-measure SER

S Base 22.73 17.04 0.6425 0.2585 0.3687 85.02

S H100 ( � =0.79) 22.57 16.84 0.6072 0.3319 0.4292 83.13

S H100 ( � =1.93) 22.82 16.95 0.5811 0.3541 0.4400 84.57

Table 5.10 Results of automatic punctuation generation with speech recognition (WER: Word Error Rate

(
�

); WER � : WER after removing punctuation from a reference and a hypothesis; SER: Slot Error Rate

(
�

))

Table 5.11 shows the results of S H100 with different scale factors. There are big differences

between the values of precision and recall. The values of precision vary around 0.60 while

the values of recall vary around 0.30. Comparing these results to the results of punctuation

generation for the reference transcription shown in Section 5.2.2, the precision is satisfactory,

but the recall is too low. This suggests that insufficient punctuation marks are generated in

the hypotheses. As stated previously, in this thesis, the pronunciation of punctuation mark is

assumed to be silence. This is only a rough approximation. This assumption will be analysed in

Section 5.3.1.
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� WER WER � Precision Recall F-measure SER

0.07 22.7098 16.9929 0.6403 0.2631 0.3729 84.88

0.36 22.6033 16.9343 0.6279 0.2989 0.4051 83.41

0.57 22.6033 16.8696 0.6178 0.3179 0.4198 83.28

0.64 22.5724 16.8573 0.6129 0.3213 0.4216 83.22

0.71 22.5500 16.8634 0.6088 0.3252 0.4239 83.36

0.79 22.5668 16.8388 0.6072 0.3319 0.4292 83.13

0.86 22.5948 16.8511 0.6034 0.3347 0.4305 83.28

0.93 22.6033 16.8418 0.6005 0.3379 0.4325 83.42

1.00 22.6201 16.8542 0.5989 0.3407 0.4343 83.39

1.07 22.6509 16.8819 0.5972 0.3418 0.4348 83.50

1.21 22.6678 16.8850 0.5949 0.3437 0.4357 83.62

1.43 22.7238 16.8881 0.5883 0.3470 0.4365 84.01

1.79 22.7771 16.9312 0.5843 0.3522 0.4395 84.23

1.86 22.8080 16.9497 0.5826 0.3530 0.4396 84.40

1.93 22.8192 16.9528 0.5811 0.3541 0.4400 84.57

2.00 22.8304 16.9466 0.5791 0.3539 0.4393 84.74

2.14 22.8949 16.9744 0.5754 0.3544 0.4387 85.01

2.50 22.9846 16.9806 0.5670 0.3549 0.4365 85.86

Table 5.11 Automatic punctuation generation results of S H100 with different scale factors ( � : scale

factor; WER: Word Error Rate (
�

); WER � : WER after removing punctuation marks; SER: Slot Error Rate

(
�

))

5.3 Error analysis

The pronunciation of punctuation marks was assumed to be silence. In addition, pause length

was shown to be the most useful prosodic feature for punctuation mark generation using the

prosodic feature model. In this section, the effectiveness of the assumption for the pronunci-

ation of punctuation marks is examined, and the effectiveness of the prosodic feature model

constructed by CART is measured.

The punctuation generation system with speech recognition reported relatively low recall com-

pared to its precision. The results of the punctuation generation system with speech recognition

are estimated and its actual results are compared with this estimation. In addition, a differ-

ent punctuation generation system which does not use the assumption for the pronunciation

of punctuation marks is proposed, and its results are compared with those of the punctuation

generation system with speech recognition. Finally, the variation between annotators for punc-

tuation marks is measured.
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5.3.1 The effectiveness of the assumption for punctuation mark pronunciation

The pronunciation of punctuation marks was assumed to be silence. In this section, the effec-

tiveness of this assumption is examined using TDB98.

The reference word sequence of TDB98 is time aligned with its acoustic data. This word se-

quence does not contain any punctuation mark. Then, the duration of the models ‘sp’ and ‘sil’

are measured at the end of each word. Table 5.12 shows the ratio of presence of silence for each

punctuation mark type. About 90
�

of full stops and question marks are related to silence, but

pauses do not exist at about 40
�

of commas. In addition, pauses are measured at the end of

about 15
�

of words where no punctuation is located.

Punctuation mark Ratio of presence of silence(
�

)

NP 15.42 (4352/28218)

, 60.58 (948/1565)

. 88.63 (1590/1794)

? 91.84 (45/49)

Table 5.12 Ratio of presence of silence for each punctuation mark type (NP: No-Punctuation)

The pause lengths have different distributions according to the type of punctuation mark. Fig-

ure 5.9 shows the relative frequency of pause length according to the type of punctuation mark.

Each pause length is counted and added at 0.05 second intervals. The distribution of pause

length is different for each punctuation mark. Normally, the pause lengths at commas are short-

er than those at full stops and question marks.

5.3.2 The effectiveness of the prosodic feature model

Pause length was shown to be the most useful prosodic feature for punctuation mark generation

using the prosodic feature model. In Table 5.6, the prosodic feature model-only punctuation

generation system (S CART) reported an F-measure of 0.6238 with a precision of 0.5383, a

recall of 0.7417 and a SER of 71.71
�

for the reference transcription of TDB98. In this section,

the effectiveness of the prosodic feature model constructed by CART is measured using the ratio

of presence of silence illustrated in Table 5.12.

Assume that a punctuation mark is generated at every pause with the same type of punctuation

mark as in the reference. From Table 5.12, the numbers of correct slots, deletion errors and

insertion errors are counted as 2583 (948 + 1590 + 45), 825 ((1565-948) + (1794-1590) +

(49-45)), and 4352 respectively, if it is assumed that there are no substitution errors. From these

numbers, F-measure, recall, precision and SER are measured as 0.4995, 0.7579, 0.3725, and
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Figure 5.9 Distribution of pause length according to the type of punctuation mark (NP: No-Punctuation,

Interval: 0.05 sec.)

151.91
�

respectively. Considering the differences in F-measure and SER, the prosodic model-

only punctuation generation system (S CART) produced good results using pause length and

other prosodic features.

5.3.3 Estimation: Result of the punctuation generation system with speech recog-

nition

The punctuation generation system with speech recognition reported relatively too low recall

compared to its precision. In this section, the results of the punctuation generation system

with speech recognition are estimated and its actual results are compared with this estimation.

In order to remove the effects of prosodic features, the results of the punctuation generation

system with speech recognition which does not use the re-scoring by the prosodic feature model

(S Base) are estimated from the results of the language model-only punctuation generation

system for reference transcription (S LM). S LM reported a precision of 0.5966 and a recall

of 0.5488 for reference transcripts with 1779 correct slots, 323 substitution errors and 879

insertion errors. S Base reported a precision of 0.6425 and a recall of 0.2585 with 832 correct

slots, 122 substitution errors and 341 insertion errors.
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The end of each word is a possible candidate for a punctuation mark. Denote i-th word as
� �

and a punctuation mark at the end of
� � as  � (  � can be No-Punctuation). For each  � in the

hypothesis of S Base, there are 8 different cases depending on whether  � is a punctuation mark

in the reference and in the hypothesis of S LM, and whether there is a speech recognition error

in
� � and

� ��� � . Table 5.13 summarises these 8 cases.

Case number

Condition 1 2 3 4 5 6 7 8

Is  � a punctuation mark in reference? Y Y Y Y N N N N

Is  � a punctuation mark in hypothesis of S LM? Y Y N N Y Y N N

Is either of
� � or

� ��� � a speech recognition error? Y N Y N Y N Y N

Table 5.13 Summary of 8 different cases for punctuation marks in the hypothesis of S Base

The punctuation generation system with speech recognition uses ‘silence’ as the pronunciation

of punctuation marks. Therefore, it is required that a pause should be placed at  � to produce

a punctuation mark at the position of  � in the hypothesis produced by S Base. Introduce an

assumption that word sequences which contain speech recognition errors follow the overall

statistics of TDB98. The number of punctuation marks produced in the hypothesis of S Base can

be estimated for each case as follows:

1. Case 1:

(1.a) Number of cases in which there is a punctuation mark at  � in reference and in

hypothesis of S LM: number of correct slots and substitution errors of S LM = 2,102

(1.b) Probability that there is a speech recognition error of S Base at  � or  ��� � : 1-(1-

WER � of S Base)
�

= 0.3118

(1.c) Probability of pause existence between
� � and

� ��� � , at least one of which is speech

recognition error by S Base: total number of pause / total number of words = 0.2193

(1.d) Probability of punctuation generation by the LM between
� � and

� ��� � , at least one

of which is speech recognition error by S Base: total number of generated punctua-

tion marks by S LM / total number of words = 0.0943

The total number of generated punctuation marks by S Base for case 1: (1.a)
�

(1.b)
�

(1.c)
�

(1.d) = 14. These are the correct slots or substitution errors of S Base.
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2. Case 2:

(2.a) Number of cases in which there is a punctuation mark at  � in reference and in

hypothesis of S LM: same as in (1.a) = 2,102

(2.b) Probability that there is no speech recognition error at
� � and

� ��� � : (1-WER � of

S Base)
�

= 0.6882

(2.c) Probability of pause existence at punctuation mark: total number of pauses at punc-

tuation marks / total number of punctuation marks = 0.7579

The total number of generated punctuation marks by S Base for case 2: (2.a)
�

(2.b)
�

(2.c) = 1,096. These are the correct slots or substitution errors of S Base.

3. Case 3:

(3.a) Number of cases in which there is a punctuation mark at  � in reference but not in

hypothesis of S LM: number of deletion errors of S LM = 1,139

(3.b) Probability of punctuation generation between
� � and

� ��� � , at least one of which

is speech recognition error by S Base: (1.b)
�

(1.c)
�

(1.d) = 0.0064

The total number of generated punctuation marks by S Base for case 3: (3.a)
�

(3.b) = 7.

These are the correct slots or substitution errors of S Base.

4. Case 4:

No punctuation mark is generated by S LM between
� � and

� ��� � . Punctuation cannot be

generated for the same word sequence by S Base.

5. Case 5:

(5.a) Number of cases in which there is no punctuation mark at  � in reference but there

is in hypothesis of S LM: number of insertion errors of S LM = 879

(5.b) Probability of punctuation generation between
� � and

� ��� � , at least one of which

is speech recognition error by S Base: same as in (3.b) = 0.0064

The total number of generated punctuation marks by S Base for case 5: (5.a)
�

(5.b) = 6.

These are the insertion errors of S Base.
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6. Case 6:

(6.a) Number of cases in which there is no punctuation mark at  � in reference but there

is in hypothesis of S LM: number of insertion errors of S LM = 879

(6.b) Probability that there is no speech recognition error at
� � and

� ��� � : same as in

(2.b) = 0.6882

(6.c) Probability of pause existence at the position where no punctuation is: total number

of pauses at the position where no punctuation is / total number of NP = 0.1543

The total number of generated punctuation marks by S Base for case 6: (6.a)
�

(6.b)
�

(6.c) = 93. These are the insertion errors of S Base.

7. Case 7:

(7.a) Number of cases in which there is no punctuation mark at  � in reference or in

hypothesis of S LM: total number of words - number of hypothesised punctuation

marks by S LM - number of deletion errors of S LM = 27,475

(7.b) Probability of punctuation generation between
� � and

� ��� � , at least one of which

is speech recognition error by S Base: same as in (3.b) = 0.0064

The total number of generated punctuation marks by S Base for case 7: (7.a)
�

(7.b) =

176. These are the insertion errors of S Base.

8. Case 8:

No punctuation mark is generated by S LM between
� � and

� ��� � . Punctuation cannot be

generated for the same word sequence by S Base.

Based on the estimation for each case, the total number of correct slots, substitution errors and

insertion errors of S Base are estimated to be 945, 172, and 275 respectively, if it is assumed that

the ratio of correct slot to substitution errors is the same as S LM. According to these numbers,

recall and precision are estimated as 0.2916 and 0.6789 respectively. These estimations for the

recall and the precision are only a little higher than their actual values, in spite of the rough

estimations (by 0.033 for the recall and by 0.036 for the precision). The difference between

the estimated and the actual values for correct slots, substitution errors and insertion errors are

113, 50 and 66 respectively, in spite of the rough estimation. From the estimation in this section,

it is concluded that the recall of the punctuation generation system with speech recognition is

reasonable, as long as it uses the assumption for the pronunciation of punctuation marks.
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5.3.4 Comparison with the system which does not use the assumption for the

pronunciation of punctuation marks

In this section, a different punctuation generation system which does not use the assumption for

the pronunciation of punctuation marks is proposed, and its results are compared with those of

the punctuation generation system with speech recognition.

The proposed system (S 1Best) generates punctuation marks from the 1-best output of a speech

recogniser. In this speech recogniser, none of the punctuation marks is registered in its pro-

nunciation dictionary. In addition, its language model is trained on a training text which does

not contain any punctuation mark. As a result, this speech recogniser does not produce any

punctuation mark. The 1-best output is time aligned. Based on the time alignment information,

prosodic features are generated. As in the approach applied in the punctuation generation for

reference transcripts in Section 5.1.1, the sequence of punctuation marks for this 1-best out-

put is searched for using the prosodic feature model and an LM trained on texts which contain

punctuation marks.

The trends of F-measure and SER of S 1Best are similar to the automatic punctuation genera-

tion system for reference transcription (S LM CART). The SER of S 1Best minimises at an alpha

of 1.90 and its F-measure maximises at an alpha of 2.10. The results of S 1Best are measured

at 2.10 and those of the punctuation generation system with speech recognition (S H100) are

measured at an alpha of 1.93 where its F-measure maximises. Table 5.14 summarises the de-

scriptions of these systems.

System Description �

S H100 Punctuation generation system with speech recognition 1.93

S 1Best Punctuation generation system from 1-best output 2.10

Table 5.14 Summary of the punctuation generation systems used in performance comparison ( � : scale

factor to the prosodic feature model)

Table 5.15 compares the results of S 1Best with those of S H100. As S 1Best uses the 1-best

output of the speech recogniser without punctuation marks, WER � of S 1Best is not affected

by degradation due to the inclusion of punctuation marks into the vocabulary. S 1Best shows

a better performance in terms of F-measure and WER � , but poorer in terms of WER and SER.

If precision is more important than recall, S H100 is the better system, but if recall is more

important than precision, S 1Best is shown to be better.
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System WER WER � Precision Recall F-measure SER

S H100 22.82 16.95 0.5811 0.3541 0.4400 84.57

S 1Best 23.08 16.71 0.5329 0.4304 0.4762 88.32

Table 5.15 Comparison of results of S 1Best with S H100 (WER: Word Error Rate (
�

); WER � : WER after

punctuation is removed from a reference and a hypothesis; SER: Slot Error Rate (
�

))

As S 1Best does not assume that the pronunciation of punctuation marks is silence, S 1Best may

produce punctuation marks at no-silence. The word sequence of the 1-best output was time

aligned with its acoustic data. Then, the duration of the models ‘sp’ and ‘sil’ were measured at

the end of each word. 58
�

of the hypothesised punctuation marks produced by S 1Best were

found to be not related to silence. This rather high percentage is somewhat surprising. As a

substantial number of these hypothesised punctuation marks are in error, it is assumed that the

alignment process is affected by speech recognition errors.

5.3.5 The variations of punctuation marks between annotators

The use of punctuation is documented in manuals and in hand-books such as in [9, 79]. Howev-

er, the style of punctuation varies between writers and between areas of texts [29]. In addition,

punctuation marks are used to change the meaning of sentences. In this section, the variations

of putting punctuation marks between annotators are measured.

The first 1000 words of TDB98 is prepared for this experiment. As capitalisation information

gives cues to the location of sentence boundaries, these 1000 words are de-capitalised. Three

English native speakers were asked to add punctuation marks between words wherever the

punctuation marks are necessary. Only commas, full stops and question marks are permitted

as punctuation marks. Although this experiment is performed with a small size text and a

small number of annotators, it gives the general idea about the variations of punctuation marks

between different annotators for the domain of broadcast news. Table 5.16 summarises these

experimental conditions.

Condition Description

Text source First 1000 words in TDB98

Writing style Single case. No punctuation mark

Annotator Three native British English speakers

Table 5.16 Summary of the conditions of the experiment to measure the variations in putting punctuation

marks between annotators.
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In the provided reference transcription of TDB98, there are 43 commas and 54 full stops between

the first 1000 words of TDB98. Table 5.17 shows the differences between the punctuation marks

in the provided reference transcription and each annotator’s transcription. These differences are

measured in terms of precision, recall, F-measure and SER, regarding the provided transcription

as the reference and each annotator’s transcription as the hypothesis. On average, about 28
�

of

punctuation marks conflict.

Source of hypothesis text Precision Recall F-measure SER(
�

)

Annotator 1 0.7558 0.6701 0.7104 49.48

Annotator 2 0.7158 0.7010 0.7083 47.42

Annotator 3 0.7448 0.7371 0.7409 44.85

Table 5.17 The difference of putting punctuation marks between the provided reference transcription

and each annotator’s transcription. The provided transcription is regarded as the reference and each

annotator’s transcription as the hypothesis. (SER: Slot Error Rate)

Table 5.18 shows the variations in punctuation between annotators. These variations are mea-

sure in terms of precision, recall, F-measure and SER, regarding an annotator’s text as the ref-

erence and another annotator’s text as the hypothesis. On average, about 29
�

of punctuation

marks conflict.

Source of text Results of variations

Reference Hypothesis Precision Recall F-measure SER(
�

)

Annotator 1 Annotator 2 0.6421 0.7093 0.6740 60.47

Annotator 1 Annotator 3 0.7188 0.8023 0.7582 44.19

Annotator 2 Annotator 3 0.6979 0.7053 0.7016 49.47

Table 5.18 Variations in punctuation between annotators. Results of variations are measured regarding

an annotator’s text as the reference and another annotator’s text as the hypothesis. (SER: Slot Error Rate)

In this section, the variations of punctuation marks between annotators are measured. The

amount of this variation is quite substantial. Even though the acoustic data for the text is

provided when the reference text is transcribed, the punctuation marks in the provided reference

text are not a perfect measure. This variation may partly account for reported punctuation

generation errors.
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5.4 Summary

In this chapter, an automatic punctuation method which generates punctuation marks simul-

taneously with speech recognition output has been presented. This system produces multiple

hypotheses and uses prosodic features to re-score the hypotheses. Given the reference transcrip-

tion, using prosodic information alone outperforms using lexical information alone. As these two

information sources are shown to be complementary, further improvements can be achieved by

combining these two information sources. When punctuation is generated simultaneously with

speech recognition output, the F-measure can be improved up to 0.44 by utilising prosodic in-

formation. At the same time, small reductions in WER are achieved.
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Chapter 6

Automatic capitalisation generation

In this chapter, another important area of transcription readability improvement, automatic cap-

italisation generation, is discussed. Two different systems are proposed for this task. The first is

a slightly modified speech recogniser. In this system, every word in its vocabulary is duplicated:

one in a capitalised form and the other in a de-capitalised form. In addition, its language model

is re-trained on mixed case texts. The other system is based on NE recognition and punctuation

generation since most capitalised words are the first words in sentences or NE words.

In order to compare the performance of the proposed systems, experiments of capitalisation

generation are conducted when every procedure is fully automated. The system based on NE

recognition and punctuation generation shows better results in WER, in F-measure and in SER.

The contribution of each procedure in the system based on NE recognition and punctuation gen-

eration is examined, and the performance of this system is examined for the additional clues:

reference word sequences, reference NE classes, and reference punctuation marks. Experimen-

tal results show that this system is robust to NE recognition errors and that the effect of NE

recognition errors is independent of the effect of punctuation generation errors for capitalisa-

tion generation.

In Section 6.1, the two different automatic capitalisation generation systems are described. Ex-

perimental results are then shown in Section 6.2 and the results are analysed in Section 6.3.

Finally, this chapter is concluded in Section 6.4.

6.1 Capitalisation generation

Standard transcriptions of speech lack most capitalisation and punctuation. As already men-

tioned in Table 2.3 for a 3 hour broadcast news transcription (TDB98), 15.26
�

of total words

are capitalised words. The proper capitalisation of words would improve the readability of tran-

scriptions substantially.

Many commercial implementations of automatic capitalisation generation are provided with

word processors. In these implementations, grammar and spelling checkers of word processors

generate suggestions about capitalisation. A typical example is one of the most popular word

processors, Microsoft Word.



Chapter 6: Automatic capitalisation generation Page 91

An experiment of automatic capitalisation generation was conducted using Microsoft Word 2000

for the first 10.7
�

words of TDB98 (3882 words, 468 of which are capitalised). As it provides

suggestions about both grammar and spelling, its suggestions are checked manually and only

suggestions regarding capitalisations are accepted. Table 6.1 shows the results of this experi-

ment.

System Precision Recall F-measure SER(
�

)

MS Word 2000 0.9987 0.8045 0.8911 19.66

Table 6.1 Results of capitalisation generation using Microsoft Word 2000 for a part of TDB98 (SER: Slot

Error Rate)

The implementation of the capitalisation generation in Microsoft Word was described in Sec-

tion 2.2. According to the description in [77] and its capitalisation generation output for the

part of TDB98, capitalisation of words which are not first words in sentences seems to be pro-

cessed by dictionary look-up. When a word is entered in all lower case, the capitalisation is

applied for the word to have the greatest consistency in matching the capitalisation.

With this dictionary look-up method, ambiguous words such as ‘bill’ cannot be dis-ambiguated.

As seen in Section 1.2, in a sentence like “President bill Clinton says”, ‘bill’ should be capitalised:

the error occurs because the word ‘bill’ is more frequently used as a statement of account in a

de-capitalised form rather than a person’s name. Dis-ambiguation of the capitalisation type of

words which can have more than one type can be achieved by using context information.

In this chapter, two different automatic capitalisation generation systems are presented. The

first system is a slightly modified speech recogniser. In this system, every word in its vocabulary

is duplicated: one in a capitalised form and the other in a de-capitalised form. In addition, its

language model is re-trained on mixed case texts. This system will be presented in Section 6.1.1.

The other system is based on NE recognition and punctuation generation, since most capitalised

words are first words in sentences or NE words. This system will be presented in Section 6.1.2.

These systems examine the three types of capitalisation: all characters of a word are capitalised

(All Cap), only first character of a word is capitalised (Fst Cap), and every character of a word

is de-capitalised (No Cap). The categories of capitalisation types have already been described in

Table 1.1. Details of data preparation regarding capitalisation were given in Section 3.1.4. The

performance of these two systems with every procedure being fully automated, will be compared

in Section 6.2.
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6.1.1 Automatic capitalisation generation by modifications of speech recogniser

The method of automatic capitalisation generation presented in this section is a slightly modi-

fied form of a conventional speech recogniser. As the aim of speech recognition is to find out

only the best word sequences for the given speech signal, speech recognition systems do not

normally recognise capitalisation of words. Therefore, the words registered in a vocabulary and

a pronunciation dictionary are not case-sensitive in a conventional speech recognition system.

In addition, it is not necessary to train language models of this system on case sensitive texts.

Slight modifications to a conventional speech recognition system, however, can produce case

sensitive outputs. The following three modifications are required:

1. Every word in its vocabulary is duplicated three times for the three different capitalisation

types (All Cap, Fst Cap, and No Cap).

2. Every word in its pronunciation dictionary is duplicated with its pronunciation in the same

way as used for the vocabulary duplication.

3. The language model is re-trained on mixed case texts.

This method is a good way to obtain capitalisation automatically. However, it faces the following

two problems:

1. Distortion of LM

In many cases, first words in sentences are non-NEs. Most of these words are not capi-

talised if they are used in the middle of a sentence. Therefore, a substantial number of

word sequences counted at sentence boundaries are erroneous because a capitalised word

and a de-capitalised word are regarded as different words even if they have the same

character sequence.

2. Sparser LM

Due to the limited amount of training data, many of the possible word sequences in test

data are not observed in training data. As the size of vocabulary is increased by the du-

plication, LMs are sparser and estimating probabilities of word sequences becomes more

difficult. In addition, the searching space is widened because of the increased size vocab-

ulary.

These two problems will be analysed quantitatively in Section 6.2.1.
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Figure 6.1 illustrates the overall procedures of the capitalisation generation system, modified

from a conventional speech recognition system. Every word in the pronunciation dictionary of

a conventional speech recogniser is duplicated. As an LM is trained on case sensitive training

data, this LM is sparser than that used by the conventional speech recogniser. The same acoustic

score is measured for duplicated words, since they have the same pronunciations. However,

hypotheses can be generated using the different LM scores. Speech recognition is performed,

and the best hypothesis which includes capitalisation is generated.

model
Speech signal

Acoustic
model

P   (Bill)=am P   (BILL)amamP   (bill)=

...

... ...

...
BILL

Bill

bill

b ih l

b ih l

b ih l

.

Language

.

(conventional speech recogniser)

. ...

... ...
b ih lbill

recognition
Speech

(case sensitive)

Output
(case sensitive)

Training data

Duplication

conventional speech recogniser)

(Sparser than LM in

Pronunciation dictionary

Figure 6.1 Overall procedures of the capitalisation generation system modified from speech recogniser
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6.1.2 Automatic capitalisation generation based on NE recognition and punctua-

tion generation

In TDB98, 15.26
�

of total words are capitalised. Most capitalised words are first words in

sentences or NE words. As the average number of words in a sentence is 16.87, 5.23
�

of

total words are first words in sentences. 80.45
�

of NE words are capitalised. Among non-NE

words which are not first words in sentences, 2.32
�

of words are capitalised. For statistics of

capitalisation for TDB98, see Table 2.3.

The fact that most capitalised words are first words in sentences or NE words motivates a capital-

isation generation method based on NEs and sentence boundaries. The method of capitalisation

generation presented in this section is based on NE recognition and punctuation generation. The

simplest way to achieve capitalisation generation is to capitalise the first characters of words

which are first words in sentences and the first characters of NE words whose NE classes are

‘ORGANIZATION’, ‘PERSON’, or ‘LOCATION’, followed by capitalisation of initials.

The results of capitalisation generation are improved by using a frequency table counted from

training texts. Some NE words are used in de-capitalised forms and some non-NE words are used

in capitalised forms. Also, all characters should be capitalised in some first words in sentences.

Many of these capitalisation types are corrected by looking-up in a frequency table of words

based on NE classes.

Further improvement is achieved by using context information to dis-ambiguate the capitalisa-

tion types of words which have more than one capitalisation type such as the word ‘bill’. The

context information about capitalisation generation is encoded in a set of simple rules rather

than the large tables of statistics used in stochastic methods. The ideas used in the development

of the rule-based NE recognition system are applied in the automatic generation of these rules

for capitalisation generation.

Six rule templates are used for the generation of bigram rules for capitalisation generation.

These six rule templates are shown in Table 6.2. As with the rule templates in NE recognition,

rule templates consist of pairs of characters and a subscript. � ,
�
, � denote that templates

are related to words, NE classes and capitalisation types, respectively. Subscripts show the

relative distance from the current word; that is 0 means the current word, -1 means the previous

word and 1 means the next word. Each rule template has its own applicable range where the

conditions of the rule are met. For these six rule templates, the range of rule application is set

to be the current word only. Rule templates have one more slot at the end. This indicates the

number of the capitalisation type of the change after the rule is activated.
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Rule templates

����� � , ����� � � , ��� � �
� � � � � , � � � � , � � � � �

Table 6.2 The rule templates used in bigram rule generation for capitalisation generation ( � : words; � :
NE types; � : capitalisation types). Subscripts define the distance from the current word

Particular importance must be given to the effect of words encountered in the test data which

have not been seen in the training data. One way of improving the situation is to build separate

rules for unknown words. The training data are divided into two groups. If words in one group

are not seen in the other group, these words are regarded as unknown words. The same rule

generation procedures are then applied.

The capitalisation generation system proposed in this section consists of 8 steps. These steps are

depicted in Figure 6.2. Word sequences with NE classes and punctuation marks are processed

by these 8 steps.

The first four steps in Figure 6.2 are straightforward processes. In step 1, the first character of

the first word in each sentence is capitalised. Then in step 2, the first characters of NE words

whose NE classes are ‘ORGANIZATION’, ‘PERSON’ or ‘LOCATION’ are capitalised. In step 3,

initial words (e.g. B. B. C.) are capitalised, but only the first character is capitalised if the length

of the initial word is longer than one character (e.g. Mr.). The word ‘i’ is treated differently,

because this word normally means ‘me’ and is capitalised in this case. In step 4, backchannels

(e.g. uhhuh) are de-capitalised.

As already mentioned in Table 2.3, 19.55
�

of NE words are not capitalised. Among non-NE

words which are not first words in sentences, 2.32
�

of words are capitalised (e.g. El Nino). In

order to dis-ambiguate capitalisation types, a frequency table of words which contains counts of

words based on NE classes are looked-up. This frequency table is constructed on DB98, because

DB98 is the only training data which is provided with reference NE classes.

Steps 5, 6, and 7 are related to the frequency table look-up. In step 5, the most frequent

capitalisation type within NE classes is given to NE words which are not first words in sentences.

In step 6, the same process is applied to non-NE words which are not first words in sentences.

In step 7, if a word with the ‘ORGANIZATION’ class is a first word in a sentence, and its most

frequent capitalisation type is All Cap, then the capitalisation type of this word is changed to

All Cap.



Chapter 6: Automatic capitalisation generation Page 96

Single case text

Mixed case text

(Step 1)

with NE classes and punctuation marks

(Step 2)

All_Cap

(Step 3)

(Step 4)

(Step 5)

(Step 6)

(Step 7)

(Step 8)

NE words and not first words in sentences

the most frequent capitalisation type within the NE class

Non-NE words and not first words in sentences

the most frequent capitalisation type within the NE class

NEs of ORG., first words in sentences and words of which

Use bigram rules

First words of sentences 

NEs of ORG., PER. and LOC. Fst_Cap

All_Cap

Initials with length 1

Initials longer than 1

Word ‘i’

Fst_Cap

(e.g. B.)All_Cap

Fst_Cap (e.g. Mr.)

Backchannels (e.g. uhhuh) No_Cap

(see rule templates in Table 6.2)

the most frequent capitalisation type is All_Cap

Figure 6.2 Procedures of the capitalisation generation system based on NE recognition and punctuation

generation
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In order to dis-ambiguate the capitalisation type of words which have more than one capitalisa-

tion type, the bigram rules generated from 6 rule templates described in Table 6.2 are applied

one-by-one in step 8 according to a given order. If the conditions for a rule are met, then the

rule is triggered and the classification type of the words is changed if necessary.

6.2 Experiments

There are two different systems of generating capitalisation: a system modified from a speech

recogniser (described in Section 6.1.1) and a system based on NE recognition and punctuation

generation (described in Section 6.1.2). These systems are summarised in Table 6.3.

System Description

S fr SR System modified from a speech recogniser

S on NE P System based on NE recognition and punctuation generation

Table 6.3 Description of automatic capitalisation generation systems

These systems cover the three types of capitalisation: all characters of a word are capitalised

(All Cap), only first character of a word is capitalised (Fst Cap), and every character of a word

is de-capitalised (No Cap). The categories of capitalisation types were described in Table 1.1.

The results of both systems are compared on the basis that every procedure is fully automated.

Then, the performance of the system based on NE recognition and punctuation generation is

investigated with additional information: reference word sequences, reference NE classes and

reference punctuation marks. As this system follows the 8 steps described in Figure 6.2, the effect

of each step is examined when reference word sequences, reference NE classes, and reference

punctuation marks are provided.

As described in Section 3.2.1, the performance of an automatic capitalisation generation system

can be measured by the version 0.7 of the NIST Hub-4 IE scoring pipeline package. In the

mixed case output, the words whose capitalisation types are All Cap are surrounded by the

“ORGANIZATION” NE class starting and end tags, and the words whose types are Fst Cap by the

“PERSON” NE class tags. Then, the words in the output are changed into single case. The same

modification is applied to the reference text. Then the scoring pipeline package proceeds with

these modified texts. TDB98 is used as test data.
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6.2.1 Results: The system modified from a speech recogniser

The first automatic capitalisation system is implemented by slight modifications of the HTK

Broadcast News (BN) transcription system. The HTK system was mentioned in Section 5.2.3,

and details about the development of the HTK BN transcription system are given in [89].

First, every word in the pronunciation dictionary of the HTK system is duplicated with its pro-

nunciation into three different capitalisation types (All Cap, Fst Cap, and No Cap). Second, its

language model is re-trained on mixed case transcriptions of BNtext92 97 and DB98.

Table 6.4 shows the results of capitalisation generation for TDB98 using this system. The per-

formance of the system is measured by WER. When WER is measured, words are changed into

single case from reference and hypothesis in order to measure the pure speech recognition rate.

As the speech recognition output contains punctuation marks, WER � � which is the WER after

punctuation marks are removed and words are changed to single case from reference and hy-

pothesis is introduced. A similar concept was introduced as WER � in punctuation generation

in Section 5.2.3. WER � was defined as the WER after punctuation is removed in reference and

hypothesis.

System WER WER � � Precision Recall F-measure SER

S fr SR 22.97 17.27 0.7736 0.6942 0.7317 48.55

Table 6.4 Results of capitalisation generation for TDB98 using the system modified from the HTK system.

(WER: Word Error Rate (
�

); WER � � : WER after punctuation is removed; SER: Slot Error Rate (
�

))

For punctuation generation, the HTK system reported 22.73
�

of WER and 17.04
�

of WER � in

Section 5.2.3. The difference between WER in punctuation generation and that in capitalisa-

tion generation is measured as 0.24
�

, and the difference between WER � and WER � � is measured

as 0.23
�

. These degradations are caused by the introduction of increased size of vocabulary

and pronunciation dictionary. Two problems caused by this introduction were discussed in Sec-

tion 6.1.1 The performance degradations are analysed as follows:

1. Distortion of LM

In many cases, first words in sentences are non-NEs. Most of these words are not cap-

italised, if they are used in the middle of sentences. As there are 1,873 sentences in

TDB98, the average number of words in a sentence in TDB is 16.9 words. Among the first

words in sentences, 91.3
�

of these words are not NEs. Therefore, approximately, 5.4
�

((1/16.9)
�

0.913) of counted word sequences are wrong, because a capitalised word and

a de-capitalised word should be regarded as different words even if they have the same

character sequence.
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2. Sparser LM

As the size of vocabulary is increased, LMs are sparser and estimating probabilities of word

sequences becomes more difficult. The HTK system generates initial hypotheses using

trigram language models and re-scores these hypotheses using 4-gram language models.

As the size of vocabulary is multiplied by three, these LMs are sparser and the search space

is widened.

If capitalisation generation is performed for a single case speech recogniser output as described

in Section 6.1.2, mixed case output can be obtained without any loss in WER of speech recogni-

tion.

F-measure, precision, and recall are measured for this system as 0.7317, 0.7736, and 0.6942

respectively. The SER is measured as 48.55
�

. In addition to the effects for capitalisation gen-

eration, caused by the two factors of speech recognition degradation, loss of half scores in the

evaluation of capitalisation generation affects the performance. If NE recognition and capitali-

sation generation are performed as post-processing of speech recognition, it is possible to obtain

half scores for the words which are mis-recognised in speech recognition but are located next to

NE signalling words.

6.2.2 Results: System based on NE recognition and punctuation generation

The steps of the capitalisation generation system depicted in Figure 6.2 start from the single

case speech recognition output with punctuation marks and NE classes. In this system, multiple

hypotheses which include punctuation marks are produced by the HTK system and are re-scored

by prosodic information. Then NE recognition is performed for this speech recognition output.

Capitalisation generation follows this speech recognition output with generated NE classes.

The results of automatic punctuation generation according to various scale factors to the prosod-

ic feature model were presented in Table 5.11. The scale factor to prosodic feature model is set

to be 0.71 at which WER is minimised. In this case, the WER and WER � are measured as 22.55
�

and 16.86
�

for TDB98 respectively. Table 6.5 summarises the conditions and results of the

automatic punctuation generation system used in this capitalisation generation system. Further

details of this prosody combined system for punctuation generation and speech recognition were

given in Section 5.1.2.
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Punctuation generation system used WER WER � Precision Recall F-measure SER

S H100 ( � =0.71) 22.55 16.86 0.6088 0.3252 0.4239 83.36

Table 6.5 Summary of the punctuation generation system used in the capitalisation generation system

(S on NE P). Results are measured for TDB98. ( � : scale factor to prosodic feature model; WER: Word

Error Rate (
�

); WER � : WER after punctuation is removed; SER: Slot Error Rate (
�

))

NE recognition is performed for the best re-scored hypothesis. As an NE recogniser, the rule-

based NE recogniser trained under the condition of ‘with punctuation and name lists but without

capitalisation’ is used. This NE recogniser reported an F-measure of 0.9007 in Table 4.8 for the

reference transcription of TDB98. Table 6.6 summarises conditions of the NE recogniser and its

NE recognition performance for the reference transcription of TDB98. More details of this NE

recogniser were discussed in Section 4.2.

Conditions of used NE recognition system F-measure SER(
�

)

Baseline+NL+Punc 0.9007 16.68

Table 6.6 Conditions of the rule-based NE recogniser used in the capitalisation generation system

(S on NE P) and its performance for the reference transcription of TDB98 (SER: Slot Error Rate)

The frequency table and bigram rules are constructed using the transcription of DB98. Ta-

ble 6.7 shows the result of capitalisation generation based on NE recognition and punctuation

generation. As this system does not increase the size of vocabulary, there is no degradation in

WER and WER � � . Compared to the other capitalisation generation system (S fr SR), this sys-

tem (S on NE P) shows better results by: 0.42
�

in WER, 0.41
�

in WER � � , 2.62
�

in SER, and

0.0089 in F-measure. The factors which cause these differences were explained as ‘distortion of

LM’, ‘sparser LM’, and ‘loss of half scores’ in Section 6.2.1. An example of capitalisation gener-

ation output produced by S on NE P for a speech recognition result is shown in Figure 5 in the

Appendix.

Test condition Result

System Word NE Punc. WER WER � � Precision Recall F-measure SER

S on NE P Gen. Gen. Gen. 22.55 16.86 0.8094 0.6826 0.7406 45.93

Table 6.7 Results of the capitalisation generation system based on NE recognition and punctuation gener-

ation. (Punc.: Punctuation; Gen.: Generated; WER: Word Error Rate (
�

); WER � � : WER after punctuation

is removed; SER: Slot Error Rate (
�

))
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6.3 Analysis of performance of the system based on NE recognition

and punctuation generation

The effects of speech recognition errors, NE recognition errors and punctuation generation errors

are accumulated in the results of S on NE P in Table 6.7. In this section, the performance of

S on NE P is investigated by including one or more of the following: reference word sequences,

reference NE classes and reference punctuation marks. The total effects of the accumulated

errors are examined, and the contribution of each step in S on NE P is tested for reference

word sequences, NE classes and punctuation marks. Then, the effects of speech recognition and

punctuation generation errors are examined. The performance of S on NE P is compared with

that of Microsoft Word 2000.

6.3.1 The contribution of each experimental step

In order to measure the pure contribution of each step in the capitalisation generation system

based on NE classes and punctuation marks, the contribution of each step is examined for refer-

ence word sequence, reference NE classes and reference punctuation marks.

Table 6.8 shows the result of the capitalisation generation system based on NE classes and punc-

tuation marks for these test conditions. The F-measure is measured as 0.9756 and the SER as

4.89
�

. After removing the effects of speech recognition errors, NE recognition errors and punc-

tuation generation errors, the F-measure is improved by 0.2350 (0.9756 - 0.7406) and the SER

by 41.04
�

(45.93 - 4.89).

Test condition Result

System Word NE Punc. Precision Recall F-measure SER

S on NE P Ref. Ref. Ref. 0.9726 0.9786 0.9756 4.89

Table 6.8 Results of the capitalisation generation system based on NE classes and punctuation marks for

reference word sequences, NE classes and punctuation marks. (Punc.: Punctuation; Ref.: Reference)

Table 6.9 shows the capitalisation generation results with different combinations of experimen-

tal steps. By just performing step 1 (the first character of the first word in each sentence is

capitalised), the F-measure of 0.5494 is already obtained, although the recall (0.3814) is quite

poor to the precision (0.9818). By performing step 2, in addition to step 1, the F-measure is

increased to 0.8448.

With steps 1, 2, 3 and 4, which can be done by straightforward processes without the need for

training data, an F-measure of 0.9247 is obtained for capitalisation generation. With steps 5, 6

and 7 which depend on the use of frequency tables, the result can be increased to 0.9694. In

addition, 0.9756 points in F-measure are achieved using bigram rules. Table 6.9 shows these

results.
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Included step Result

1 2 3 4 5 6 7 8 Precision Recall F-measure SER(
�

)

I 0.9818 0.3814 0.5494 62.57

I I 0.8944 0.8004 0.8448 29.41

I I I 0.9581 0.8881 0.9218 15.08

I I I I 0.9632 0.8881 0.9241 14.58

I I I I I 0.9817 0.9019 0.9401 11.45

I I I I I I 0.9703 0.9681 0.9692 6.16

I I I I I I I 0.9705 0.9683 0.9694 6.12

I I I I I I I I 0.9726 0.9786 0.9756 4.89

Table 6.9 Results of capitalisation generation with different combinations of processing steps

6.3.1.1 Analysis: The result of capitalisation generation when reference word sequences,

NE classes and punctuation marks are provided

The capitalisation generation system based on NE classes and punctuation marks reports an

F-measure of 0.9756 with 236 errors for TDB98 when reference word sequences, punctuation

marks and NE classes are provided. These 236 errors can be categorised into the following three

groups:

1. Errors due to the inconsistency of capitalisation (Group 1)

2. Errors due to limited number of observations in training data (Group 2)

3. Errors not included in Group 1 and Group 2 (Group 3)

Groups 1 and 2 are not totally exclusive of each other. The number of errors in Group 1 can

be measured by substituting the training data with the test data and repeating the experiment.

After this substitution, there were still 100 errors with an F-measure of 0.9896. These 100 errors

were examined manually. Most of them are caused by inconsistency of capitalisation which

cannot be corrected by bigrams. For example:

� News in “Lisa Stark, A. B. C. News, Washington” (normally A. B. C. news)

� the President (normally the president apart from the President of U. S. A.)

� World Today (programme name)

� South, East .... (normally south, east but sometimes capitalised in weather forecast)

� Main Street in “U. S. props up Japan’s currency from Wall Street to Main Street”

(normally main street)
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The errors in Group 2 show that they can be corrected if the size of the training data is increased.

Assume that a word in test data is observed enough if it is observed in training data more than

twice (
���

) with its NE class and its capitalisation type. On this assumption, capitalisation errors

in Group 2 can be categorised into the following 4 sub-categories:

1. Errors at an unknown word (Group 2-1)

2. Errors at a word never seen in the training data with its NE class (Group 2-2)

3. Errors at a word seen only once in the training data with its NE class (Group 2-3)

4. Errors at a word seen twice in the training data with its NE class (Group 2-4)

Among 236 total errors, the number of errors in Group 2-1, 2-2, 2-3 and 2-4 are counted as 25,

23, 9 and 0 respectively. These numbers constitute 24.15
�

of total errors.

Errors in Group 3 illustrate the fact that the training data cannot reflect the test data perfectly,

because a word which has a capitalisation type error in this group is observed enough with its NE

class. As these errors are not caused by the inconsistency of capitalisation, the correct response

for these errors is limited for the current methodology of capitalisation generation.

Among these three categories of errors in capitalisation generation, only the errors in Group 2

can be corrected if the size of the training data is increased. The errors in Group 2 consist of

25.85
�

of total errors and the F-measure of the system on the current input condition is 0.9756.

If the errors in Group 2 are corrected, the F-measure of this capitalisation generation system is

expected to be increased to:


 �������
	
� � �

�

 �������
	 � � 
 � � �
�
� � 
 ���
� � �

(6.1)

At the moment, it is believed that the result of an F-measure of 0.9756 in capitalisation genera-

tion on the condition of reference word sequences, punctuation marks and NE classes is a good

result given the relatively small amount of training data.
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6.3.2 The effect of NE recognition errors

In order to measure the effect of NE recognition errors in the capitalisation generation system

based on NE classes and punctuation marks, the results of capitalisation generation are exam-

ined for reference word sequences and reference punctuation marks. However, NE classes are

generated by an NE recogniser. As an NE recogniser, the rule-based NE recogniser trained un-

der the condition of ‘with punctuation and name lists but without capitalisation’ is used. It

recognises NEs with 0.9007 in F-measure and 16.68
�

in SER for TDB98. Table 6.6 summarised

conditions of the NE recogniser and its performance for NE recognition.

Table 6.10 shows the results of capitalisation generation for reference word sequences, generat-

ed NE classes and reference punctuation marks. As the F-measure of capitalisation generation

for reference word sequences, NE classes and punctuation marks was measured as 0.9756, the

effect of NE recognition errors on capitalisation generation is measured with a degradation in

F-measure of 0.0158 (0.9756 - 0.9585). The degradation in SER is measured as 3.20
�

.

Test condition Result

System Word NE Punc. Precision Recall F-measure SER

S on NE P Ref. Gen. Ref. 0.9552 0.9643 0.9598 8.09

Table 6.10 Results of capitalisation generation for reference word sequences, generated NE classes and

reference punctuation marks. (Punc.: Punctuation; Ref.: Reference; Gen.: Generated)

6.3.2.1 Analysis: the effect of NE recognition errors

Steps 2, 5, 6 and 7 of the capitalisation generation system described in Figure 6.2 are based on

NE classes. In this section, the effect of NE recognition errors for the overall performance of

capitalisation generation is analysed.

The statistics of TDB98 were shown in Tables 3.10 and 3.11. According to these tables, the

number of initial words which are NEs is 543 and the number of NE words which are first words

in sentences and which have a capitalised first character is 143. Among NE words, these 543

initials and 143 NEs at the beginning of sentences can be capitalised correctly without the help

of the NE recognition system. As the total number of NEs in TDB98 is 3,149, the number of NEs

which require the help of the NE recognition system is roughly 2,463 (3,149 - 543 - 143).

As the F-measure of the used NE recogniser is 0.9007 for NE recognition, the capitalisation of

about 245 (2,463
�

(1 - 0.9007)) NE words may be affected by the NE recognition errors. This

number of words constitutes 5.1
�

of total capitalised words. However, the actual degradation

caused by the errors of NE recognition is measured as 0.0158. This implies that this capitalisation

generation system is robust to NE recognition errors.
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6.3.3 The effect of punctuation generation errors

In order to measure the effect of punctuation generation errors in the capitalisation generation

system based on NE classes and punctuation marks, the results of capitalisation generation are

examined for reference word sequences, reference NE classes and generated punctuation marks.

The punctuation generation system using combined information of an LM and a prosodic fea-

ture model is used. It generates punctuation marks with an F-measure of 0.7830 and an SER of

32.30
�

for the reference transcription of TDB98. Table 6.11 summarises this punctuation gen-

eration system. More details of this punctuation generation system were given in Section 5.1.

Used punctuation generation system F-measure SER(
�

)

S LM+CART 0.7830 32.30

Table 6.11 The performance of punctuation generation for the reference transcription of TDB98 produced

by the punctuation generation system using combined information of an LM and a prosodic feature model

(SER: Slot Error Rate)

Table 6.12 shows the result of capitalisation generation for reference word sequences, reference

NE classes and generated punctuation marks. As the F-measure of capitalisation generation

for reference word sequences, NE classes and punctuation marks was measured as 0.9756, the

effect of punctuation generation errors on capitalisation generation is measured as an F-measure

of 0.0909 (0.9756 - 0.8847). The degradation in SER is measured as 18.21
�

.

Test condition Result

System Word NE Punc. Precision Recall F-measure SER

S on NE P Ref. Ref. Gen. 0.8832 0.8861 0.8847 23.10

Table 6.12 Results of capitalisation generation for reference word sequences, reference NE classes and

generated punctuation marks. (Punc.: Punctuation; Ref.: Reference; Gen.: Generated)

6.3.3.1 Analysis: The effect of punctuation generation errors

Steps 1, 5, 6 and 7 of the capitalisation generation system depicted in Figure 6.2 are based on

punctuation marks. According to the statistics of TDB98 shown in Tables 3.10 and 3.11, the

number of non-NE words which have a capitalised first character and which are first words in

sentences is 1,603.

Punctuation marks whose place is correct but type is wrong are meaningful in punctuation gen-

eration and obtain half scores. However, punctuation type errors between commas and full

stops, and between commas and question marks are not meaningful for capitalisation gener-

ation, because the words next to commas are normally de-capitalised. If the half scores are
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given in punctuation generation only between full stops and question marks, the F-measure of

punctuation generation decreases to 0.6826.

The maximum number of words whose capitalisation types are possibly affected by punctuation

generation errors can be roughly estimated as 1,603
�

(1 - 0.6826) = 509. This number of words

constitute 10.56
�

of the total number of capitalised words. The actual degradation caused

by punctuation generation errors is measured as an F-measure of 0.0909. This implies that

most punctuation generation errors cause errors in capitalisation generation, but the number of

errors caused in capitalisation generation do not exceed the number of errors in punctuation

generation.

6.3.4 The correlation between the effects of NE recognition errors and the effects

of punctuation generation errors

In this section, the correlation between the effects of NE recognition errors and those of punc-

tuation generation errors to capitalisation generation are examined. NE recognition and punc-

tuation generation are performed for the reference transcription of TDB98, in which every word

is de-capitalised and every punctuation mark is removed. The rule-based NE recogniser and the

punctuation generation system, which uses the combined information of an LM and a prosodic

feature model, are used.

Using these NE recogniser and punctuation generation systems, punctuation marks are pro-

duced first for the transcription of TDB98, then NE recognition is performed for the reference

transcription with these generated punctuation marks. The capitalisation generation is carried

out for this result of NE recognition and punctuation generation for the transcription of TDB98.

Table 6.13 shows the results of capitalisation generation for NE recognition and punctuation

generation output from reference word sequences. The simultaneous effects of NE recognition

errors and punctuation generation errors on capitalisation generation are measured as a degra-

dation in F-measure of 0.1065 and in SER of 21.36
�

. As the effect of NE recognition errors

on capitalisation generation and the effect of punctuation generation errors on capitalisation

generation are measured as 0.0158 and 0.0909 in F-measure respectively (3.20
�

and 18.21
�

in

SER respectively), it is shown that these simultaneous effects are almost equivalent to the sum

of individual effects. This suggests that the effect of NE recognition errors is independent of the

effect of punctuation generation errors for capitalisation generation.
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Test condition Result

System Word NE Punc. Precision Recall F-measure SER

S on NE P Ref. Gen. Gen. 0.8667 0.8715 0.8691 26.25

Table 6.13 Results of capitalisation generation for reference word sequences, generated NE classes, and

generated punctuation marks (Punc.: Punctuation; Ref.: Reference; Gen.: Generated)

6.3.5 Comparison with Microsoft Word 2000

The results of automatic capitalisation generation using Microsoft Word 2000 were reported in

Table 6.1 for the first 10.7
�

words of TDB98. In this section, the performance of S on NE P is

compared with that of Microsoft 2000 for the same part of TDB98. As the reference sequence of

words and punctuation marks were given as input when automatic capitalisation generation was

performed by Microsoft Word 2000, capitalisation is generated by S on NE P for the reference

word sequences, generated NE classes and reference punctuation marks. Table 6.14 shows the

results of capitalisation generation by S on NE P for the first 10.7
�

words of TDB98. Compared

to Microsoft, S on NE P shows better results by 0.0687 in F-measure and by 11.62
�

in SER.

Test condition Result

System Word NE Punc. Precision Recall F-measure SER

S on NE P Ref. Gen. Ref. 0.9588 0.9608 0.9598 8.04

MS Word 2000 Ref. N/A Ref. 0.9987 0.8045 0.8911 19.66

Table 6.14 Results of capitalisation generation by S on NE P for reference word sequences, generated NE

classes and reference punctuation marks using 10.7
�

of TDB98. These results are compared with those

from Microsoft Word for the same part of TDB98. (Punc.: Punctuation; Ref.: Reference; Gen.: Generated)

6.3.6 Estimation: Results of the system based on NE recognition and punctuation

generation when every procedure is fully automated

In Section 6.2.2, the capitalisation generation system based on NE recognition and punctuation

generation reported an F-measure of 0.7406. In this section, this result is compared with the

results expected from the previous conclusions: the performance of NE recognition is degraded

linearly according to speech recognition errors (Section 4.3.4), and the effect of NE recognition

errors is independent of the effect of punctuation generation errors for capitalisation generation

(Section 6.3.4).
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The experiment in Section 6.2.2 used a punctuation generation system which reported an F-

measure of 0.4239 at a scale factor of 0.71 and reported 16.86
�

of WER � (WER after removing

punctuation marks from a reference and a hypothesis) at this scale factor. In addition to this

punctuation generation system, the experiment used an NE recognition system which reported

an F-measure of 0.9007. Since an experiment in Section 4.3.4 reported that the performance

of an NE recogniser is linearly degraded by 0.0062 points in F-measure per 1
�

of additional

WER, the capitalisation generation system based on NE recognition and punctuation generation

is expected to obtain the following F-measure for NE recognition:
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(6.2)

As shown in Section 6.3.2, the result of capitalisation generation is degraded by an F-measure

of 0.0158 due to NE recognition error of an F-measure of 0.0993 (1 - 0.9007). The degradation

of capitalisation generation caused by NE recognition errors (assuming that this degradation is

proportional to NE recognition errors) is expected to be:
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As shown in Section 6.3.3, the result of capitalisation generation is degraded by an F-measure

of 0.0909 due to punctuation generation errors of an F-measure of 0.2170 (1 - 0.7830). The

degradation of capitalisation generation caused by punctuation generation errors (assuming

that this degradation is proportional to punctuation generation errors) is expected to be:
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(6.4)

If it is assumed that the effect of NE recognition errors is independent of the effect of punctuation

generation errors for capitalisation generation, the total degradation of capitalisation generation

caused by NE recognition errors and punctuation generation errors is expected to be:
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(6.5)

Based on this expectation, the result of capitalisation generation of an F-measure of 0.7406 is

believed to be a reasonable result when every procedure is fully automated.
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6.4 Summary

In this chapter, another important area of transcription readability improvement, automatic cap-

italisation generation, has been discussed. Two different systems have been proposed for this

task. The first is a slightly modified speech recogniser. In this system, every word in its vocabu-

lary is duplicated: one is given in a de-capitalised form and the others are in capitalised forms.

In addition, its language model is re-trained on mixed case texts. The other system is based

on NE recognition and punctuation generation since most capitalised words are first words in

sentences or NE words.

In order to compare the performance of the proposed systems, experiments of automatic capital-

isation generation were performed for TDB98. The results of both systems have been compared

on the basis that every procedure is fully automated. The system based on NE recognition and

punctuation generation showed better results in WER, in F-measure and in SER than the system

modified from the speech recogniser, because the latter system has distortion of LM, sparser LM,

and loss of half scores.

The system based on NE recognition and punctuation generation follows the 8 steps described

in Figure 6.2. The effect of each step was examined when reference word sequences, reference

NE classes, and reference punctuation marks are provided. More than 0.92 points in F-measure

of capitalisation has been generated by straightforward steps without the need for training data.

The performance of the system based on NE recognition and punctuation generation has been

investigated for the additional clues: reference word sequences, reference NE classes and ref-

erence punctuation marks. The results showed that this system is robust to NE recognition

errors and that the effect of NE recognition errors is independent of the effect of punctuation

generation errors for capitalisation generation.
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Chapter 7

Conclusions and further work

In this chapter, a review of the work is given, highlighting the contributions and important

results. The thesis concludes with some proposals for future research.

7.1 Review of the contributions of this thesis

In this thesis, a rule-based Named Entity (NE) recognition system which generates rules auto-

matically has been devised and an automatic punctuation generation system using prosodic in-

formation has been proposed. An automatic capitalisation generation system has been designed

using the NE recognition system and the punctuation generation system.

Previous work regarding the NE task were mainly categorised by hand-crafted rule-based sys-

tems and stochastic systems. In Chapter 4, an automatic rule generating method, which uses

the Brill rule inference approach, was proposed for the NE task. For automatic punctuation

generation, the previous work assumed that sentence boundaries are pre-determined or that the

input speech comes from a very small number of speakers. In Chapter 5, a complete automatic

punctuation generation method consisting of a speech recogniser with a few straightforward

modifications. Further improvement in punctuation generation was achieved by re-scoring mul-

tiple hypotheses using prosodic information. The fact that most capitalised words are first words

in sentences or NE words motivated a capitalisation generation method based on NEs and sen-

tence boundaries. In Chapter 6, an automatic means of capitalisation generation based on NE

recognition and punctuation generation was discussed.

7.1.1 Rule-based Named Entity (NE) recognition

In order to measure the performance of the rule-based NE recognition system, it was compared

with that of IdentiFinder, BBN’s HMM-based system which gave the best performance among

the systems that participated in the 1998 Hub-4 benchmark test. For the baseline case (with

no punctuation, no capitalisation, and no name list), both systems showed almost equal perfor-

mance and did likewise in the case of additional information such as punctuation, capitalisation

and name lists. When input texts were corrupted by speech recognition errors, the performance
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of both systems were degraded linearly with increasing WER at almost the same rate. Although

this rule-based approach is different from the stochastic method, which is recognised as one of

the most successful methods, this rule-based system gave the same level of performance.

7.1.2 Automatic punctuation generation

The proposed punctuation generation system incorporated prosodic information with acoustic

and language model information. Experiments were conducted first for the reference transcrip-

tions. In these experiments, prosodic information was shown to be more useful than language

model information. When these information sources are combined, an F-measure of up to 0.7830

was obtained for punctuation generation of a reference transcription.

A few straightforward modifications of a conventional speech recogniser allowed the system to

produce punctuation marks and speech recognition hypotheses simultaneously. The multiple

hypotheses were produced by the automatic speech recogniser and were re-scored by prosodic

information. When prosodic information is incorporated, the F-measure was improved by 19
�

relative. At the same time, small reductions in word error rate were obtained.

7.1.3 Automatic capitalisation generation

Two different systems were proposed for this task. The first system is a slightly modified speech

recogniser. In this system, every word in its vocabulary is duplicated: one in a de-capitalised

form and the others in capitalised forms. In addition, its language model is re-trained on mixed

case texts. The other system is based on NE recognition and punctuation generation, since most

capitalised words are first words in sentences or NE words.

Both systems were compared first on the condition that every procedure is fully automated. The

system based on NE recognition and punctuation generation showed better results in word error

rate, in F-measure and in SER than the system modified from a speech recogniser, because the

former system does not have the distortions of the LM, a sparser LM, and loss of half scores.

The performance of the system based on NE recognition and punctuation generation was in-

vestigated by including one or more of the following: reference word sequences, reference NE

classes and reference punctuation marks. The results showed that this system is robust to NE

recognition errors. Although most punctuation generation errors cause errors in this capital-

isation generation system, the number of errors caused in capitalisation generation does not

exceed the number of errors in punctuation generation. In addition, it showed that the effect of

NE recognition errors is independent of the effect of punctuation generation errors for capitali-

sation generation.
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7.2 Suggested further work

The examination of NE recognition, punctuation generation and capitalisation generation has

been conducted in this thesis. If long distance lexical information and POS information had

been incorporated, then the performance of the systems would have been improved considerably

in decisions about exact boundaries of NEs and sentences. Any further work must include a

methodology which improves the performance of the NE recognition system, the punctuation

generation system, and the capitalisation generation system using syntactic information, and

a methodology which generates a sufficient number of punctuation marks using more precise

design for the pronunciation of punctuation marks. In addition to these, a new task definition

of NE recognition stimulates more precise extraction of numeric entities.

7.2.1 The use of syntactic information

Syntactic structure information concerns how words can be put together, and determines what

structural role each word plays and which phrases are subparts of which other phrases [18,

36, 37]. Some words are left-attached and others are right-attached. In addition, the same

words can be used differently according to their syntactic functions. The current systems do not

consider this information source.

A possible solution for this improvement is parsing. Using parsing results, rules can be generated

according to the relationship between head words of a parent node and words of a child node.

Complete parsing of sentences is very difficult for unrestricted input text. In addition, when

input text is derived from speech, due to corruption by speech recogniser error and missing

punctuation, complete parsing is almost impossible [17]. However, some syntactic fragments

such as noun groups and verb groups are identified relatively reliably, and are very useful when

deciding NE boundaries and sentence boundaries.

Prosody information such as pitch, duration and energy gives clues when identifying sentence

structure [39, 43, 84]. In speech recognition, the use of prosody is limited because prosodic in-

formation in an utterance does not help significantly with the low level identification of words.

The patterns of changing pitch in the voice over an utterance plays a role in guiding the prosod-

ic structure of the utterance. Further studies are needed on utilising prosodic information to

improve the understanding of syntactic structure.
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7.2.2 More precise definition of pronunciation for punctuation marks

A few straightforward modifications of a conventional speech recogniser allowed the system

to produce punctuation marks and speech recognition hypotheses simultaneously. This system

generated punctuation marks of an F-measure of 0.4400 with 0.5811 of precision and 0.3541

of recall. There is a big difference between the values of precision and recall. Compared to

the punctuation generation result for the reference transcription, this precision is adequate, but

the recall is too low. This showed that insufficient punctuation marks are generated in the

hypotheses.

One of the modifications to the speech recogniser is that the pronunciations of punctuation

marks are registered as silence. This is only a rough approximation. About 24
�

of punctuation

marks are not related to silence in broadcast news. In order to improve the result of punctuation

generation, a more precise definition of the pronunciation for punctuation marks is needed.

An alternative approach for generating punctuation marks from the 1-best speech recogniser

output which does not have punctuation marks has been proposed in this thesis. An extension

of this approach is to generate punctuation marks from N-best speech recogniser output which

does not have punctuation marks, and re-score these N-best output using the prosodic feature

model. This may produce improved results without assuming that acoustic pronunciation of

punctuation is silence.

7.2.3 New NE task definition

A new task definition (for version 1.4, see [14]) was proposed to include more NE classes such

as:

� DURATION: a measurement of time elapsed or period of time during which something

lasts

� MEASURE: standard numeric measurement phrases such as age, area, distance, energy,

speed, temperature, volume and weight.

� CARDINAL: a numerical count or quantity of some object (in the form of numbers, deci-

mals or fractions)

Since these additional NE classes are related to numeric expressions, it is clear that more im-

portance should be given to numeric expressions. At this time, there is a difference of about 3.8

points in F-measure between IdentiFinder (0.8777) and the rule-based NE recognition system

(0.8398) for numeric entities. This is small from the overall view since the numeric entities

account for about 7.5 percent of the total number of NEs. However in the new task definition,

numeric entities are becoming more important. New rule templates or regular rules for numeric

entities need to be developed.
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Appendix

In the appendix, examples of a reference text and hypothesis texts are shown as follows:

1. Example of a reference text (Figure 1): First 340 words of the TDB98 reference transcrip-

tion is shown in mixed case with NE tags and punctuation marks.

2. Example of an NE recognition output (Figure 2): An NE recognition output is generated

by the rule-based NE recognition system using name lists for the same part of the TDB98

reference transcription. Punctuation marks are provided, but capitalisation information

is not. In this condition, the rule-based NE recognition system reported an F-measure of

0.9007 and an SER of 16.68
�

as shown in Table 4.8.

3. Example of a punctuation generation output (Figure 3): A punctuation generation output

is produced for the same part of the TDB98 reference transcription (in single case) by the

combined system of a language model and a prosodic feature model (S LM+CART). In

this condition, S LM+CART reported an F-measure of 0.7830 and an SER of 32.30
�

as

shown in Table 5.6.

4. Example of a capitalisation generation output (Figure 4): A capitalisation generation out-

put is produced for the same part of the TDB98 reference transcription by the capitalisation

system based on NE recognition and punctuation generation (S on NE P). NE recognition

is performed by the rule-based NE recognition system. Punctuation marks are generated

by S LM+CART. In this condition, S on NE P reported an F-measure of 0.8691 and an SER

of 26.25
�

as shown in Table 6.13.

5. Example of a capitalisation generation output for a speech recognition result (Figure 5):

NE recognition is performed by the rule-based NE recognition system for the speech recog-

nition results of the HTK system. This speech recognition output contains punctuation

marks. Capitalisation generation is performed by S on NE P. In this condition, S on NE P

reported an F-measure of 0.7406 and an SER of 45.93
�

as shown in Table 6.7.
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The guardians of the electronic stock market � b enamex TYPE=“ORGANIZATION” � NASDAQ

� e enamex � who’ve been burned by past ethics questions, are moving to head off market fraud by

toughening the rules for companies that want to be listed on the exchange. Marketplace’s � b enamex

TYPE=“PERSON” � Philip Boroff � e enamex � reports. As part of the proposals, penny stocks will be

eliminated from � b enamex TYPE=“ORGANIZATION” � NASDAQ � e enamex � . These trade for lit-

erally � b numex TYPE=“MONEY” � pennies � e numex � . Less than � b numex TYPE=“MONEY” � a

dollar � e numex � a share. They’re the stocks of speculative companies. On wall street, they’re the

longest of the long shots. Some penny stocks grow into established corporations. Others are shell

companies. Incorporated firms without assets or prospects. Some of these are sold by small unsa-

vory brokerage firms. That dump them upon gullible investors. � b enamex TYPE=“PERSON” � David

Whitcomb � e enamex � is a � b enamex TYPE=“ORGANIZATION” � Rutgers University � e enamex �

finance professor and frequent � b enamex TYPE=“ORGANIZATION” � NASDAQ � e enamex � crit-

ic. That’s the real change, it’s reducing the status of cheap stocks so that at least � b enamex

TYPE=“ORGANIZATION” � NASDAQ � e enamex � is not giving them its seal of approval. Also, these

companies will no longer appear in newspapers on � b enamex TYPE=“ORGANIZATION” � NASDAQ

� e enamex � ’s list. And � b enamex TYPE=“PERSON” � Whitcomb � e enamex � says investors may be

less prone to buy them if they’re not listed in the paper. � b enamex TYPE=“ORGANIZATION” � NAS-

DAQ � e enamex � officials say, they’re not only trying to fight fraud by raising listing standards, they’re

doing a periodic tuneup of their market. Which they hope will help promote public confidence. In

� b enamex TYPE=“LOCATION” � New York � e enamex � , I’m � b enamex TYPE=“PERSON” � Philip

Boroff � e enamex � for Marketplace. And that’s the top of our news for � b timex TYPE=“DATE” �

Thursday, November fourteenth � e timex � . Today the � b enamex TYPE=“ORGANIZATION” � Dow

Jones � e enamex � industrial average gained thirty eight and three quarter points. Details when

we do the numbers. Later on tonight’s program, life in the fast lane. And coming up next, a fast

food Godzilla joins the burger wars in � b enamex TYPE=“LOCATION” � Japan � e enamex � . I’m

� b enamex TYPE=“PERSON” � David Brancaccio � e enamex � , this is Marketplace. At the foreign desk

in � b enamex TYPE=“LOCATION” � San Francisco � e enamex � , I’m � b enamex TYPE=“PERSON” �

George Lewinski � e enamex � . American popular culture whether it’s rock and roll, fashion, or

� b enamex TYPE=“LOCATION” � Hollywood � e enamex � movies, has long been an important export.

Even though statisticians have a hard time measuring its value. Take fast food. When the first Ameri-

can style burger joint opened in � b enamex TYPE=“LOCATION” � London � e enamex � ’s fashionable

� b enamex TYPE=“LOCATION” � Regent street � e enamex � some twenty years ago, it was mobbed.

Now it’s � b enamex TYPE=“LOCATION” � Asia � e enamex � ’s turn

Figure 1 Example of a reference text. The first 340 words of the TDB98 reference transcription in mixed

case with NE tags and punctuation marks.
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THE GUARDIANS OF THE ELECTRONIC STOCK MARKET � b enamex TYPE=“ORGANIZATION” �

NASDAQ � e enamex � WHO’VE BEEN BURNED BY PAST ETHICS QUESTIONS ARE MOVING TO

HEAD OFF MARKET FRAUD BY TOUGHENING THE RULES FOR COMPANIES THAT WANT TO BE

LISTED ON THE EXCHANGE MARKETPLACE’S � b enamex TYPE=“PERSON” � PHILIP BOROFF

� e enamex � REPORTS AS PART OF THE PROPOSALS PENNY STOCKS WILL BE ELIMINATED

FROM � b enamex TYPE=“ORGANIZATION” � NASDAQ � e enamex � THESE TRADE FOR LIT-

ERALLY PENNIES LESS THAN � b numex TYPE=“MONEY” � A DOLLAR � e numex � A SHARE

THEY’RE THE STOCKS OF SPECULATIVE COMPANIES ON WALL STREET THEY’RE THE LONGEST

OF THE LONG SHOTS SOME PENNY STOCKS GROW INTO ESTABLISHED CORPORATIONS

OTHERS ARE SHELL COMPANIES INCORPORATED FIRMS WITHOUT ASSETS OR PROSPECTS

SOME OF THESE ARE SOLD BY SMALL UNSAVORY BROKERAGE FIRMS THAT DUMP THEM UP-

ON GULLIBLE INVESTORS � b enamex TYPE=“PERSON” � DAVID WHITCOMB � e enamex � IS

A � b enamex TYPE=“ORGANIZATION” � RUTGERS UNIVERSITY � e enamex � FINANCE PRO-

FESSOR AND FREQUENT � b enamex TYPE=“ORGANIZATION” � NASDAQ � e enamex � CRIT-

IC THAT’S THE REAL CHANGE IT’S REDUCING THE STATUS OF CHEAP STOCKS SO THAT

AT LEAST � b enamex TYPE=“ORGANIZATION” � NASDAQ � e enamex � IS NOT GIVING THEM

ITS SEAL OF APPROVAL ALSO THESE COMPANIES WILL NO LONGER APPEAR IN NEWSPA-

PERS ON � b enamex TYPE=“ORGANIZATION” � NASDAQ � e enamex � ’S LIST AND � b enamex

TYPE=“PERSON” � WHITCOMB � e enamex � SAYS INVESTORS MAY BE LESS PRONE TO BUY

THEM IF THEY’RE NOT LISTED IN THE PAPER � b enamex TYPE=“ORGANIZATION” � NAS-

DAQ � e enamex � OFFICIALS SAY THEY’RE NOT ONLY TRYING TO FIGHT FRAUD BY RAIS-

ING LISTING STANDARDS THEY’RE DOING A PERIODIC TUNEUP OF THEIR MARKET WHICH

THEY HOPE WILL HELP PROMOTE PUBLIC CONFIDENCE IN � b enamex TYPE=“LOCATION” �

NEW YORK � e enamex � I’M � b enamex TYPE=“PERSON” � PHILIP BOROFF � e enamex � FOR

MARKETPLACE AND THAT’S THE TOP OF OUR NEWS FOR � b timex TYPE=“DATE” � THURS-

DAY NOVEMBER FOURTEENTH � e timex � TODAY THE � b enamex TYPE=“ORGANIZATION” �

DOW JONES � e enamex � INDUSTRIAL AVERAGE GAINED THIRTY EIGHT AND THREE QUAR-

TER POINTS DETAILS WHEN WE DO THE NUMBERS LATER ON TONIGHT’S PROGRAM

LIFE IN THE FAST LANE AND COMING UP NEXT A FAST FOOD GODZILLA JOINS THE

BURGER WARS IN � b enamex TYPE=“LOCATION” � JAPAN � e enamex � I’M � b enamex

TYPE=“PERSON” � DAVID BRANCACCIO � e enamex � THIS IS MARKETPLACE AT THE FOR-

EIGN DESK IN � b enamex TYPE=“LOCATION” � SAN FRANCISCO � e enamex � I’M � b enamex

TYPE=“PERSON” � GEORGE LEWINSKI � e enamex � AMERICAN POPULAR CULTURE WHETHER

IT’S ROCK AND ROLL FASHION OR � b enamex TYPE=“LOCATION” � HOLLYWOOD � e enamex �

MOVIES HAS LONG BEEN AN IMPORTANT EXPORT EVEN THOUGH STATISTICIANS HAVE A

HARD TIME MEASURING ITS VALUE TAKE FAST FOOD WHEN THE FIRST AMERICAN STYLE

BURGER JOINT OPENED IN � b enamex TYPE=“LOCATION” � LONDON � e enamex � ’S FASH-

IONABLE REGENT STREET SOME TWENTY YEARS AGO IT WAS MOBBED NOW IT’S � b enamex

TYPE=“LOCATION” � ASIA � e enamex � ’S TURN

Figure 2 Example of an NE recognition output. An NE recognition output is generated by the rule-based

NE recognition system using name lists for the same part of the TDB98 reference transcription. Punctu-

ation marks are provided, but capitalisation information is not. Underlined words show the positions of

NE recognition errors.



Appendix Page 117

THE GUARDIANS OF THE ELECTRONIC STOCK MARKET NASDAQ WHO’VE BEEN BURNED BY PAST

ETHICS QUESTIONS, ARE MOVING TO HEAD OFF MARKET FRAUD BY TOUGHENING THE RULES

FOR COMPANIES THAT WANT TO BE LISTED ON THE EXCHANGE. MARKETPLACE’S PHILIP BOROFF

REPORTS. AS PART OF THE PROPOSALS(.) PENNY STOCKS WILL BE ELIMINATED FROM NASDAQ.

THESE TRADE FOR LITERALLY PENNIES. LESS THAN A DOLLAR A SHARE. THEY’RE THE STOCKS

OF SPECULATIVE COMPANIES. ON WALL STREET, THEY’RE THE LONGEST OF THE LONG SHOTS.

SOME PENNY STOCKS GROW INTO ESTABLISHED CORPORATIONS(,) OTHERS ARE SHELL COM-

PANIES(,) INCORPORATED FIRMS WITHOUT ASSETS OR PROSPECTS. SOME OF THESE ARE SOLD

BY SMALL UNSAVORY BROKERAGE FIRMS. THAT DUMP THEM UPON GULLIBLE INVESTORS. DAVID

WHITCOMB IS A RUTGERS UNIVERSITY FINANCE PROFESSOR AND FREQUENT NASDAQ CRITIC(,)

THAT’S THE REAL CHANGE(.) IT’S REDUCING THE STATUS OF CHEAP STOCKS
�
, � SO THAT AT

LEAST NASDAQ IS NOT GIVING THEM ITS SEAL OF APPROVAL. ALSO, THESE COMPANIES WILL NO

LONGER APPEAR IN NEWSPAPERS ON NASDAQ’S LIST. AND WHITCOMB SAYS INVESTORS MAY BE

LESS PRONE TO BUY THEM
�
. � IF THEY’RE NOT LISTED IN THE PAPER. NASDAQ OFFICIALS SAY[]

THEY’RE NOT ONLY TRYING TO FIGHT FRAUD BY RAISING LISTING STANDARDS, THEY’RE DOING A

PERIODIC TUNEUP OF THEIR MARKET(,) WHICH THEY HOPE WILL HELP PROMOTE PUBLIC CON-

FIDENCE. IN NEW YORK(.) I’M PHILIP BOROFF FOR MARKETPLACE. AND THAT’S THE TOP OF OUR

NEWS FOR THURSDAY, NOVEMBER FOURTEENTH. TODAY THE DOW JONES INDUSTRIAL AVERAGE

GAINED THIRTY EIGHT AND THREE QUARTER POINTS. DETAILS
�
, � WHEN WE DO THE NUMBERS[]

LATER ON TONIGHT’S PROGRAM, LIFE IN THE FAST LANE. AND COMING UP NEXT, A FAST FOOD

GODZILLA
�
, � JOINS THE BURGER WARS IN JAPAN. I’M DAVID BRANCACCIO(.) THIS IS MARKET-

PLACE. AT THE FOREIGN DESK IN SAN FRANCISCO, I’M GEORGE LEWINSKI. AMERICAN POPULAR

CULTURE
�
. � WHETHER IT’S ROCK AND ROLL[] FASHION[] OR HOLLYWOOD MOVIES, HAS LONG

BEEN AN IMPORTANT EXPORT. EVEN THOUGH STATISTICIANS HAVE A HARD TIME MEASURING

ITS VALUE. TAKE FAST FOOD. WHEN THE FIRST AMERICAN STYLE BURGER JOINT OPENED IN LON-

DON’S FASHIONABLE REGENT STREET SOME TWENTY YEARS AGO, IT WAS MOBBED. NOW IT’S

ASIA’S TURN(,)

Figure 3 Example of a punctuation generation output. A punctuation generation output is produced for

the same part of the TDB98 reference transcription (in single case) by the combined system of a language

model and a prosodic feature model (S LM+CART). (), [] and
� � show substitution error, deletion error

and insertion error, respectively.
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The guardians of the electronic stock market NASDAQ who’ve been burned by past ethics questions are

moving to head off market fraud by toughening the rules for companies that want to be listed on the ex-

change Marketplace’s Philip Boroff reports As part of the proposals Penny stocks will be eliminated from

NASDAQ These trade for literally pennies Less than a dollar a share They’re the stocks of speculative

companies On Wall Street they’re the longest of the long shots Some penny stocks grow into established

corporations others are shell companies incorporated firms without assets or prospects Some of these

are sold by small unsavory brokerage firms That dump them upon gullible investors David Whitcomb is

a Rutgers University finance professor and frequent NASDAQ critic that’s the real change it’s reducing

the status of cheap stocks so that at least NASDAQ is not giving them its seal of approval Also these

companies will no longer appear in newspapers on NASDAQ’s list And Whitcomb says investors may be

less prone to buy them If they’re not listed in the paper NASDAQ officials say they’re not only trying to

fight fraud by raising listing standards they’re doing a periodic tuneup of their market which they hope

will help promote public confidence In New York I’m Philip Boroff for marketplace And that’s the top

of our news for Thursday November fourteenth Today the Dow Jones industrial average gained thirty

eight and three quarter points Details when we do the numbers later on tonight’s program life in the

fast lane And coming up next a fast food godzilla joins the burger wars in Japan I’m David Brancaccio

This is marketplace At the foreign desk in San Francisco I’m George Lewinski American popular culture

Whether it’s rock and roll fashion or Hollywood movies has long been an important export Even though

statisticians have a hard time measuring its value Take fast food When the first American style burger

joint opened in London’s fashionable Regent street some twenty years ago it was mobbed Now it’s Asia’s

turn

Figure 4 Example of a capitalisation generation output. A capitalisation generation output is produced

for the same part of the TDB98 reference transcription by the capitalisation system based on NE recogni-

tion and punctuation generation (S on NE P). NE recognition is performed by the rule-based NE recog-

nition system. Punctuation marks are generated by S LM+CART. Underlined words show the positions of

capitalisation generation errors.
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The guardians of the electronic stock market � b enamex TYPE=“ORGANIZATION” � NASDAQ

� e enamex � who’ve been burned by past ethics questions are moving to head off market fraud, but

toughening the rules for companies that want to be listed on the exchange market place is full of

� b enamex TYPE=“PERSON” � Boroff � e enamex � reports. Is part of the proposals, penny stocks will

be eliminated from � b enamex TYPE=“ORGANIZATION” � NASDAQ � e enamex � . These trade for lit-

erally pennies, less than � b numex TYPE=“MONEY” � a dollar � e numex � a share. Did the stocks of

speculative companies on Wall Street that the longest of the long shots some penny stocks growing to

establish corporations, others are shell companies incorporated firms without assets or prospects some

of these are sold by small unsavory brokerage firms that dumped them up on gullible investors day that

would come as a � b enamex TYPE=“ORGANIZATION” � Wreckers University � e enamex � finance pro-

fessor infrequent � b enamex TYPE=“ORGANIZATION” � NASDAQ � e enamex � credit. That’s the real

change, it’s reducing the status of cheap stocks still that at least � b enamex TYPE=“ORGANIZATION” �

NASDAQ � e enamex � is not giving them its seal of approval. Also, these companies will no longer

appear in newspapers are � b enamex TYPE=“ORGANIZATION” � NASDAQ � e enamex � ’s less than

� b enamex TYPE=“PERSON” � Wiccans � e enamex � says investors may be less prone to buy them if

they’re not listed in the paper � b enamex TYPE=“ORGANIZATION” � NASDAQ � e enamex � officials

say they’re not only trying to fight fraud by raising listing standards, they’re doing a periodic tuneup of

their market which they hope will help promote public confidence in � b enamex TYPE=“LOCATION” �

New York � e enamex � , I’m � b enamex TYPE=“PERSON” � Phillip Boroff � e enamex � for market-

place. And that’s the top of our news for � b timex TYPE=“DATE” � Thursday, November four-

teenth � e timex � . Today the � b enamex TYPE=“ORGANIZATION” � Dow Jones � e enamex � in-

dustrial average gained thirty eight and three quarter points details when we do the numbers.

� b enamex TYPE=“PERSON” � Mitterand � e enamex � tonight’s program life in the fast lane and com-

ing up next the fast food godzilla joined the burger wars in � b enamex TYPE=“LOCATION” � Japan

� e enamex � , I’m � b enamex TYPE=“PERSON” � David Brancaccio � e enamex � . This is market place.

The foreign desk in � b enamex TYPE=“LOCATION” � San Francisco � e enamex � and � b enamex

TYPE=“PERSON” � George Lewinsky � e enamex � . American popular culture, whether it’s rock and

roll fashion or � b enamex TYPE=“LOCATION” � Hollywood � e enamex � movies has long been an im-

portant export you know statisticians have a hard time issued its value take a fast food for the first

American style burger joint open in � b enamex TYPE=“LOCATION” � London � e enamex � ’s fashion-

able regent street some twenty years ago, it was mauled now it’s � b enamex TYPE=“LOCATION” � Asia

� e enamex � ’s turn

Figure 5 Example of a capitalisation generation output for a speech recognition result. NE recognition is

performed by the rule-based NE recognition system for the speech recognition results of the HTK system.

This speech recognition output contains punctuation marks. Capitalisation generation is performed by

S on NE P.
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